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Background. Context-free grammars (CFGs) and Parsing-expression Grammars (PEGs) are the two main

formalisms used by formal specifications and parsing frameworks to describe programming languages.

They mainly differ in the definition of the choice operator, describing language alternatives. CFGs support

the use of non-deterministic choice (i.e., unordered choice), where all alternatives are equally explored.

PEGs support a deterministic choice (i.e., ordered choice), where alternatives are explored in strict

succession. In practice the two formalisms, are used through concrete classes of parsing algorithms

(such as Left-to-right, rightmost derivation (LR) for CFGs and Packrat parsing for PEGs), that follow the

semantics of the formal operators.

Problem Statement. Neither the two formalisms, nor the accompanying algorithms are sufficient for a

complete description of common cases arising in language design. In order to properly handle ambiguity,

recursion, precedence or associativity, parsing frameworks either introduce implementation specific

directives or ask users to refactor their grammars to fit the needs of the framework/algorithm/formalism

combo. This introduces significant complexity even in simple cases and results in incompatible grammar

specifications.

Our Proposal. We introduce Multi-Ordered Grammars (MOGs) as an alternative to the CFG and PEG

formalisms. MOGs aim for a better exploration of ambiguity, ordering, recursion and associativity during

language design. This is achieved by (a) allowing both deterministic and non-deterministic choices to co-

exist, and (b) introducing a form of recursive and scoped ordering. The formalism is accompanied by a

new parsing algorithm (Gray) that extends chart parsing (normally used for Natural Language Processing)

with the proposed MOG operators.

Results. We conduct two case-studies to assess the expressiveness of MOGs, compared to CFGs and

PEGs. The first consists of two idealized examples from literature (an expression grammar and a simple

procedural language). The second examines a real-world case (the entire Smalltalk grammar and eleven

new Smalltalk extensions) probing the complexities of practical needs. We show that in comparison,

MOGs are able to reduce complexity and naturally express language constructs, without resorting to

implementation specific directives.

Conclusion. We conclude that combining deterministic and non-deterministic choices in a single gram-

mar specification is indeed not only possible but also beneficial. Moreover, augmented by operators for

recursive and scoped ordering the resulting multi-ordered formalism presents a viable alternative to both

CFGs and PEGs. Concrete implementations of MOGs can be constructed by extending chart parsing with

MOG operators for recursive and scoped ordering.
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MOGs are able to reduce complexity and naturally express language constructs, without resorting to

implementation specific directives.

Conclusion. We conclude that combining deterministic and non-deterministic choices in a single gram-

mar specification is indeed not only possible but also beneficial. Moreover, augmented by operators for

recursive and scoped ordering the resulting multi-ordered formalism presents a viable alternative to both

CFGs and PEGs. Concrete implementations of MOGs can be constructed by extending chart parsing
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1 BACKGROUND40

Parsing is ubiquitous, from rudimentary data storage and retrieval, to protocol and communication struc-41

tures and from there to file-formats, domain-specific, general purpose and natural language specifications.42

This wide range of applications can partially explain why it is still such an active area of research, or as L.43

Tratt describes it: ”The Solved Problem That Isn’t” [38]. With so many different areas of application,44

come inherent trade-offs in terms of expression power, speed, comprehensibility or memory consumption45

of different approaches.46

Since their introduction in 1956 by N. Chomsky [12], context-free grammars have been the de-facto47

formalism for describing languages. In fact as J. Kegler [28] notes, the very definitions of ”parser”,48
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”recognizer” and ”language” as we use them today can be traced back to this first paper on the subject by49

N. Chomsky. CFGs will be later popularized in the context of Computer Science with the introduction50

of Backus’s notation [4], later enhanced by Naur for Algol 60 [5] (resulting in the acronym BNF, for51

