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ABSTRACT

Ceratopsids (“horned dinosaurs”) are known from western North America and Asia, a 
distribution reflecting an inferred subaerial link between the two landmasses during the Late 
Cretaceous. However, this clade was previously unknown from eastern North America, 
presumably due to limited outcrop of the appropriate age and depositional environment as well 
as the separation of eastern and western North America by the Western Interior Seaway during 
much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian)
of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from 
eastern North America. This tooth shows a combination of features typical of Ceratopsidae, 
including a double root and a prominent, blade-like carina. Based on the age of the fossil, we 
hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during
the very latest Cretaceous, presumably after the two halves of North America were reunited 
following the retreat of the Western Interior Seaway.

INTRODUCTION

The Western Interior Seaway split North America during much of the Late Cretaceous, 
which in turn may have driven terrestrial faunal differences between eastern and western North 
America (Appalachia and Laramidia, respectively). Non-avian dinosaur fossils from the Late 
Cretaceous of Appalachia are, with a few notable exceptions, largely fragmentary and indicative 
of a fauna including theropods (ornithomimosaurs and tyrannosauroids), nodosaurids, 
hadrosauroids, and potentially leptoceratopsids (Schwimmer, 1997; Weishampel et al., 2004; 
Longrich, 2016; Prieto-Márquez, Erickson & Ebersole, 2016a). The hadrosauroids and 
tyrannosauroids in particular have been suggested as representing clades distinct from their 
relatives in western North America (Longrich, 2016). This is further supported by the notable 
absence of ceratopsid dinosaurs, which are abundant in Laramidia, from the published fossil 
record of Appalachia. Faunal differences between Laramidia and Appalachia presumably were 
reduced when the two land masses rejoined following the retreat of the interior seaway during 
the late Maastrichtian (if they were indeed rejoined; see Slattery et al., 2015 for a discussion of 
this issue). Yet, late Maastrichtian fossils of terrestrial origin are virtually unknown from eastern 
North America, so there is little evidence to test this hypothesis.

Here, we report the first definitive ceratopsid specimen from eastern North America, a 
tooth recovered from the Maastrichtian Owl Creek Formation of Union County, Mississippi. The 
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fossil, collected by the second writer (G. E. Phillips) in July 2016, suggests a dispersal of 
ceratopsids into eastern North America following the regression of the Western Interior Seaway.

GEOLOGIC SETTING

Occurrence

The tooth described here (MMNS VP-7969) was collected in loose association with the 
Upper Cretaceous marine Owl Creek Formation (and other units) in northeast Mississippi (Fig. 
1). More precisely, it was found out of context in the active fluviatile lag of a modern stream, 
albeit probably in close proximity to its presumed stratigraphic origins. The pebbly, fossiliferous 
stream lag contains Pleistocene terrestrial-alluvial, Paleocene marine, and Cretaceous marine 
fossil float originating from the channel floor and (to a limited extent) the walls. The Paleocene 
is represented in the area by the Clayton Formation (Fig. 2), the nearest outcrop (preserving the 
base of the formation) of which is ~4.3 km upstream (and up-section) from the tooth collection 
point. Fossil float originating from the Clayton Formation has been limited to fragments of the 
Paleocene index gastropod Kapalmerella mortoni (Conrad, 1830). Based on the extent of 
channel length explored thus far, Quaternary alluvium, slumping, vegetation, and water level 
conceal the underlying Owl Creek Formation (Upper Cretaceous) rather thoroughly, making 
direct access to the Owl Creek beds very difficult. Although rarely exposed in the stream, these 
beds crop out intermittently along the channel length between the base of the Clayton and the 
tooth recovery point. The tooth was retrieved from the stream float within a few meters of the 
contact between the Owl Creek Formation and the subjacent Chiwapa Sandstone Member of the 
Ripley Formation at MMNS locality MS.73.001b (Fig. 1).

