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Cities around the world have converged on structural and environmental characteristics
that exert similar eco-evolutionary pressures on local communities. However, evaluating
how urban biodiversity responds to urban intensiûcation remains poorly understood
because of the challenges in capturing the diversity of a range of taxa within and across
multiple cities from diûerent types of urbanization. Here we utilize a growing
resource4citizen science data. We analyzed 66,209 observations representing 5,209
species generated by the City Nature Challenge project on the iNaturalist platform, in
conjunction with remote sensing (NLCD2011) environmental data, to test for urban biotic
homogenization at increasing levels of urban intensity across 14 metropolitan cities in the
United States. Based on community composition analyses, we found that while similarities
occur to an extent, urban biodiversity is often much more a reûection of the taxa living
locally in a region. At the same time, the communities found in high intensity development
were less explained by regional context than communities from other land cover types
were. We also found that the most commonly observed species are often shared between
cities and are non-endemic and/or have a distribution facilitated by humans. This study
highlights the value of citizen science data in answering questions in urban ecology.
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17 Abstract

18 Cities around the world have converged on structural and environmental characteristics that exert 

19 similar eco-evolutionary pressures on local communities. However, evaluating how urban 

20 biodiversity responds to urban intensification remains poorly understood because of the 

21 challenges in capturing the diversity of a range of taxa within and across multiple cities from 

22 different types of urbanization. Here we utilize a growing resource4citizen science data. We 

23 analyzed 66,209 observations representing 5,209 species generated by the City Nature Challenge 

24 project on the iNaturalist platform, in conjunction with remote sensing (NLCD2011) 

25 environmental data, to test for urban biotic homogenization at increasing levels of urban intensity 

26 across 14 metropolitan cities in the United States. Based on community composition analyses, 

27 we found that while similarities occur to an extent, urban biodiversity is often much more a 

28 reflection of the taxa living locally in a region. At the same time, the communities found in high 

29 intensity development were less explained by regional context than communities from other land 

30 cover types were. We also found that the most commonly observed species are often shared 

31 between cities and are non-endemic and/or have a distribution facilitated by humans. This study 

32 highlights the value of citizen science data in answering questions in urban ecology.

33
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34 Introduction

35 Cities around the world exist in a range of environmental contexts, yet because of the 

36 requirements and preferences of their human inhabitants, they share commonalities such as 

37 landscape fragmentation, altered water and resource availability, and high densities of fabricated 

38 structures and impervious surfaces that alter climate (Rebele, 1994). With this ecological 

39 homogenization (Groffman et al., 2014) come potential consequences on the biodiversity of the 

40 organisms that live in and around cities (Savard, Clergeau & Mennechez, 2000). Plants have 

41 been found to bloom earlier in city centers due to the urban heat island effect (Mimet et al., 

42 2009), bird migratory patterns have shifted to take advantage of resource availability 

43 (Tryjanowski et al., 2013), and invasive species can be more prominent because of increased 

44 rates of species introductions (Tsutsui et al., 2000). While such modifications are still relatively 

45 recent on an evolutionary time scale, phenotypic changes have been observed across taxa on a 

46 global scale as eco-evolutionary consequences of urbanization (Alberti, 2015). Understanding 

47 such changes can help us better plan for future ecological dynamics in cities, such as predicting 

48 population vulnerability to invasive species or minimizing human-wildlife conflicts, such as 

49 property damage or health hazards (eg. disease vectors). 

50 Common ecological metrics such as species richness and abundance have shown mixed 

51 results in urban environments. A review of 105 studies on species richness along urban to rural 

52 gradients demonstrated inconsistent patterns4while some studies found that species richness 

53 decreases with higher urban intensification, other studies found the opposite (McKinney, 2008). 

54 Often, this greater than expected species richness can be largely attributed to non-native species 

55 (McKinney, 2008), highlighting the importance of additionally considering shifts in community 

56 composition. The commonality and spread of urban specialists could contribute to urban biotic 

57 homogenization4the idea that on a global scale the biodiversity of cities converges (McKinney, 

58 2006; La Sorte, McKinney & Pyaek, 2007; Clavel, Julliard & Devictor, 2011). This has been 

59 particularly observed to occur with urban plants (Schwartz, Thorne & Viers, 2006; Pearse et al., 

60 2018), and driven concerns on the cascading impacts reductions in beta diversity could have for 

61 conservation (Socolar et al., 2016).

