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The scientific literature contains an historic record of the changing ways in
which we describe the world. Shifts in understanding of scientific concepts
are reflected in the introduction of new terms and the changing usage and
context of existing ones. We conducted an ontology-based temporal data
mining analysis of biodiversity literature from the 1700s to 2000s to quan-
titatively measure how the context of usage for vertebrate anatomical con-
cepts has changed over time. The corpus of literature was divided into nine
non-overlapping time periods with comparable amounts of data and context
vectors of anatomical concepts were compared to measure the magnitude of
concept drift both between adjacent time periods and cumulatively relative
to the initial state. Surprisingly, we found that while anatomical concept
drift between adjacent time periods was substantial (55% to 68%), it was
of the same magnitude as cumulative concept drift across multiple time pe-
riods. Such a process, bound by an overall mean drift, fits the expectations
of a mean-reverting process.

Categories and Subject Descriptors: []:

1. INTRODUCTION

Scientists have been recording hypotheses and discoveries in books
and journals for centuries. Biology and natural history has among
the deepest historical records, and observations on morphology,
anatomy and other properties of biological taxa have been accu-
mulating since the dawn of scientific publication. We would ex-
pect our changing understanding of diversity in the natural world
to be manifested in the literature through the introduction of novel
anatomical and morphological concepts as well as changes in the
usage of existing concepts. With access to much of this literature
in digital form, we are in a position to quantitatively explore pat-
terns in the evolution of how biological concepts have changed in
meaning over time.

In text analysis, the term concept drift is used to indicate a
change in the context in which a concept is used [Wang et al. 2010]
or a change in the statistical properties of a concept as predicted
by a machine learning model [Tsymbal 2004; Gama et al. 2014].
Here, we are interested in the evolution of the textual context in
which anatomical concepts are used in the literature, as measured
by examining the words surrounding controlled vocabulary terms.
Context vectors are used to represent the frequency of each word
in the neighborhood of a focal term among a collection of term
occurrences [Carrillo et al. 2009; Gallant 2000]. Context vectors
are amenable to statistical comparisons and are routinely used for
Natural Language Processing (NLP) applications such as document
retrieval, assessing word similarity, and word sense disambiguation
[Gallant 2000; Turney et al. 2010].

In recent years, ontologies [Gruber 1993] have gained popular-
ity as a structured and consistent way to describe biological entities
[Bard and Rhee 2004; Blake and Bult 2006]. For example, Uberon
[Mungall et al. 2012] is a cross-species ontology that represents
anatomical concepts connected to each other via relationships that
model traditional anatomical classifications. Anatomy ontologies
such as Uberon are the result of careful planning and development
with respect to concept naming conventions and modeling anatomi-
cal classifications making them a valuable repository of anatomical
concepts. Given that these ontologies reflect the state of our current
knowledge on anatomical concepts, it is interesting to observe how
many of these concepts are represented in literature and track how
their usage evolves over time.

To observe how concepts drift over time, we segregated pub-
lished literature into periods of time and compared the context of
Uberon anatomical concepts between successive time periods. If
context of concepts is found to drift from one time period to the
next, that implies that each time period drifts increasingly from the
usage of concepts when they were first introduced. We investigate
this by comparing the usage of anatomical concepts in each time
period to the original context of the concepts.

In addition to being a snapshot of the current knowledge on
anatomical concepts, ontologies also encapsulate important infor-
mation and semantics in their hierarchical structure. For example,
concepts in the Uberon ontology are arranged in 15 levels; the
greater the distance from the root, the greater the concept’s depth.
Ontology concepts closer to the root are more general and abstract
while concepts closer to the leaves of the ontology are detailed and
specific. It could be hypothesized that concepts experience drift dif-
ferently based on their depth. General concepts could have greater
variability in interpretation and usage due to their abstraction lead-
ing to greater concept drift. At the same time, detailed and specific
concepts at greater depths would be expected to offer little room
for use in different contexts and thus show low concept drift. We
test this hypothesis by investigating if concept drift decreases with
increase in ontology depth.