Both the Cretaceous and Paleocene units cropping out in the channel contain marine 
vertebrate fossils, although vertebrate fossils are considerably more common in the former than 
in the latter. Cretaceous deposits in the area have previously produced dinosaur fossils, and the 
Paleocene occasionally contains reworked Upper Cretaceous fossils. Based on observations of 
several short-lived, partial exposures in the greater vicinity (e.g., MMNS locality MS.73.030), a 
persistent phosphatic fossil assemblage occurs in the uppermost part of the Owl Creek 
Formation. This assemblage consists largely of a shell bed of locally common, dark, well-
lithified phosphatic mollusk and decapod steinkerns along with less frequently occurring 
fragments of marine vertebrates—most of which are characteristically Maastrichtian (Fig. 3, 
Table 1; Baird, 1986; Phillips, Nyborg & Vega, 2014; Martínez-Díaz et al., 2016). The upper 
Owl Creek steinkern assemblage is conspicuously populated by baculitid and scaphitid 
ammonites not seen elsewhere in the local Maastrichtian section. These same ammonites are 
common in the stream float that yielded the ceratopsian tooth. The Chiwapa Sandstone is very 
fossiliferous, as is the basal Owl Creek Formation. However, the suite of Cretaceous fossils in 
the float is generally inconsistent with the assemblage contained in either of these intervals. The 
Chiwapa contains crystalline calcite pseudomophs of mollusk shells, none of which are scaphitid
or baculitid ammonites. Also, the highly lithified Chiwapa Sandstone does not surrender fossils 
to the stream bed in one piece—shark teeth, bones, and even shells shatter as soon as they begin 
weathering from the surface of the rocky exposure. Where the ceratopsian tooth was recovered, 
the basal Owl Creek is exposed and deeply weathered and contains mollusk steinkerns; however,
it also lacks the kinds of ammonites consistent with the stream float. Of all the sourceable 
constituents of the modern stream lag, the ceratopsian tooth is most consistent with the average 
size, specific gravity, and color of the phosphatic fossils and pebbles that populate the upper part 
of the Owl Creek Formation.
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The Owl Creek Formation

The Owl Creek Formation crops out in portions of several states within the former 
Mississippi Embayment—Missouri, Illinois, Tennessee, and Mississippi (Fig. 1). Local thickness
of the Owl Creek Formation is about 12 m, and it is rich in Maastrichtian neritic marine fossils 
(Stephenson, 1955; Sohl, 1960; Sohl & Koch, 1983, 1986). The Owl Creek Formation in 
northeast Mississippi is composed of glauconitic, variably micaceous, fine-grained beds ranging 
from sandy clay to clayey sand that become increasingly calcareous to the south where the 
mostly siliciclastic facies of Tippah and Union counties (including MMNS locality MS.73.001b) 
grade into the bedded marls and ‘dirty chalk’ of the Prairie Bluff Formation (Stephenson & 
Monroe, 1940; Sohl, 1960). Thus, terrigenous input in this part of the outcrop belt decreases 
towards the more pelagic waters of the gulfward shelf. The Owl Creek sediments on the opposite
side of the embayment in Missouri and at the head of the embayment in Illinois are texturally 
and compositionally similar. Likewise, the formation becomes decreasingly calcareous, and then 
entirely terrigenous, moving northward into the head of the embayment and nearer to the 
McNairy delta system.

In the first grand interpretation of Upper Cretaceous sedimentation in the Mississippi 
Embayment, the depositional sequence in the embayment proper was revealed to consist of 
sediments mineralogically derived from the Appalachian Plateaus and Blue Ridge Mountains 
(Pryor, 1960). In that study, the Owl Creek Formation was described as an inner prodelta facies 
of the McNairy Delta complex, although deposited on top of, and partially reworked from, the 
lower Maastrichtian McNairy Formation during the very last Cretaceous marine transgression 
into the embayment. In a sequence stratigraphic model, the lower contact of the Owl Creek with 
the McNairy Sand or Chiwapa Member of the Ripley Formation represents a transgressive 
surface. Subsequent beds in the Owl Creek would thus represent sediments associated with a 
transgressive systems tract followed by progradational beds of a highstand systems tract 
(Mancini et al., 1995).

A palynomorph assemblage from the Owl Creek Formation across the embayment in 
Missouri suggests an inner neritic marine environment with high terrestrial input (Eifert, 2010). 
Angiosperms (Betulaceae, Juglandaceae, Oleaceae, Fagaceae, and Nyssaceae) dominate the 
assemblage, followed by palm (Areaceae) and cycads (Cycadaceae). A foraminiferal suite from 
the same samples indicates a hypersaline marsh, and a low-diversity/low-abundance 
dinoflagellate assemblage is inconsistent with a highstand systems tract (Mancini et al., 1995; 
Eifert, 2009).