Backus-Naur Form, and most commonly used in its extended form – EBNF [25]).52

CFGs present a number of challenges, both for the algorithms that consume them (for parsing53

or recognition) and for the end-users defining them (handling of ambiguity, recursion, precedence54

and associativity). This is why in practice parsing frameworks based on CFGs introduce additional55

implementation specific directives, or ask users to restrict their grammars in ways that fit the framework’s56

design (e.g., eliminating left-recursion). The most obvious, perceived drawback of CFGs for Informatics57

is that of ambiguity. Since CFGs allow for non-deterministic choices between syntactic alternatives, they58

can lead to ambiguous parses of the same input.59

It is exactly this drawback that B. Ford focused on, in one of the most influential papers since the60

introduction of CFGs [24] making the following startling claim:61

62

”For decades we have been using Chomsky’s generative system of grammars, particularly context-free63

grammars (CFGs) and regular expressions (REs) [...] The power of generative grammars to express64

ambiguity is crucial to their original purpose of modelling natural languages, but this very power makes65

it unnecessarily difficult both to express and to parse machine-oriented languages using CFGs.”66

67

In essence Ford argues that most of our problems with parsing have been due to our bias towards68

linguistic solutions [12, 13] that are suitable for Natural Languages [14]. We thus have been disregarding69

the needs of ”easier” domains such as data or programming language specifications, where expressing70

ambiguity is unnecessary, leading to cumbersome solutions and implementations. He then goes on to71

propose the PEG formalism as an alternative, which he shows to be reducible to earlier well understood72

systems such as TS/TDPL and gTS/GTDPL [8, 1]. PEGs by construction cannot express non-deterministic73

(i.e., unordered) choice, thus avoiding ambiguities. They instead use prioritized (ordered) choice when74

presented with parsing alternatives, making the choice deterministic and efficient. Only if a chosen75

alternative fails directly (not through subsequent backtracking), will PEG-parsers try its alternatives. This76

is much like how a human developer will manually hard-code alternatives in a top-down parser. Since77

determining a correct order often involves look-aheads, PEGs also introduce the ! (not) and & (and)78

operators, which recognize but do not consume their input (i.e., determine if rule A is/not followed by79

rule B).80

Since their introduction in 2004, Parsing Expression Grammars have been gaining widespread81

adoption both in industry and academia. More than 400 subsequent works 1 cite B. Ford’s original paper,82

while a total of 29 implementations in 14 different programming languages are reported in active use 2.83

Nevertheless reviewing PEG-related bibliography reveals that the original argumentation in favor of PEGs84

has actually been weakened by subsequent work, regarding basic parsing features such as (a) recursion85

handling and (b) associativity support. To this day all proposed enhancements either address these issues86

in isolation or in implementation specific ways. It is still unclear if there is a single way to parse PEGs87

without facing these issues or introducing implementation directives external to the formalism (in the88

same way that CFG-based solutions do). Our analysis in this paper takes us a step further, questioning the89

very core of the initial PEG proposal: (c) by design unambiguous grammars. We explain why a form of90

ordered choice and conditional operators that PEGs advocate are worth saving, but only within a wider91

synthesis that could address the aforementioned issues.92

Starting with Section 2, we will use a simple expression grammar to discuss the differences between93

CFGs, PEGs and their proposed enhancements (as seen in Figures 1 to 5). We will argue that although94

PEG-related bibliography tried to enhance Ford’s initial proposal, it has actually provided insights that95

weaken the argumentation in favor of PEGs. We will explain why this direction of the PEG project hints96

to a need for expressing ambiguity during language design, while providing support for incremental97

disambiguation. To this end in Section 3 we will introduce MOGs (Multi-ordered grammars) and the Gray98

algorithm in detail, as alternatives to the PEG and CFG formalisms. Then in Section 4 we will present99

the results of our case-studies assessing the expressiveness of MOGs, compared to CFGs and PEGs. Two100

1439 citations according to Google Scholar as of 30/09/2018: https://scholar.google.com/scholar?q=