62 A challenging aspect to measuring urban homogenization is gathering sufficient data to 

63 cover the variation in ecological communities within and between cities. Within city biodiversity 

64 levels can vary greatly by neighborhood (Sushinsky et al., 2013). To address this, cities have 

65 frequently been examined along rural to urban gradients, although this method has been 

66 criticized for its oversimplification of features and the vagueness of definitions that makes 

67 comparisons between cities difficult (McDonnell & Hahs, 2008). Broad terminology like 

68 <urban= can refer to dense downtown built-up environments, residential neighborhoods, 

69 industrial areas, or parks. Even within a single type, such as residential neighborhoods, factors 

70 such as socioeconomic demographics or landscape legacy can contribute to even more local 

71 habitat heterogeneity (Leong, Dunn & Trautwein, 2018).

72 One solution to capturing all this variation and exploring patterns of biodiversity across 

73 geographically disparate cities is to utilize data generated through public engagement. Broadly 
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74 referred to as citizen science (although we emphasize that one need not be a citizen of any 

75 nationality to participate), this process involves public collaboration with professional scientists 

76 in ways that help our understanding of the natural world (Ballard et al., 2017). Citizen science 

77 data collection overcomes the challenges of accessing private land and can be scaled up to cover 

78 multiple cities with relative ease (Spear, Pauly & Kaiser, 2017). There are obvious challenges 

79 such as collection biases and identification quality that need to be accounted for (Isaac et al., 

80 2014), but citizen science is a potentially valuable tool that can be used far beyond science 

81 engagement or exploring expanding species distributions. 

82 Here we examine patterns in urban biodiversity across 14 metropolitan areas in the 

83 United States using data generated by the general public. We take a multi-scale approach to 

84 examine urban biotic homogenization both between and within cities. Specifically, we ask 1) 

85 how biodiversity is shared between cities across different regions; and 2) whether the effect of 

86 biotic homogenization gets stronger as urbanization intensifies.

87

88 Materials & Methods

89 The City Nature Challenge is a citizen science initiative started by the California 

90 Academy of Sciences and the Los Angeles Museum of Natural History that utilizes the 

91 iNaturalist platform to encourage users to photograph urban nature during a bioblitz in late April. 

92 For the 16 cities that participated in 2017 (San Francisco CA, Los Angeles CA, Seattle WA, Salt 

93 Lake City UT, Austin TX, Houston TX, Dallas TX, Duluth, MN, Minneapolis MN, Chicago IL, 

94 Nashville TN, Miami FL, Raleigh NC, Washington DC, New York NY, and Boston MS) we 

95 accessed all available City Nature Challenge data from for all years available. Next, we filtered 

96 all observations to include <Research Grade= only, which is defined by the iNaturalist platform 

97 as being verifiable with a photograph and having reached a species identification consensus by at 

98 least 2 users in the iNaturalist community (more details available at inaturalist.org). We further 

99 filtered these observations to only include those observations that had open and un-obscured 

100 geocoordinates (geoprivacy both by user choice and for species with a conservation status are 

101 maintained on the iNaturalist platform). Because this reduced the number of available 

102 observations, we excluded the cities of Duluth and Nashville from further analyses. The 14 

103 included metropolitan areas (Fig. 1) cover a range of geographic and environmental diversity. 

104 There were a range of number of observations between cities, highlighting the disproportionate 

105 sampling effort, with Miami having the fewest observations at 1,011 and the San Francisco Bay 

106 Area having the most at 15,733. The average number of observations of the 14 cities was 5,077 

107 +/-3817. Differences in collecting effort are addressed in our analyses by using techniques such 

108 as within city comparisons and community composition metrics.

109 All data and scripts used for the following analyses can be found at 

110 https://github.com/mishoptera/cnc.

111

112 Shared biodiversity between cities
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113 We identified which species were found in the majority of the cities to compare these 

114 widespread species with the total pool of observations. We also divided the dataset by major 

115 taxa: 4 plant groups (monocots, dicots, ferns, and conifers) and 6 animal groups (birds, insects, 

116 reptiles, amphibians, mammals, and gastropods), such as to allow for better comparisons 

117 between similar taxa. To capture observed species from groups that had insufficient observations 

118 on their own (e.g. isopods, fungi, arachnids), we also created a catch-all <other= category.