Taphonomy

The discovery of dinosaur remains in marine environments occurs infrequently and 
typically consists of isolated elements or, more rarely, larger skeletal portions (e.g. partial limb or
vertebral associations) shed from a bloat-and-float carcass (Schäfer, 1972; Schwimmer, 1997). In
this scenario, the buoyant carcasses of coastal dinosaurs, particularly those originating in riparian
habitats of tide-dominated estuaries and deltas, are carried to sea by seasonal or episodic freshets 
and tides. Dinosaur remains from more distal shelf deposits, particularly the more complete 
skeletal associations, may result from transport enhanced by maritime storms, such as tropical 
cyclones. Dinosaur fossils in marine sediments seem to be more commonly encountered, and 
possess greater taxonomic diversity, as fragmentary yet identifiable bones and teeth from 
nearshore lag deposits (Schwimmer, 1997).
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In addition to being the first dinosaur tooth documented from the Owl Creek Formation, 
the ceratopsian tooth is the first terrestrial macrofossil ever reported from this unit—much-
studied previously for its marine macroinvertebrate content. Although characteristically rich in 
neritic fossils, the aforementioned terrigenous microfossils suggest a not too distant shoreline 
(Eifert, 2009). Thus, the occurrence in the Owl Creek of a dinosaur fossil, although rare, is not 
entirely unexpected. 

Still, the Mississippi tooth is, literally, one of only a handful of North American ceratopsian
fossils from a marine context. Compared to other types of dinosaurs, hadrosaur bones and teeth 
are the most common dinosaur fossils from Campanian and Maastrichtian marine sediments 
(Schwimmer, 1997). A possible explanation for the scarcity of ceratopsian remains versus that of
other dinosaur taxa recovered from marine deposits may lie in habitat preferences. A summary of
generalized ceratopsian lithofacies associations suggests an affinity for “lacustrine, alluvial, and 
coastal plain” habitats, at least among Ceratopsidae (Eberth, 2010). Alluvial wetland ecosystems 
can be separated into riparian (channel margin) and more distal floodplain habitats—clast size 
decreasing with increasing distance from the channel. A study of alluvial wetland lithofacies in 
the upper Maastrichtian Hell Creek Formation documents a greater proportional contribution of 
Triceratops remains (out of seven dinosaur families) to floodplain (muddy) over fluviatile 
(sandy) deposits. The hadrosaur Edmontosaurus is found with greater frequency in the latter 
(Lyson & Longrich, 2011). If rivers are the principal conveyor of bloat-and-float dinosaur 
carcasses to the marine realm, then a possible preference among coastal plain ceratopsids for 
habitats outside of riparian zones may explain their paucity in marine sediments.

The tooth described here exhibits mechanical abrasion (see Description) ostensibly due to 
fluviatile transport since its exhumation. Thus, a relatively uneroded condition is presumed for 
the specimen prior to burial. Not knowing the exact stratigraphic origin of the specimen, or 
whether it fell loose from an as yet undiscovered partial dentary or was buried in isolation, 
precludes any further speculation as to its postmortem journey and exactly when it entered the 
Owl Creek depositional system. Nonetheless, based on the locality’s close proximity to the 
eastern side of the Mississippi Embayment at the time as well as its near-shore sedimentological 
context (Figs. 1, 5), we consider it most parsimonious that the tooth originated from an animal in 
that region, rather than a carcass that had floated from the direction of Laramidia.

Age

The Owl Creek Formation lies entirely within the upper Maastrichtian (Fig. 2), according
to published ammonite stratigraphy (Larina et al., 2016) and non-cephalopod mollusk 
assemblage zonation (Sohl & Koch, 1986). Planktonic foraminiferan zonation is consistent with 
the deposits being at least partly (or mostly) within the upper Maastrichtian (e.g., Puckett, 2005),
although these are likely less reliable than ammonites or dinoflagellates for identifying that 
lithostratigraphic interval (Larina et al., 2016). Owl Creek dinocyst composition immediately 
below the K-Pg boundary on the opposite side of the Mississippi Embayment in Missouri 
supports a latest Maastrichtian age for the uppermost part of the formation (Oboh-Ikuenobe et 
al., 2012). Finally, at the head of the embayment in southern Illinois, 40K/40Ar dating of pelletal 
glauconite in the uppermost Owl Creek Formation yielded a an age of 65.7 ± 1.4 Ma (Reed et al.,
1977). As indicated above, the exact placement of the tooth within the Owl Creek is uncertain, 
but associated fossils suggest that it is from considerably closer to the K-Pg boundary (top) than 
it is to the base of the unit. According to Matt Garb of Brooklyn College (pers. comm., 2016), 
scaphitid ammonite steinkerns in the fossil float accompanying the ceratopsian tooth are almost 
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entirely dominated by Discoscaphites iris (Conrad, 1858; Fig. 3C,E), which equates to the 
uppermost portion of calcareous nannofossil zone CC 26 of Perch-Nielsen (1985) within the 
latest Maastrichtian (Fig. 2). Thus, we posit that the ceratopsian tooth described here dates to the 
late Maastrichtian. 