The Biodiversity Heritage Library (BHL), a consortium of li-
braries that digitizes biodiversity literature from before the 17th
century to the 21st century [Gwinn and Rinaldo 2009] is an excel-
lent source of vertebrate biodiversity literature. Literature in BHL
has been used in several studies for taxonomic name recognition
[Akella et al. 2012; Wei et al. 2010; Page 2013] and other data
mining applications [Thessen et al. 2012]. Parallel to our goal of es-
timating how anatomical concepts change over time, Page demon-
strated the use of BHL content to track changes in scientific names
used for the sperm whale over time [Page 2011].

In summary, here, we present an ontology-based temporal data
mining analysis on vertebrate biodiversity literature to investigate
if the context of anatomical concepts drifts over time and to esti-
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mate any concept drift. We conduct ontology-based concept recog-
nition and annotation of literature with concepts from the Uberon
ontology and then compute concept drift for the annotated concepts
across periods of publication time periods. Specifically, we inves-
tigate the following questions 1) How much context drift is there
over time? 2) Is context drift cumulative over long time periods? 3)
Is the magnitude of concept drift associated the depth of the con-
cept in the ontology?

2. METHODS

2.1 Creating a corpora of literature

A scientific corpora was created for analysis of anatomical con-
cepts by identifying publications that describe vertebrate anatomy.
A publication was deemed relevant to vertebrates if 1) the title
of the item (book, journal, paper etc.) contained the word “verte-
brate(s)”, or 2) the item’s subject title contained the word “verte-
brate(s)”. OCR text for the selected literature was downloaded from
the BHL database.

2.2 OCR cleaning and filtering

OCR translation sometimes introduces spelling and other format-
ting errors in the resulting OCR text. We conducted the following
cleaning and filtering steps on the downloaded OCR text to account
for OCR errors. First, we used an open source software called OCR
normalizer [Underwood 2013] to correct common errors such as
s/f substitutions, words divided across a line break, spelling nor-
malizing to British or American English, unpacking syncope in
eighteenth-century verbs like “remember’d etc. Stop words such as
“the, and, etc.”, that are not informative to the context of anatom-
ical concepts were also removed. Words in each publication were
compared to a dictionary built from English words, abbreviations,
scientific families, genera [Best 2013], and concept names from
three anatomy ontologies (Uberon [Mungall et al. 2012], Vertebrate
Spatial Anatomy Ontology [Dahdul et al. 2012], Teleost Anatomy
Ontology [Dahdul et al. 2010]). We then used the percentage of
recognized words in the document as an OCR quality score (Q,
Equation 1) to quantify the quality of a publication’s cleaned OCR
text [Tanner et al. 2009].

Q =
WR

W
× 100 (1)

WR is the number of recognized words in the document
W is the total number of words in the document

OCR quality scores were computed for each publication and
those with Q ≤ 60% were removed from the corpora. The remain-
ing high quality publication corpora were grouped by year to create
high quality yearly corpora.

2.3 Concept Recognition

Concept recognition and annotation of anatomical concepts from
the Uberon ontology were conducted on the high quality yearly
corpora from above. When a piece of text in the corpora matched
an Uberon concept name or its exact synonym perfectly, the text
piece was annotated to the Uberon concept. For example, the word
“snout” was annotated to UBERON:0006333 (snout). If a piece
of text and a substring of the text both match different concepts,
both annotations were recorded. For example, “head sensillum” re-
sults in two annotations – UBERON:0000963 (head sensillum) and
UBERON:0000033 (head).

Ontology depth was measured relative to the root of the ontology.
All direct children of the root have a depth of one, and the depth
of a concept is computed as the depth of its parent plus one. If a
concept has multiple parents, the depth of the concept is computed
as the depth of the deepest parent plus one (i.e. the longer path takes
precedence).

2.4 Grouping yearly corpora into time periods

A concept was deemed to have sufficient annotations for analysis if
the number of annotations was greater than five times the number
of time periods. The yearly corpora were further clustered into nine
larger time periods such that each time period contained at least
10% of the total annotations. If the limit of annotations in a time
period was reached within an yearly corpus, the rest of the yearly
corpus was still added to the same time period to avoid splitting
yearly corpora into different time periods. This might cause a slight
difference in the actual percentage of annotations present in each
larger time period.