Parsing+expression+grammars%3A+a+recognition-based+syntactic+foundation
2implementations reported in http://bford.info/packrat/
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idealized examples (an expression grammar and a simple procedural language) and two real-world cases101

(the entire Smalltalk grammar and eleven new Smalltalk extensions) probing the complexities of practical102

needs, will be discussed. Finally, Section 5 will conclude the paper and discuss future perspectives.103

2 PROBLEM & RELATED WORK104

Figures 1 to 3 show us how two of the most prominent CFG-based algorithms (LALR [16, 15] and Earley105

[20, 21]) compare to a parsing algorithm using the vanilla PEG formalism described by Ford, when106

describing a simple expression grammar. For being precise in our comparison we use the same BNF107

symbols (::= and |) for rule definition and choice in all examples (instead of the PEG-only variants <–108

and /) assuming the appropriate semantics (ordered choice for PEGs and unordered choice for CFGs)109

in each case. Note here that the rule number has a right-hand side terminal representing integers and110

that expression, power, product,sum are non-terminal rules for arithmetic operations (caret ˆ denotes111

exponentiation). Finally all other non-bracketed sequence of characters represent terminal character112

sequences and groups of ordinary regular expressions.113

The expression grammar frequently appears in literature, not only because it is one of the simplest114

”realistic” examples. It is also an example where the need for handling left/right recursion, ambiguity,115

precedence and associativity, co-occur. The initial PEG paper does not provide such examples, but as we116

will promptly see these have been the focus of subsequent PEG-related papers.117

Regarding the different grammar flavors (understood by Earley, LALR and PEG-parser respectively)118

in Figures 1 to 3, we observe the following:119

Figure 1: The Earley CFG for expressions

1 <expression> ::= <expression> "[+-]" <expression>

2 | <expression> "[*/]" <expression>

3 | <expression> "ˆ" <expression>

4 | <number>

5

6 <number> ::= [0-9]+

Figure 2: The LALR CFG for expressions

1 %right 'ˆ'

2 %left '[+-]'

3 %left '[*/]'

4

5 <expression> ::= <expression> "[+-]" <expression>

6 | <expression> "[*/]" <expression>

7 | <expression> "ˆ" <expression>

8 | <number>

9

10 <number> ::= [0-9]+

The Earley algorithm (Figure 1) provides the shortest and most natural way to express the grammar.120

This is despite the fact that the algorithm was explicitly designed for NLP. This conclusion is in contrast121

to what Ford argues, since the expression grammar falls under the ”simpler than NLP”, computational122

problems described in his initial paper. Nevertheless the result provided by Earley is indeed highly123

problematic, since it consists of all possible parsing trees (e.g., for an expression as simple as: 2∗3+4∧124

5∧6 Earley will answer all 14 possible trees). Only manually re-writing the grammar (that will end-up125

resembling a lot like the PEG version, studied below) can produce an unambiguous Earley parse. Later126
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enhancements to the algorithm, have focused on empty-rule handling [3] parallelism [11], complexity127

[30, 27] and performance [2, 31, 32]. The ambiguous output of Earley is widely considered a feature128

(especially for Natural Language Processing) rather than a problem, with the exception of precedence129

handling through external directives [27].130

The LALR algorithm (Figure 2) is close to the Earley version but in order to avoid ambiguity we again131

need to provide implementation specific hints to handle shift/reduce and reduce/reduce conflicts. These132

are the three percentage (%) directives (on lines 1 to 3) handling operator precedence (lower directives133

have higher precedence) and associativity (operators are explicitly stated as left or right associative).134

The Generalized LR algorithm can return the ambiguous forest as Earley does, with a few caveats (see135

1.5: ”Writing GLR Parsers” in [17]). Nevertheless neither LALR or GLR algorithms in state-of-the-art136

implementations (as in GNU/Bison or SmaCC [10]) can handle all precedence or reduce conflicts (See137