Reworking is always a consideration with condensed, phosphatic pebble beds. To date, 
suspected anachronistic fossils have not been detected at any interval within the Owl Creek 
Formation. Considering the exceptional condition of the tooth, and that it was collected from 
modern stream lag below a small waterfall produced by a resistant calcareous sandstone ledge 
(Ripley Formation, Chiwapa Member), prior to which it had traveled at least several meters 
across the irregular surface of the exposed sandstone, reworking from a notably older Cretaceous
interval prior to entombment in the Owl Creek sediments is highly unlikely.

METHODS

In order to illustrate the details of MMNS VP-7969 at high resolution, stacked images 
were produced with a Visionary Digital Passport system (Dun, Inc., Virginia, USA). The stacking
device was interfaced with a Canon EOS 6D camera (Canon, Inc., Tokyo, Japan) with attached 
50 mm macro lens and a 1.4× Tamron extension, at a magnification setting of 1:2. Images were 
processed within Helicon Focus 5.3 (Helicon Soft Ltd., Kharkiv, Ukraine).

To produce a three-dimensional digital model for archival and illustration purposes, 
MMNS VP-7969 was digitized using a NextEngine 3D Scanner Ultra 3D with MultiDrive 
(NextEngine, Inc., Santa Monica, California, USA). The initial scans were acquired and 
processed in ScanStudio PRO 2.0.2 (ShapeTools LLC and NextEngine, Inc., Santa Monica, 
California, USA). Data were collected in several passes, with all set for the maximum resolution 
on the scanner (6,300 points per square millimeter), using macro mode, and assuming a dark 
target object. The first pass included six scans taken around the long (apico-basal) axis of the 
tooth. The second pass included three scans bracketing the apical view of the tooth, and the third 
pass included three scans bracketing the basal view of the tooth. A final scan captured a portion 
of the tooth in distal view. The scans were aligned using both manual and automatic alignment, 
and then fused into a single watertight mesh using the “mesh reconstruction” fuse method (high 
resolution mesh fitting, and relax fitting selected as an option). This mesh was downsampled to 
reduce file size, creating a final mesh of 83,312 vertices and 166,620 faces. The file was 
exported in stereolithography (STL) format and is archived at MorphoSource 
(http://www.morphosource.org), under project P275.

Measurements were taken from the original specimen using digital calipers, to the nearest
0.1 mm. Comparison with measurements taken from the digital model showed the latter to be 
consistent with the physical specimen to between 0.5–2.5%.

All fossils figured and described here are accessioned at the Mississippi Museum of 
Natural Science (MMNS). The tooth was molded in silicone rubber, and a limited number of 
plastic resin casts are available to research institutions by placing requests with the MMNS.

Institutional abbreviations

AZMNH, Arizona Museum of Natural History, Mesa, Arizona, USA; MMNS, 
Mississippi Museum of Natural Science, Mississippi Department of Wildlife, Fisheries and 
Parks, Jackson, Mississippi, USA.

SYSTEMATIC PALEONTOLOGY
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Dinosauria Owen, 1842
Ornithischia Seeley, 1887

Ceratopsia Marsh, 1890
Ceratopsoidea Hay, 1902

Ceratopsidae Marsh, 1888
Ceratopsidae indet.

Referred material. MMNS VP-7969, an isolated right dentary tooth, Fig. 4.
Locality and horizon. MMNS locality MS.73.001b, Union County, Mississippi, United 

States of America (Fig. 1); Owl Creek Formation (late Maastrichtian). Precise locality data are 
on file at MMNS and are available to qualified investigators upon request.

Description. For simplicity, the following description presumes that the tooth is from the 
right dentary. This is based on the sharply protruding primary ridge, characteristic of dentary 
teeth in ceratopsids and contrasting with the relatively subdued primary ridge in maxillary teeth. 
Once oriented as a dentary tooth, the offset of the primary ridge must be in the mesial direction, 
and the tooth is thus from the right side (Mallon & Anderson, 2014). Terminology follows that 
illustrated by Tanoue et al. (2009:fig. 2). 

MMNS VP-7969 preserves both the crown and the root of the tooth (Fig. 4). Portions of 
the crown were slightly chipped and the extreme ends of the roots were broken off prior to 
discovery. Due to dark and consistent coloration across the surface of the tooth, it is not possible 
to describe enamel distribution with any confidence.