119

120 Biotic homogenization with increasing urban intensification

121 After seeing how biodiversity was shared between cities, we asked whether the biotic 

122 homogenization effect was stronger with increasing urbanization intensity. Based on geographic 

123 coordinates, we linked all observations with a NLCD2011 land cover classification from the 

124 Multi-Resolution Land Characteristics Consortium (MRLC). Assessed nationwide at a 30 x 30m 

125 resolution, every pixel is assigned one of 16 land cover classifications, four of which are forms 

126 of developed land with increasing urbanization intensity (developed-open space, developed-low 

127 intensity, developed-medium intensity, developed-high intensity; further details in Table 1). We 

128 collapsed the remaining land cover classifications into <water=, <agricultural=, and <natural=. As 

129 we were only interested in comparing increasing levels of urbanization against the natural land 

130 use type, we excluded any observations that were classified as having occurred within 

131 agricultural or water pixels. 

132 We then analyzed the relative influence of level of urban intensification and city on 

133 community composition. To do this, we built Bray-Curtis dissimilarity matrices based on the 

134 species composition at each level of urbanization within each city, and visualized community 

135 composition using NMDS (Non-Metric multi-Dimensional Scaling) with 100 restarts. We 

136 applied a stress cut-off of 0.20; if stress was >0.20, we considered the NMDS plot to be 

137 unreliable (Quinn & Keough, 2002). We visualized groupings both based on land cover type and 

138 by city.

139 As regional location can be an important environmental filter in determining community 

140 composition (Williams et al., 2009; Aronson et al., 2014; Pearse et al., 2018), we also created 

141 NMDS plots for regional groups in a series of triads of increasing geographic distance.  

142 Specifically, we focused on a Texas group (Houston, Dallas, and Austin), Atlantic Coast group 

143 (New York City, Boston, and Washington DC), Pacific Coast group (Seattle, Los Angeles, and 

144 San Francisco), and a fairly widespread Central United States group (Salt Lake City, 

145 Minneapolis, and Chicago) (Fig. 1).

146 To examine whether community composition becomes more similar with increased urban 

147 intensification, we subdivided observations based on their land cover classification (natural, 

148 developed-open space, developed-low intensity, developed-medium intensity, developed-high 

149 intensity). We then looked for the effect of regional location (with three city <replicates= for each 

150 region as above4Raleigh and Miami were excluded from this analysis because they did not fall 

151 neatly into one of the other regional categories). We built a PERMANOVA (Permutational 

152 Multivariate Analysis of Variance, (Anderson, 2017)) model for each land cover group with 999 
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153 iterations based on Bray-Curtis dissimilarity (R package vegan, (Oksanen et al., 2015)), then 

154 compared the R2, p-value and AIC score for each of the models generated by the five different 

155 land cover classifications. We would expect that if biotic homogenization were occurring with 

156 increased urban intensification, the models built off of the observations from the more developed 

157 land cover types would perform less well because the effect of regional location should be 

158 reduced.

159

160 Results and Discussion

161

162 Shared biodiversity between cities

163 We analyzed 66,209 citizen science research grade iNaturalist observations across 14 US 

164 metropolitan areas. Overall, dicots, the largest plant group, were overwhelmingly the most 

165 observed (59.6%) and had the most species (52.4%). The next most observed groups were birds 

166 (12.8%), monocots (8.7%), and insects (8%). However, despite making up only 8% of the 

167 observations, insects actually made up 18.4% of the total species richness. Birds, on the other 

168 hand, made up only 7.8% of species richness, meaning they have a higher proportion of number 

169 of observations per species. 

170 Of the 5,209 observed species, exactly 100 were found in the majority (8 or more) of the 

171 cities (Table 2), which we hereafter refer to as our <cosmopolitan= species. While the 

172 cosmopolitan species were primarily birds and dicots (36 each), and a few mammals (7), insects 

173 (7), and reptiles (4), there was also one cosmopolitan species each for amphibians, monocots, 

174 and conifers, and no representative species for gastropods or ferns. Although only 1.9% of the 

175 total species richness, these widespread cosmopolitan species made up 21.4% of the total 

176 observations. Two birds, the rock dove and American crow, were the only species observed in 

177 each of the 14 cities. Ten additional species were observed in 13 cities each47 of which were 

178 also birds (red-winged blackbird, mallard, great blue heron, turkey vulture, house sparrow, 

179 American robin, and mourning dove), but also one dicot (common dandelion), one insect (Asian 

180 lady beetle), and one mammal (common raccoon). 