Sections 5.7: ”Mysterious Conflicts” and 5.3.6: ”Using Precedence For Non Operators” in [17]) without138

grammar rewriting (as in the case of Adaptive LL(*) parsing[35]).139

The PEG version (Figure 3, predominately parsed by Packrat algorithms [22, 23]) is the most verbose140

of the three, since it cannot directly handle left recursion or associativity and thus needs to distinguish141

between products, powers and sums. No support for left-recursion also means that the parsing output will142

be wrongly right-associative by default. Precedence is only partially defined using ordered choice, since143

we need to hard-code explicit right-recursive relations between sums, products and numbers. Nevertheless144

the parsing is indeed unambiguous without resorting to implementation specific directives.145

Figure 3: The PEG version for parsing expressions

1 <expression> ::= <sum>

2

3 <sum> ::= <product> "[+-]" <sum>

4 | <product>

5

6 <product> ::= <pow> "[*/]" <product>

7 | <pow>

8

9 <pow> ::= <number> "ˆ" <pow>

10 | <number>

11

12 <number> ::= [0-9]+

The expression grammar shows us that Ford’s initial argument against CFGs is at least partially false.146

CFGs do express more naturally and correctly grammars outside NLP, but need to resort to implementation147

specific directives to handle precedence and ambiguity. Ford’s formulation of PEGs on the other hand, is148

unambiguous by design but forces the user to adopt a very specific way to describe grammars, with no149

left-recursion, problematic associativity and hand-coded precedence. Subsequent refinements to PEGs150

from literature tried to remedy these problems, adding support for left-recursion (in OMeta [39, 41] and151

Ohm [18, 40]) as seen in Figure 4 and associativity [29], as seen in Figure 5. It is worth noting here that152

these solutions address the problems either in isolation (A. Warth et al [39] where concerned only with153

left-recursion) or in implementation specific ways (N. Laurent and K. Mens introduce implementation154

specific directives to guide PEG parsing for their ”Autumn” framework [29]). Both solutions report155

additional performance penalties for supporting these extensions [39, 29]. Relying on the specificities of156

the framework rather than the operators of the formalism to circuvment the drawbracks of PEGs is not157

restricted to the examples above. Other widely used PEG frameworks like PetitParser [36, 33] also adopt158

this strategy, albeit in a less general way. PetitParser introduces additional programmatic API for terms,159

groups and associativity on top of PEGs for the sole purpose of handling arithmetic grammars.160

To this day it is still unclear if PEGs can successfully resolve these issues in a general way without161

introducing implementation directives external to the formalism. Moreover a direct comparison of state-162

of-the-art PEG extensions (Figure 5) and the classic LALR solution with directives (Figure 2) differ only163
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in their taste of implementation specific extensions. The difference is that LALR needs the directives to164

avoid conflicts and ambiguity (as in the case of Earley), while PEG parsers need them to actually produce165

the correct parsing tree in a readable manner. This is why we argue that subsequent contributions to the166

PEG-bibliography have further weakened the initial PEG vs CFG argumentation, by ending up adopting167

external directives like their CFG counterparts. Afterall, the usage of compilcated informal ”meta-rules”168

by CFGs, was one of the initial argumentations for the introduction of PEGs [24].169

Figure 4: Left-recursion extension for PEGs

1 <expression> ::= <sum>

2

3 <sum> ::= <sum> "[+-]" <product>

4 | <product>

5

6 <product> ::= <product> "[*/]" <pow>

7 | <pow>

8

9 <pow> ::= <number> "ˆ" <pow>

10 | <number>

11

12 <number> ::= [0-9]+

Nevertheless, there are still valid reasons why one might choose to use PEGs over CFGs. In examples170

where it’s possible to hard-code precedence and associativity without using left-recursion or extra171

directives in the grammar, we can benefit from a linear-parsing time. Such a grammar is likely to be172

well-behaved under CFG algorithms as well, but in the PEG case this is guaranteed.173