The crown as preserved is taller (18.9 mm) than wide (15.8 mm) in lingual view (Fig. 
4C,D). A slight peak at the mesial and distal edges, where the root intersects with the carinae, 
produces a rhomboid profile. A prominent primary ridge divides the tooth crown into a smaller 
mesial lobe and a larger distal lobe (Fig. 4G). Towards the base of the crown, the ridge has a 
slight mesial curvature (Fig. 4C,D). In mesial and distal views, the primary ridge is strongly 
arched, and a slight inflection marks the point where the ridge and the cingulum/root connect 
(Fig. 4A,B,E,F). The primary ridge is fin-like and strongly compressed mesio-distally. The 
lingual edge of the ridge bears very fine and imbricating crenulations. A single, very poorly 
defined secondary ridge occurs at the mesial edge of the mesial lobe (Fig. 4C); otherwise, 
secondary ridges are completely absent. No unambiguous denticles appear on the tooth, either. A 
distinct cingulum separates the crown from the root on the tooth’s lingual surface (Fig. 4E,G). As
preserved, the maximum apico-basal length of the entire tooth in lingual view is 26.8 mm.

In labial view, the crown and root are not distinctly separated (Fig. 4I,J). The labial 
surface is gently arched from mesio-distally, with at least seven faint plications along the surface 
of the tooth oriented apico-basally. A flat, approximately quadrangular wear surface marks the 
apical end of the tooth in this view. A handful of minor scratches mark this area, although the 
lack of consistent orientation suggests that they are taphonomic in origin rather than representing
microwear. Assuming a standard tooth orientation for a ceratopsid, the wear facet was at least 
subvertical. As preserved, the maximum apico-basal length of the entire tooth in labial view is 
28.4 and the maximum width is 16.8 mm.

The root is bipartite, with the two halves having a maximum span of 22.2 mm. The labial 
root is more robust and longer than the lingual root (Fig. 4E). A v-shaped resorption groove 
marks the basal surface of the root (Fig. 4K,L).

DISCUSSION
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Referral to Ceratopsidae. The prominent primary ridge and split root of MMNS VP-
7969 definitively distinguish it from teeth belonging to other ornithischian dinosaurs present in 
North America during the Late Cretaceous, such as hadrosaurs, ankylosaurs, pachycephalosaurs, 
and basal ornithopods, all of which lack these features. This gross morphology, thus, is most 
consistent with referral to Ceratopsidae. However, to avoid the hazards of “overidentification,” 
we here examine the phylogenetic distribution of notable apomorphies in MMNS VP-7969 to 
arrive at the most conservative identification possible. This is particularly important in light of 
teeth described for Turanoceratops, a non-ceratopsid ceratopsoid from Uzbekistan that also 
displays some apomorphies historically recognized only in ceratopsids (Sues & Averianov, 2009;
Farke et al., 2009). The subject is further complicated by variation across the tooth row in 
ceratopsids; teeth at the very mesial or distal end differ from those in the middle in the 
development of some features (Hatcher, Marsh & Lull, 1907).

Split tooth root. This feature is noted in Turanoceratops tardabilis (Nessov, Kaznyshkina 
& Cherepanov, 1989; Sues & Averianov, 2009) and all ceratopsids for which the relevant tooth 
anatomy is preserved, but does not occur in other ceratopsians, nor in other ornithischians as a 
whole.

Absence of secondary ridges on tooth crown. Secondary ridges paralleling the median 
carina (primary ridge) are common in teeth of non-ceratopsid neoceratopsians (Tanoue, You & 
Dodson, 2009), and also occur variably in Turanoceratops (Sues & Averianov, 2009) as well as 
in Zuniceratops christopheri (personal observation, A. Farke; AZMNH P2224, AZMNH P3600) .
Due to their variable occurrence in T. tardabilis, the near absence of these ridges in MMNS VP-
7969 can only restrict a tooth to Ceratopsoidea.

Projecting, blade-like primary ridge on dentary teeth. The primary ridge projects strongly
from the body of the tooth in MMNS VP-7969 and all ceratopsids, but is far more subdued in 
dentary teeth of T. tardabilis (Sues & Averianov, 2009:fig. 2e,f) and Z. christopheri (personal 
observation, A. Farke; AZMNH P3600). Most notably, in the known Turanoceratops specimens 
(as well as non-ceratopsoid neoceratopsians such as Protoceratops), the carina is smoothly 
continuous with the root in mesial and distal views. By contrast, the carina is arched away from 
the main body of the tooth in MMNS VP-7969 and many ceratopsid dentary teeth (but not all, 
particularly from those at the extreme ends of the rows). Our observations suggest that the 
morphology is only found in Ceratopsidae.