181 Taxa varied in how cosmopolitan (again, here defined as being found in the majority of 

182 our cities) they were as a group. Mammals and birds had the highest proportions of cosmopolitan 

183 species (10.6% and 10.1% respectively). On the opposite end of the spectrum, insects and dicots 

184 had a much smaller proportion of their species observed in the majority of cities (0.83% and 

185 1.5% respectively). Our findings that cities comprise a few cosmopolitan species with a mix of 

186 many local species complement other findings that the majority of urban species are still local 

187 species (Aronson et al., 2014). 

188 However, these cosmopolitan species accounted for the majority of observations for 

189 mammals (55.2%) and birds (64.8%), and even made up a large proportion of observations for 

190 insects (25.3%) and dicots (15.7%). While it is possible that these patterns could also be 

191 explained by cosmopolitan species being more recognizable to people (and therefore more 

192 frequently identified, leading to an inflation in the proportion of observations for these groups), 
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193 the substantial proportion of cosmopolitan species could also be indicative of a downward trend 

194 of the relative abundance of native species populations in cities. Previous multi-city studies of 

195 biotic homogenization have relied on species lists (Aronson et al., 2014), which can not capture 

196 shifts in community proportions. With mass species declines in tropical and temperate 

197 ecosystems (Hallmann et al., 2017; Lister & Garcia, 2018), such findings of cosmopolitan 

198 species making up such a large portion of the community relative to native species merit further 

199 investigation.

200

201 Biotic homogenization with increasing urban intensification 

202 We next asked whether the effect of biotic homogenization grows stronger as a landscape 

203 becomes more developed through urbanization. The clustering in our NMDS plots suggest that 

204 urban biodiversity is to some degree city specific but also tied to particular levels of urbanization 

205 (Fig. 2). Plants exhibited a slightly different pattern from animals (Fig. S1), with the plant 

206 communities observed in the highest levels of urban intensification having the greatest 

207 differentiation, opposite to the pattern that would be expected if urban homogenization were 

208 occurring. This contrasts with a previous study that found that across cities, cultivated yards 

209 tended to be more similar to one another compared to the similarity of their associated natural 

210 areas across cities (Pearse et al., 2018), which could be due to being unable to differentiate 

211 between cultivated and spontaneous vegetative growth observations, and the iNaturalist platform 

212 discourages the recording of cultivated plants and animals.

213 We found that communities, regardless of level of urban intensification, within the same 

214 city were found close together on the NMDS plots4a pattern further reinforced by region (Fig. 

215 2b). For example, all three Texan metropolitan cities (Houston, Dallas, and Austin) were 

216 grouped near one another, as were the cities along the Atlantic (Boston, New York City, and 

217 Washington DC) and Pacific Coasts (Seattle, San Francisco, and Los Angeles). Miami, being 

218 more geographically isolated and environmentally distinct than the other cities was relatively far 

219 on the plot from the other cities. Such findings complement what we found on the between cities 

220 comparison, where urban communities are largely a reflection of the local regional community, 

221 with a few cosmopolitan species. This regional clustering was found for both plants and animals. 

222 Animal communities overall were more similar between cities than plant communities, perhaps 

223 because of their mobility and ability to respond relatively quickly to land cover changes. 

224 In the regional triad NMDS plots (Fig. 3) which peeled away some of the environmental 

225 variation between cities, community composition showed overlap between the different levels of 

226 urbanization in an ordered way along the urbanization spectrum, in that more similar levels of 

227 urbanization also share more similar communities. In all four regional groups, community 

228 composition from high intensity urbanization were more distinct than those from all other land 

229 cover types4even more distinct than those from natural were from the least developed areas. 

230 For the Atlantic and Pacific Coast cities, there appeared to be a longitudinal gradient, with the 

231 cities falling in the geographic middle (New York City and San Francisco respectively) having 

232 all of their land cover community compositions falling between the community compositions of 
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233 cities that were more north and south. The distinctness of communities from each land cover type 

234 were more evident in those triads that have cities that are geographically closer to one another. In 

235 other words, as environmental context becomes less variable, levels of urbanization become 

236 more important in defining the community composition.