2.5 Context vector generation

Context vectors represent the context of a word’s usage in a corpus
by the frequency of the words immediately surrounding it [Carrillo
et al. 2009]. The idea is that similarity in neighboring word usage
is indicative of semantic similarity.

For a given target word, W , let WC be the sorted set of surround-
ing words within a defined window size on either side of W across
all instances of W in document D. The context vector ( ~CD) for W
in D contains the number of times each word occurs in WC .

~CD = (O1, O2, · · · , ON ) (2)

D: document from which context is computed,
N : number of words in WC

Oi: occurrence frequency of the ith word in WC

For each Uberon concept that had at least 45 occurrences
summed across all nine corpora, a context vector was calculated
for that concept in each time period using a window size of five.

2.6 Computing concept drift of anatomical concepts

We measure concept drift as a change in the context vector for a
given ontology concept between time periods, as indicated by the
complement of vector cosine similarity [Tan et al. 2006]. Mathe-
matically, the cosine similarity (S) of two context vectors, ~C1 and
~C2, over WC words is defined as :

S( ~C1, ~C2) =

WC∑
i=1

Oi,1Oi,2√
WC∑
i=1

O2
i,1

√
WC∑
i=1

O2
i,2

(3)

Oi,1is the occurrence frequency of the ith word in vector ~C1

Oi,2 is the occurrence frequency of the ith word in vector ~C2

In order to track the evolution of concept usage with time, we
compared concept context vectors between each successive time
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period pair. We also compared concept context vectors between
early and later time periods to determine whether concept drift was
cumulative.

(1) Comparison between successive time periods: Context vectors
of Uberon concepts from one time period were compared with
the context vectors from the successive time period to estimate
drift between every successive time period pair. In a time pe-
riod comparison between Tj and Tj+1, if a concept present in
Tj+1 is absent in Tj , then the concept’s context is compared
to its context from the latest time period before Tj where the
concept was last observed.

(2) Comparison between time periods and the original context of
concepts: Every concept is first observed in some time period;
the concept context vector from this time period is called the
original context of the concept. Context vectors from each time
period are compared to the original context of concepts to es-
timate how far each time period has drifted from the original
context of each concept.

3. RESULTS

3.1 Compiling the corpus, data cleaning, and
concept recognition

413 publications relevant to vertebrates with a combined word
count of about 40 million were downloaded from the BHL
database. The data cleaning steps described in section 2.2 were ap-
plied to each publication to correct for OCR translation errors re-
ducing the word count in downloaded corpora by 63.45% (Figure
1a).

OCR quality scores were computed for each cleaned publication
corpus and 47 publications with Q ≤ 60% were removed from
the analysis. The resulting high quality yearly corpora had quality
scores ranging approximately from 61% to 95% (Figure 1) with a
mean score of 80.96%. These high quality corpora were annotated
with Uberon concepts in the concept recognition step (section 2.3)
resulting in a total of 942,923 annotations (Figure 1a).

Fig. 1: (a) Comparison of word counts from the original, cleaned corpora
and annotation counts from high quality corpora. (b) OCR scores for high
quality corpora after filtering corpora with below threshold scores.

2,620 unique Uberon concepts from different depths in the on-
tology were represented in the 942,923 annotations covering ap-

proximately 18% of Uberon concepts (as of 2015-05-26). We found
no significant differences in the distributions of concepts from dif-
ferent depths between the Uberon ontology and BHL annotations
(two-sample Kolmogorov-Smirnov test, p = 0.67, using Bonfer-
roni correction for multiple tests)

3.2 Grouping yearly corpora into larger time periods

Nine time periods spanning from 1776 to 2003 were created by
grouping yearly corpora into larger time periods that contain at least
10% of the total annotations (Table I). 799 Uberon concepts were
found to have sufficient annotations across these time periods.