Moreover given that neither Earley nor LALR can provide unambiguous grammars without additional174

effort, we might choose to use PEG parsers that are guaranteed to at least provide some kind of output175

(even if this output is wrong). The trade-off here is with arcane shift/reduce, reduce/reduce errors, or176

with getting back the whole parsing forest (as in the case of Earley). This of course means that the177

argument in favor of PEGs being ”unambiguous” (although not technically wrong) is misleading. PEGs178

are guaranteed to provide a single (possibly wrong) output, for which we may need to provide external179

directives to parse correctly.180

Figure 5: Associativity solution for PEGs

1 <expression> ::= <expression> "[+-]" <expression>

2 @+ @left_recur

3 | <expression> "[*/]" <expression>

4 @+ @left_recur

5 | <expression> "ˆ" <expression>

6 | <number> @+

7

8 <number> ::= [0-9]+

In conclusion, neither PEGs nor CFGs (and their accompanying algorithms) are sufficient for a181

complete description of common cases arising in language design. In order to properly handle ambiguity,182

recursion, precedence or associativity, parsing frameworks either introduce implementation specific183

directives or ask users to refactor their grammars to fit the the needs of the framework/algorithm/formalism184

combo. This introduces significant complexity even in simple cases and results in incompatible grammar185

specifications.186
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3 OUR PROPOSAL187

Since in the absence of external directives, both CFGs and PEGs cannot provide a complete solution, we188

might conclude that the last 15 years of research (since the introduction of PEGs in 2004) have come189

full-circle. Nevertheless as we saw in Section 2 PEGs did provide us with a means of ”disambiguation”190

(the ordered choice) that despite its multiple problems, can be used to explore the domain of possible191

parse trees without resorting to cryptic errors and conflicts.192

This dimension of exploration through disambiguation is the starting point of our own efforts. Unlike193

Ford, we begin by embarrassing the ambiguity of CFGs and the non-deterministic nature of algorithms194

inspired by NLP. Given the insights that we gained from the PEG program, we introduce mechanisms195

for incremental disambiguation of languages through new ordered-choice operators that act within (not196

instead of) an ambiguous grammar.197

An overview of the MOG operators and semantics can be seen in Tables 1 and 2. Table 1 lists the198

operators that are common in MOGs and other formalisms, whereas Table 2 describes MOG-specific199

operators, or operators that have significantly different semantics in Multi-ordered grammars. Figure 6200

summarizes the class structure of the Gray parsing algorithm used to recognize MOGs, its relation with201

chart parsing and the incremental introduction of the new operators in a chart-parsing base. A detailed202

analysis of the Gray algorithm follows in sub-section 3.1.203

Depending on your point of origin (CFGs or PEGs), MOGs can be loosely described as, either:

MOG = PEG+Unorderedc +RecScopedOrderedc (1)

That is a Multi-Ordered Grammar is a PEG augmented by unordered and recursively-scoped ordered

choice operators, or as:

MOG =CFG+LAheado +Orderedc +RecScopedOrderedc (2)

That is a Multi-Ordered Grammar is a CFG augmented by two lookahead operators LAheado (& and204

!), plus the ordered and recursively-scoped ordered choices. In essence what is unique about MOGs205

compared to CFGs or PEGs is:206

1. The experimental mixing of Orderedc and Unorderedc choices, that are mutually exclusive in other207

formalisms.208

2. The RecScopedOrderedc (Recursively Scoped Ordered) choice operators, that are unique to MOGs.209

These relations between Multi-ordered Grammars, CFGs and PEGs can be more easily understood210

through the inheritance semantics of the Gray algorithm seen in Figure 6. The Gray hierarchy consists of a211

succession of recognizers beginning with a CFG-recognizer (GrayBaseAlgo, at the base of the hierarchy),212

followed by a PEG-compatible recognizer (GrayOrdered) and finally a recognizer that is able to handle213