In total, the anatomy of MMNS VP-7969 identifies it as a tooth from a ceratopsid 
dinosaur. At present, a more constrained identification is not possible due to the general 
similarities in teeth across ceratopsid clades (Mallon & Anderson, 2014). However, only 
chasmosaurines are known in North America during the late Maastrichtian, so the silhouettes in 
Fig. 5 are illustrated as such.

Biogeographic and paleogeographic implications. The tooth described here (MMNS 
VP-7969) represents the first reported occurrence of Ceratopsidae from eastern North America 
(Appalachia). Previous reports of ceratopsians from Appalachia have been from non-ceratopsid 
neoceratopsians, including isolated teeth from the Aptian-aged Arundel Formation of Maryland 
and a potential leptoceratopsid from the Campanian-aged Tar Heel Formation of North Carolina 
(Chinnery et al., 1998; Chinnery-Allgeier & Kirkland, 2010; Longrich, 2016). The dispersal 
route of these earlier ceratopsians into Appalachia is uncertain, and the overall evidence supports
a lengthy geographic separation of Appalachia from Laramidia during the Late Cretaceous (late 
Cenomanian to latest Maastrichtian, ~95–66 Ma, Slattery et al., 2015). Although there is some 
limited biogeographical evidence for occasional connections between Europe and Appalachia 
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during the Late Cretaceous (summarized in Csiki-Sava et al., 2015), no ceratopsids are known 
from Europe. So, a European origin for the animal associated with the Mississippi tooth is highly
unlikely.

We thus hypothesize that the occurrence of a ceratopsid in Mississippi represents a 
dispersal event from western North America into eastern North America. Significantly, this is the
first time that a representative of this previously Laramidian dinosaur clade has been identified 
from eastern North America. This provides strong biogeographic evidence for a physical 
connection between eastern and western North America during the late Maastrichtian (Fig. 5).

Because many regions of the former Western Interior Seaway do not have the relevant 
strata preserved or accessible, the seaway’s extent during the terminal Maastrichtian has been 
debated (summarized in Berry, in press; Boyd & Lillegraven, 2011; Slattery et al., 2015 and 
references therein). For instance, ammonite distribution suggests a marine connection from the 
Gulf of Mexico northward to South Dakota (but not continuous with marine environments 
around present-day Greenland) up until the Hoploscaphites nebrascensis biozone during part of 
the late Maastrichtian (Kennedy et al., 1998). In turn, the shared occurrence of the plant 
“Cissites” panduratus between Laramidia and Appalachia during the late Maastrichtian supports 
a subaerial connection between the two land masses during this time, too (Berry, in press). The 
ceratopsid tooth in Mississippi provides additional evidence consistent with this scenario.

Eastern dinosaurs. Non-avian dinosaurs from Cretaceous deposits in the eastern U. S. 
have been well publicized (e.g., Weishampel & Young, 1996; Schwimmer, 1997)(e.g., 
Weishampel & Young, 1996; Schwimmer, 1997). Although few discoveries are complete enough 
for comprehensive description and precise taxonomic assignment, recent notable exceptions 
include a tyrannosauroid and hadrosaurid from Alabama (Carr, Williamson & Schwimmer, 2005;
Prieto-Márquez, Erickson & Ebersole, 2016a,b). Cretaceous dinosaur finds from eastern North 
America are not rare, but they are infrequent. Since Cretaceous dinosaur remains were first 
reported on the east coast in the 1850s, numerous specimens representing several groups, both 
ornithischian and theropod, have been reported from Mississippi to New Jersey. Most of this 
material consists of isolated and often fragmentary elements, like the ceratopsian tooth reported 
herein. Collectively, however, the scattered discoveries across the Gulf and Atlantic Coastal Plain
reveal an eastern North American Cretaceous dinosaur bestiary that included six major dinosaur 
clades. To date, these include hadrosauroids (e.g., Langston, Jr., 1960; Prieto-Márquez, 
Weishampel & Horner, 2006; Prieto-Márquez, Erickson & Ebersole, 2016a), ankylosaurians 
(Langston, Jr., 1960; Weishampel & Young, 1996; Stanford, Weishampel & Deleon, 2011), 
tyrannosauroids (Baird & Horner, 1979; Schwimmer et al., 1993; Carpenter et al., 1997; Carr, 
Williamson & Schwimmer, 2005), dromaeosaurids (Kiernan & Schwimmer, 2004), 
ornithomimids (Baird & Horner, 1979; Carpenter, 1982; Schwimmer et al., 1993), and 
ceratopsians (Chinnery et al., 1998; Longrich, 2016; this paper).