Table I. : Time periods and years covered in time period from grouping
yearly corpora

Time Period Years in Time Period
T1 1776 - 1866
T2 1867 - 1884
T3 1885 - 1893
T4 1894 - 1897
T5 1898 - 1899
T6 1901 - 1909
T7 1910 - 1915
T8 1916 - 1925
T9 1926 - 2003

In each time period we observe: 1) a certain number of unique
ontology concepts; 2) the introduction of new concepts that have
not been observed in previous time periods and; 3) the obsoletion
of some concepts (Figure 2). A concept is said to be obsoleted in a
time period if it is last observed in that time period. As expected,
the percent of new term introductions decreases with time. The fact
that new concepts only account for up to 10% of concepts in any
time period indicates that a large number of concepts are common
between successive time periods. Interestingly, the first four time
periods see no obsoleting of concepts. We see a gradual increase in
concepts becoming obsolete from T5 to T8.

Fig. 2: Characteristics of time periods. Number of terms 1) in a given time
period, 2) introduced in a time period, and 3) obsoleted in a time period
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3.3 Estimation of concept drift

Context vectors were computed for the 799 Uberon concepts with
sufficient annotations using a window size of 5. For each concept,
context vector comparisons were conducted between successive
time period pairs and between each time period and the original
concept contexts. Note that these comparisons could be made only
for time periods where a given concept is present.

3.3.1 Drift between successive time periods. When comparing
context vectors for successive time period pairs, we found concept
drift in the approximate range of 55% to 68% (Figure 3a). There
was a statistically significant difference between the magnitude of
concept drift between different successive time period comparisons
as determined by one-way ANOVA (F7,5275 = 29.42, p = 3.95×
10−40).

400 of the 799 concepts were present in all time periods enabling
context vector comparisons across all successive time period pairs.
The distribution of mean concept drift for this subset of concepts
across all successive time periods was extremely similar to Figure
3a. These concept drift scores were analyzed using a one-way re-
peated measures ANOVA for greater power. The test also showed a
statistically significant difference in concept drift between different
successive time periods (F7,393 = 65.52, p = 2.22× 10−16).

3.3.2 Drift from original context. Concept drift relative to
original context varied from 75% to 67% (Figure 3b). If concept
drift was cumulative, we would have expected to see an increase
relative to the original context over time. However, the observed
drift from original context does not fit this pattern.

The result is suggestive of a mean reverting process, such as an
Ornstein-Uhlenbeck process [Blackwell 1998], in which the vari-
able of interest returns to a long-term mean over time ([Huggins and
Schaller 2013; Lee and Lee 2006]). Such processes have been stud-
ied intensively in finance, particularly in analysis of stock prices
[Poterba and Summers 1988; Kim et al. 1991], and a common test
used to verify the presence of mean reversion is the Variance Ratio
Test ([Poterba and Summers 1988]), which is based on the idea that
the variance of a non-stationary series increases over time. There-
fore, if the variance of a series is k in the first period, it is expected
to be nk in the nth period. However if the ratio of variances from
subsequent time periods relative to the initial time period is con-
sistently less then one, it indicates the presence of mean reversion.
Taking the drift from T1 to T2 as the baseline, we found that the
variance of T3 - T9 relative to T1 was consistently lower than the
baseline (0.45, 0.28, 0.19, 0.16, 0.11, 0.11 and 0.09, respectively),
supporting the hypothesis that some factor is limiting long-term
concept drift.

3.3.3 Effect of ontology depth on concept drift. The concept
drift distributions for terms at different depths in the ontology for
both successive and original context comparisons are shown in
Figures 4a and 4b. In both cases, there was a statistically signif-
icant difference between concept drifts at different depths as de-
termined by one-way ANOVA for successive time period compar-
isons (F11,5271 = 9.47, p = 3.87 × 10−17) and comparisons to
original context (F11,5271 = 17.11, p = 8.73 × 10−34). The sig-
nificant trend appears to have been due to a sharp decrease in con-
cept drift at a depth of 14 in the ontology, which is the second-
most specific ontology level represented in the dataset. This level
includes eight Uberon concepts: metatarsal bone, fibula, mandible,
ulna, metacarpal bone, femur, tibia, and humerus.

(a) Drift between successive time periods.

(b) Drift relative to T1.

Fig. 3: Concept drift, measured as 1− S. Two standard errors are shown.