237 As predicted, the PERMANOVA models (for all observations, plants only, and animals 

238 only) built from observations from high intensity land cover performed the poorest (Table 3), 

239 meaning that regional group membership was less able to predict community composition in 

240 higher intensity land cover than it could in the other land cover types. This is consistent with 

241 what we would expect to occur if biotic homogenization increases with urbanization 

242 intensification. However, the effect of regional group is still significant (p < 0.001) even for high 

243 intensity land cover observations. Additionally, while the PERMANOVA models built from the 

244 high intensity land cover observations appear the weakest (based on AIC and R2), the models 

245 based on observations from natural and the other developed land cover types did not appear to 

246 decrease in strength in an ordered way with increasing urban intensification. 

247

248 Additional observations

249 Many species demonstrated a preferential association for either natural or high-intensity 

250 urban areas across all the cities they were found in. In general, we found that those species that 

251 favored higher intensity urban land cover tended to be non-natives, having origins in Europe, 

252 North Africa, and South Africa (e.g. common dandelion, white clover, common ivy, house 

253 sparrow, rock dove, common starling). Conversely (and expectedly), those that were found to 

254 favor more natural sites are native to North America (e.g. poison ivy, Virginia creeper, northern 

255 cardinal). However, it was difficult to identify specific ecological traits that urban specialists 

256 shared, as has been a similar finding in other urban ecology studies (Duncan et al., 2011)

257 Among the widespread cosmopolitan species we identified in the between cities 

258 comparison, we expected there to be a preferential association for the higher intensity land use 

259 types. There were in fact several species that showed this pattern3such as the house sparrow and 

260 rock dove. However, just as many widespread species favored the less disturbed natural land 

261 cover types 3 such as the white tail deer. It seems there are multiple human-associated 

262 mechanisms that act at different scales. Human transportation networks, as well as agriculture 

263 and other human directed habitat shifts have facilitated species introductions and expanded 

264 species ranges, while urbanization has created unique habitats that allow particular species to 

265 thrive. While humans are a common denominator, species that benefit from range expansions do 

266 not necessarily also benefit from urbanization.

267 The western honey bee is an example of a species that varied greatly in which land cover 

268 type it favored4it was most frequently observed in the highest intensity urban land cover types 

269 in Washington DC and Los Angeles, the natural land cover types for Austin, and somewhere 

270 along the urbanization spectrum for everywhere else. The honey bee was found in every city 

271 except Minneapolis and Seattle, and was most frequently observed in cities in Texas and 

272 California. Pollinators, and honey bees in particular, have been shown to be sensitive to climatic 
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273 differences (Gordo & Sanz, 2006; Bartomeus et al., 2011), and the varying environmental 

274 conditions between cities in April could explain why the honey bee was not found in the two 

275 northernmost cities and most abundant in the more southern ones. Further, the <snapshot= 

276 approach of the City Nature Challenge captures cities at different points in their seasonal 

277 progression, as bee abundance phenology is known to vary between land cover types (Leong et 

278 al., 2016). 

279 Many frequently observed species are also invasive species4such as garlic mustard. 

280 While originally introduced to North America from Europe, it thrives in the forest understory 

281 (Stinson et al., 2006). It was particularly abundant in Boston, New York, and Washington D.C., 

282 where it was found across all land cover types. Because there are many ongoing efforts to control 

283 this species (Nuzzo, 1999; Blossey et al., 2001), it will be important for land managers to 

284 consider that urban landscapes could also act as reservoirs maintaining sizeable populations of 

285 this species.

286 Our methodology utilizes within city and land cover type community composition and 

287 ranking metrics to avoid biases based on <collecting effort.= However, there remain other 

288 challenges in teasing apart patterns reflecting ecological dynamics and natural history versus 

289 artifacts associated with data collected opportunistically by members of the public that currently 

290 limit ways in which we can interpret our findings. For example, species with the most 

291 observations are often not truly the most abundant species in cities, rather they are the easiest to 

292 photograph and identify (hence, the <overrepresentation= of bird taxa). Insects and other small 

293 taxa that are more difficult to photograph and identify are almost certainly under recorded. Many 

294 species were rarely observed42435 of the 5,209 total species included in the dataset were 

295 singleton/doubletons, meaning they were only observed once or twice. Although we can assume 

296 that most species should be relatively equally photographable and identifiable across land cover 

297 types, we recommend using multiple approaches to make comparisons <within the biases,= such 

298 as focusing on community composition and nonparametric statistical methods as we have done 

299 here.