Mississippi’s published fragmentary dinosaur remains currently encompass only 
hadrosaurs (e.g., Horner, 1979) and indeterminate theropods (Carpenter, 1982), although one 
association of over two dozen elements of a single juvenile hadrosaur has been described (Kaye 
& Russell, 1973). One of the unassigned theropod pedal phalanges (Carpenter, 1982) was later 
identified as Mississippi’s first known ornithomimid (Baird, 1986). In addition to previously 
described Mississippi material (Carpenter, 1982), MMNS possesses unpublished, largely isolated
elements of hadrosaurs (the most commonly encountered), nodosaurs (teeth and fragmentary 
bones), dromaeosaurids (teeth), and ornithomimids (the second most common dinosaur). Except 
for the ceratopsian tooth, all MMNS Mississippi dinosaur holdings (most of it unpublished) are 
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derived from upper Santonian through lower Maastrichtian deposits. Dinosaurs have been 
reported (Ebersole & King, 2011) but are otherwise undescribed from the upper Maastrichtian of 
the Gulf Coastal Plain. Many more dinosaur discoveries have been encountered and 
substantiated in the Maastrichtian of the Atlantic Coastal Plain, namely from the Navesink 
Formation in New Jersey (see reviews by Weishampel & Young, 1996; Gallagher, 1997).

CONCLUSIONS

The ceratopsid tooth from the Owl Creek Formation of Mississippi represents the first 
unequivocal occurrence of this clade in Appalachia (eastern North America). The fossil is 
consistent with the hypothesis that clades from Laramidia (western North America) dispersed 
eastward during the retreat of the Western Interior Seaway sometime during the Maastrichtian. 
We predict that future work will uncover additional evidence of “western” vertebrate clades in 
Appalachia; in particular, careful placement within a geological context will help to establish the 
exact timing and tempo of the seaway retreat.
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Figure 1. Geologic map of Maastrichtian deposits in northeast Mississippi. The area of interest 
includes the noteworthy type localities of the Coon Creek Formation (latest Campanian–early 
Maastrichtian) and Owl Creek Formation (late Maastrichtian). Base map composed by the 
Mississippi Office of Geology in 2010, from data in Bicker (1969).
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Figure 2. Stratigraphic chart of Maastrichtian deposits in northeast Mississippi. Basic chart 
chronostratigraphy and most of the biostratigraphic columns were produced using TS 
(TimeScale) Creator (© 2005-2010, A. Lugowski and J. Ogg). All ages are standardized to the 
Geologic Time Scale 2016 and the Concise Geologic Time Scale compilation of the International
Commission on Stratigraphy and its Subcommission on Stratigraphic Information. The 
stratigraphic data used in TS Creator is based on numerous events borrowed from many global 
and regional reference sections and integrated time scales. The Gulf Coastal Plain (GCP) 
ammonite zones and their correlative ages are based primarily on Cobban (1974), Cobban and 
Kennedy (1991a,b, 1995; 1993), Landman et al. (2004), and Larina et al. (2016). The 
relationship of GCP to WIS ammonite zones as presented here should be considered provisional. 
The position of the stage and substage boundaries is based, in part, on the work of Sohl and Koch
(1986). The informal units “Nixon beds,” “Troy beds,” and “transitional clay” were introduced 
by Phillips (2010), Swann and Dew (2008, 2009), and Sohl (1960), respectively. The Coon Creek
and correlative beds are time transgressive, the Campanian-Maastrichtian boundary being 
located higher in the section in the northern part of the outcrop belt (Tennessee). A major 
unconformity is recognized at the base of the Chiwapa Sandstone, separating it from the 
remainder of the subjacent Ripley Formation. Contrary to the age of the sub-Chiwapa Ripley 
given here (early Maastrichtian), foraminiferal zonation established for the Gulf Coast by 
Mancini et al. (1995) and Puckett (2005) defines the Campanian-Maastrichtian boundary as 
coincident with the transgressive surface marking the base of the Chiwapa Sandstone, thus 
making the lower Ripley beds Campanian. The dashed vertical arrow represents the uncertainty 
of the exact stratigraphic position for the ceratopsid tooth within the Owl Creek Formation.
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Figure 3. Marine macrofossils collected in loose association with ceratopsian tooth (from Table 
1), most consistent with a Maastrichtian age. A) Striaticostatum cf. S. sparsum Sohl, MMNS IP-
8648; B) Liopistha protexta (Conrad), MMNS IP-6116; C) Discoscaphites iris (Conrad), 
microconch, MMNS IP-8646; D) Costacopluma grayi Feldmann & Portell, larger Maastrichtian 
variety (Martínez-Díaz et al., 2016), MMNS IP-8647 (distinct from the smaller Danian variety); 
E) Discoscaphites iris (Conrad), macroconch, MMNS IP-494; F) Cretalamna appendiculata 
(Agassiz), variant of a lower posterior tooth, MMNS VP-8041; G) Branchiocarcinus flectus 
(Rathbun), MMNS IP-6115.3; H) Mosasaurus hoffmani Mantell, MMNS VP-6803; I) Peritresius