4. DISCUSSION

Progression of time and advancements in research could change
the meaning, or at least the usage, of even seemingly objective sci-
entific concepts such as parts of anatomy. Here, we conducted a
temporal data mining analysis of vertebrate biodiversity literature
to observe how and if the context of anatomical concepts changes
over time. Our results indicate that concept vectors do drift by 55-
75% on a decadal time scale, as measured by cosine similarity. This
may reflect evolution in the meaning of the terms themselves, or
evolution in the context in which the terms are applied, or both.

We were interested to see if the granularity of anatomical con-
cepts as measured by depth in the Uberon ontology would effect
the magnitude of concept drift. We found little pattern except for
an unusually low level of concept drift at a depth of 14, out of a
total number of 15 levels. While we did hypothesize that more spe-
cific ontology terms would have reduced concept drift, we are puz-
zled by the lack of a similar decrease in concept drift at Level 15.
Ontology terms were examined manually for factors that might ex-
plain and anomalous level of concept drift, such as a lower number
of annotation instances or a lower rate of spelling errors. However,
we did not observe any substantial differences with respect to these
factors between concepts at levels 14 and 15.

If concept drift is cumulative, then each subsequent time period
should drift further from the original context. However, we found
the magnitude of drift from original context remained roughly con-
stant, and application of the Variance Ratio Test confirmed that
concept drift was behaving as if it were a mean reverting process.
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(a) Drift between successive time periods for concepts at different
depths in the Uberon ontology.

(b) Drift from original context for concepts at different depths in
the Uberon ontology.

Fig. 4: Concept drift (1− S) for terms at different depths in Uberon. Error
bars show two standard errors.

We conclude from this that concept drift is not a random walk, but
rather that there is some conservative force acting to constrain the
context in which a term is used over a time scale of centuries. This
may be due to the long memory of the biodiversity literature. It is
encoded in the rules of taxonomy how the original description of
a new taxon by the earliest author to use a taxonomic name will
constrain subsequent treatments of that taxon in all future litera-
ture. Such conservative practices may directly or indirectly act as a
mean-reverting force, thereby explaining the non-cumulative con-
cept drift for anatomy concepts, as well.

Despite the large corpus of vertebrate literature used for the anal-
ysis, we recognized only 18% of the anatomical concepts listed by
Uberon. Despite the low coverage, the observed concepts resulted
in a substantial dataset of over 900,000 annotations. One reason for
not observing the majority of Uberon concepts in BHL literature
might be that concepts in Uberon were unknown during the time
span covered in BHL. Alternatively, the concepts may have been
known but expressed differently than in Uberon’s controlled vocab-
ulary. A concept recognition algorithm more sophisticated than our
naive exact matching approach might be able to construct a more
comprehensive dataset from this same literature.

The concept drift reported in this study might be biased to cer-
tain extent by factors such as spelling errors in OCR text or Uberon
concepts which might have other meanings distinct from scientific
usage (e.g. UBERON:0002544 ”digit”). For example, Wei et al.

(2010) reported that approximately 35% of a subset of taxonomic
names from the BHL OCR text had spelling errors introduced dur-
ing translation [Wei et al. 2010]. This issue of spelling errors is rel-
evant to our analysis since concept drift could be artificially inflated
due to the presence of misspelled words in the context vectors of
anatomical concepts. The corpus used in our analysis has an aver-
age spelling error rate of 21% and the average spelling error rate in
the context vectors is 20.2%. This means that the actual drift might
be lower than the drift observed in this analysis if we had a perfect
corpus of literature with no OCR translation errors. We identified
57 concepts from the Uberon ontology which might have mean-
ings apart from their scientific ones, such as UBERON:0000974
“neck”, UBERON:0000978 “leg” and UBERON:0001021 “nerve”.
These may inflate concept drift since they can be used in varying
contexts. Forty of these ambiguous concepts were present in our
context vector analysis. We repeated the analysis after excluding
these concepts but found no substantial changes in the results.

The purpose of ontologies is to provide a shared and consistent
vocabulary for describing biological entities. It would be interesting
for future work to compare concept drift in the earlier literature
with drift in contemporary literature published after the adoption
of biological ontologies.

5. DATA AVAILABILITY

Data and results associated with this work are available at http:
//dx.doi.org/10.5281/zenodo.259505.
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