300

301

302 Conclusions

303 Our findings provide some support for biotic homogenization, although no single species 

304 was recorded in the highest level of urbanization across all cities. While we find that community 

305 composition is significantly impacted by degree of urban intensification, the role of geographic 

306 and environmental region seems to have a larger role in determining communities. Urban 

307 biodiversity is a mix of local natural biodiversity and introduced species that are closely 

308 associated with humans. These novel <hybrid ecosystems,= with both local regional filters and 

309 the human influences of dispersal and resources are a growing reality in many parts of the world, 

310 and are continually changing with species adapting to exploit them (Kowarik, 2011). While it has 

311 been suggested that cities can act as reservoirs for native biodiversity (Pearse et al., 2018), 
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312 conversely, natural areas can also be impacted by the diversity of species in the cities that they 

313 border. 

314 Despite the complexity of urban biodiversity dynamics, this work demonstrates the power 

315 of using citizen science data in urban landscapes. The data from the City Nature Challenge 

316 provide an opportunity to look at diverse species occurrences across many cities during the same 

317 snapshot of time in a manner that has not been possible before. The opportunistic nature of 

318 citizen science data is comparable to natural history collections in many ways (Spear, Pauly & 

319 Kaiser, 2017), yet with an additional factor of being focused in urban landscapes. Further, citizen 

320 science data makes up a large proportion of GBIF data and is continuing to grow at a fast rate. 

321 There are many potential future questions to explore, particularly as this dataset continues to 

322 grow in conjunction with other large environmental datasets. 

323 While we focused our efforts using a subset of available iNaturalist observation data from 

324 the City Nature Challenge and the levels of urbanization from the National Land Cover 

325 Database, there are many more environmental and geopolitical datasets available that can be 

326 used to explore patterns in urban biodiversity. Expanding our scope to include all iNaturalist 

327 observations and museum collection specimen data could help untangle some of the complexity 

328 that we observed. Future work can also pursue broader ecological questions such as the role of 

329 climate change on urban biodiversity, phenological shifts, city connectedness, links with 

330 socioeconomics, the historical legacies of cities, and how these patterns change over time. 

331 Finally, beyond the value that citizen science data can provide in allowing us to ask 

332 questions that would have been impossible to previously explore, the collection of these data 

333 engages the broader public in the ecological and environmental world around them in a 

334 meaningful way. An engaged network of citizen scientists is a built-in audience for science 

335 communication, making citizen science a valuable tool to increase the relevancy of 

336 environmental research. The everyday biodiversity in cities is now known to be an important 

337 contributor to city resident well-being and health. Concerns about the growing disconnect 

338 between city residents and nature can be combated (Schuttler et al., 2018) with increased 

339 awareness and participation in decision-making to build healthier and happier cities. 

340
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Figure 1
Map of included City Nature Challenge cities.

The 14 cities are color grouped into ûve major regions: East, Midwest, South, Southwest, and
West. The size of the circle markers represent the relative number of observations coming
from each city. Miami had the fewest observations (1,011) and the San Francisco Bay Area
had the most (15,733). The average number of observations of the 14 cities was 5,077
+/-3,817.
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Figure 2
Community composition NMDS plots with all taxa included.

Built from a Bray-Curtis dissimilarity matrix, each point represents the community
composition of a unique combination of one of the ûve urbanization intensity levels in one of
the 14 cities. NMDS 2-D stress = 0.176. The two plots below are the same except diûerent
grouping visualizations are emphasized: in (A) points are grouped together by land cover
type; in (B) points are grouped together based on city.
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Figure 3
Community composition NMDS plots for each regional triad with all taxa included.

Built from Bray-Curtis dissimilarity matrices, each plot represents the community
composition of a unique combination of one of the ûve urbanization intensity levels for one of
the 3 focal cities for each region. Plots are in order of increasing geographic distance
between cities (Texan cities are ~300 km apart, whereas the Central US cities are ~1500 km
apart), and are grouped to highlight land cover type. (A) Texas (Austin, Dallas, and Houston);
NMDS 2-D stress = 0.111. (B) Atlantic Coast (Boston, New York City, and Washington DC);
NMDS 2-D stress = 0.0887. (C) Paciûc Coast (Los Angeles, San Francisco, and Seattle); NMDS
2-D stress = 0.0367. (D) Central US (Chicago, Minneapolis, and Salt Lake City); NMDS 2-D
stress = 0.0664.
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Table 1(on next page)

Urban land cover deûnitions table.