ornatus (Leidy), costal carapace fragment, MMNS VP-4407.
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Figure 4. Right dentary tooth of ceratopsid dinosaur, MMNS VP-7969. Digital renderings and 
photographs in A, B) mesial (posterior); C, D) lingual (medial); E, F) distal (anterior); G, H) 
apical (dorsal); I, J) labial (lateral); K, L) root (ventral) views. Scale bar equals 10 mm. 
Directional abbreviations: api, apical; dist, distal; mes, mesial; lab, labial; ling, lingual. 
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Figure 5. Paleogeographic maps of two key geochronologic intervals in the uppermost 
Cretaceous of North America. Late Campanian (left) and late Maastrichtian (right) time slices are
depicted with southern Laramidia ceratopsid localities on the appropriate time interval map. 
Ceratopsid occurrences and their associated ages are taken from numerous references (Lehman, 
1996; Sullivan, Boere & Lucas, 2005; Loewen et al., 2010; Sampson et al., 2010, 2013; Sullivan 
& Lucas, 2010; Porras-Múzquiz & Lehman, 2011; Wick & Lehman, 2013; Rivera-Sylva, 
Hedrick & Dodson, 2016; Lehman, Wick & Barnes, 2016). Arrows designate late Maastrichtian 
dispersal of ceratopsians, in this interpretation, along an emerging southern route formed by a 
northerly retreating seaway. We note, however, that the exact placement of any subaerial 
connection is uncertain (Berry, in press; Boyd & Lillegraven, 2011; Slattery et al., 2015). 
Although the exact identity of the Mississippi tooth is unknown, we have illustrated only 
chasmosaurine silhouettes on this part of the figure because no centrosaurines are known from 
North America during the late Maastrichtian. This Mississippi Embayment is labeled as “Miss. 
Emb.”. Maps are part of the Key Time Slices of North America series, © 2013 Colorado Plateau 
Geosystems, Inc., and used with their kind permission by licensed agreement. Silhouettes are by 
Raven Amos (chasmosaurine) and Lukas Panzarin (centrosaurine, from Sampson et al., 2013), 
via www.phylopic.org. 
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Table 1. Partial faunal list produced from Upper Cretaceous marine fossils collected in loose 
association with MMNS VP-7969. The mollusks were previously established as characteristic of 
the late Maastrichtian Owl Creek Formation at the type locality, Tippah County, as well as 
historic outcrops in the vicinity of the ceratopsian locality, Union County (Sohl & Koch, 1983). 
Many of the other listed species have also been previously reported as distinguishing 
Maastrichtian marine deposits of the eastern United States (e.g., Baird, 1986; Phillips, Nyborg & 
Vega, 2014; Martínez-Díaz et al., 2016). Selected specimens are illustrated in Figure 3. 
*Mollusks represented by original calcitic shell. Remaining macroinvertebrates are largely 
internal molds.

Mollusca 
Bivalvia 

Cucullaea capax Conrad, 1858
Tenuipteria argentea (Conrad, 1858)
Pinna cf. P. laquata Conrad, 1858
Exogyra costata Say, 1820* 
Pycnodonte vesicularis Lamarck, 1806* 
Pterotrigonia cf. P. eufalensis (Gabb, 1860)
Pterotrigonia sp.
Crassatella sp.
Linearia cf. L. metastriata Conrad, 1860
Eufistulana ripleyana (Stephenson, 1941)
Liopistha protexta (Conrad, 1853)

Gastropoda 
Turritella sp(p).
Striaticostatum cf. S. sparsum Sohl, 1964* 

Cephalopoda 
Discoscaphites iris (Conrad, 1858)
Trachyscaphites sp.
Eubaculites carinatus (Morton, 1834)

Crustacea 
Decapoda 

Branchiocarcinus flectus (Rathbun, 1926)
Costacopluma grayi Feldmann & Portell, 2007
Palaeoxanthopsis libertiensis (Bishop, 1986)

Vertebrata 
Chimaeriformes 

Ischyodus sp.
Selachii 

Cretalamna appendiculata (Agassiz, 1843)
Squalicorax pristodontus (Agassiz, 1843)

Testudines 
Peritresius ornatus (Leidy, 1856)

Squamata 
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Mosasaurus hoffmani Mantell, 1829778
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