Descriptions of urbanization are based on MRLC9s NLCD2011 deûnitions
(https://www.mrlc.gov/nlcd11_leg.php).
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1 Table 1.  Urban land cover definitions table.  Descriptions of urbanization are based on 

2 MRLC9s NLCD2011 definitions (https://www.mrlc.gov/nlcd11_leg.php).

3

4

Code Land Cover Type Description

n natural all areas not classified as developed, agricultural, or water

d1 developed - open 

space

areas with a mixture of some constructed materials, but 

mostly vegetation in the form of lawn grasses. Impervious 

surfaces account for less than 20% of total cover. These 

areas most commonly include large-lot single-family 

housing units, parks, golf courses, and vegetation planted 

in developed settings for recreation, erosion control, or 

aesthetic purposes.

d2 developed - low 

intensity

areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 20% to 49% 

percent of total cover. These areas most commonly 

include single-family housing units.

d3 developed - 

medium intensity

areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 50% to 79% of 

the total cover. These areas most commonly include 

single-family housing units.

d4 developed - high 

intensity

highly developed areas where people reside or work in 

high numbers. Examples include apartment complexes, 

row houses and commercial/industrial. Impervious 

surfaces account for 80% to 100% of the total cover.

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27472v2 | CC BY 4.0 Open Access | rec: 19 Mar 2019, publ: 19 Mar 2019



Table 2(on next page)

Taxa-based counts of species found in the majority of cities.
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1 Table 2. Taxa-based counts of species found in the majority of cities.

2

Cosmopolitan Pool Total Pool Proportion Cosmopolitan

Taxon num species observations num species observations num species observations

amphibians 1 81 58 725 1.72% 11.17%

birds 36 5258 355 8115 10.14% 64.79%

conifers 1 124 45 786 2.22% 15.78%

dicots 36 5696 2380 37744 1.51% 15.09%

ferns 0 0 57 869 0.00% 0.00%

gastropods 0 0 113 719 0.00% 0.00%

insects 7 1283 835 5067 0.84% 25.32%

mammals 7 938 66 1698 10.61% 55.24%

monocots 1 33 499 5527 0.20% 0.60%

reptiles 4 334 137 2123 2.92% 15.73%

other 7 430 664 2836 1.05% 15.16%

TOTALS 100 14177 5209 66209 1.92% 21.41%

3
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Table 3(on next page)

PERMANOVA results.

We subdivided observations based on their land cover type, then looked for the eûect of
regional location. For each subset of observations, we buit built Bray-Curtis dissimilarity
matrices then conducted PERMANOVA (Permutational Multivariate Analysis of Variance)
analyses with 999 iterations. We repeated this for the entire dataset, plants only, and
animals only.
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1 Table 3. PERMANOVA results. We subdivided observations based on their land cover type, 

2 then looked for the effect of regional location. For each subset of observations, we built built 

3 Bray-Curtis dissimilarity matrices then conducted PERMANOVA (Permutational Multivariate 

4 Analysis of Variance) analyses with 999 iterations. We repeated this for the entire dataset, plants 

5 only, and animals only.

6

Taxon Urban Intensity R2 p-value AIC

all natural 0.486 0.001 24.494

all developed - open space 0.496 0.001 23.783

all developed - low intensity 0.471 0.001 24.048

all developed - medium intensity 0.454 0.001 24.304

all developed - high intensity 0.400 0.001 26.237

plants natural 0.488 0.001 24.977

plants developed - open space 0.501 0.001 24.477

plants developed - low intensity 0.472 0.001 25.168

plants developed - medium intensity 0.452 0.001 25.601

plants developed - high intensity 0.406 0.003 27.424

animals natural 0.490 0.001 22.597

animals developed - open space 0.480 0.001 22.161

animals developed - low intensity 0.469 0.001 22.034

animals developed - medium intensity 0.463 0.001 22.040

animals developed - high intensity 0.393 0.010 24.728
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