MOGs (GrayMixedOrdered).214

More specifically in the bottom part of Figure 6, we see the GrayBaseAlgo class. GrayBaseAlgo is our215

chart-parsing base similar to that of a 3-op Earley parser (scan, predict, complete) [20], traditionally used in216

NLP [26]. Similarly to [3], we extent this chart-base with the empty derivation (ε). In Gray this is achieved217

by treating ε as a special terminal of zero length that unconditionally succeeds. By introducing ε-rules in218

the chart base, we can then trivially define EBNF operators such +, *, ?, through recursion terminating at219

ε . For example <s> ::= <a> +, can be readily consumed as <s> ::= <a> (<s> | <e>), with220

the group operation between () defined as an intermediate rule <t> ::= <s> | <e>. GrayBaseAlgo221

maintains a reference to the initial input, the grammar and the charts describing the current state of the222

recognition (its methods scan, predict, complete etc. will be described in more detail in Subsection 3.1).223

Notice here that almost all base methods have synonyms (scanBase, predictBase, completeBase), allowing224

the default parsing behavior (CFG-compatible recognition) to be accessed by the sub-classes, even if the225

main methods have been overridden somewhere along the hierarchy chain.226

In the middle part of Figure 6 we see the GrayOrdered class, which models the PEG-compatible227

recognizer of the Gray hierarchy. GrayOrdered, extends our chart-parsing base with two new operations228

(backtrack and fork), while overriding the standard CFG behaviour for predict and complete. These229

extensions (described in more detail in Subsection 3.1) handle the non-scoped backtracking ordered230

choice (||) and the two lookahead operators (& , !), by maintaining a backTrackStack. Notice here that231
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backtracking for this recognizer is ultimately supported by the Charts class at the bottom, through the232

backTrackAt(chartIndex,stateIndex,state) method.233

Finally, in the upper part of Figure 6, we find the MOG-compatible GrayMixedOrdered recognizer.234

GrayMixedOrdered maintains a lastSeenStack, that remembers the current ordered alternative for each235

ordered rule we are seeking to recognize. The variable references a stack of values rather than a single236

value, taking into account that alternatives can be recursively invoked and backtracked. This book-keeping237

allows GrayMixedOrdered to implement recursive ordering (/ , \) and introduce a new recursive scope238

upon invocation of a scoped ordered choice (||). The mixing of order with unordered choices, is achieved239

by overriding the predict and complete operations. As we will see in more detail in Subsection 3.1,240

GrayMixedOrdered invokes either the PEG or CFG-compatible operations of each of its parent classes241

(e.g., GrayOrdered’s predict(state) or GrayBaseAlgo’s predictBase(state)) depending on whether the242

rule under consideration is ordered or not. To optimize scanning and memoization, we pre-compute243

all first, follow and predict sets of the grammar rules to pre-filter unwanted alternatives (as seen in244

GrayMixedOrderedFiltered class) by overriding the predict operation.245

Figure 6. Gray Hierarchy Overview: Extending a chart-base to parse Multi-Ordered Grammars

3.1 The Gray Algorithm246

The Gray algorithm is a chart-parsing algorithm employing dynamic programming, to memoize interme-247

diate results, thus avoiding excessive re-parsing of the input [34]. What distinguishes Gray from other248

chart-based algorithms and especially the Earley algorithm [20, 21], is its ability to:249

(a) Handle ε-rules gracefully, implementing all EBNF operators (+, *, ?, ())250

(b) Backtrack and fork, to express the PEG-compatible ordered-choice and the two look-ahead251

operators (& and !).252
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Common Operators Appears In Description

<S> ::= <A> <B> MOG, EBNF, PEG, RE Composition operator. Non-terminal S is

a sequence of exactly one occurrence of A,

followed by exactly one occurrence of B.

<S> ::= <A> <B> ? MOG, EBNF, PEG, RE Optional operator. Non-terminal S is a

sequence of exactly one occurrence of A,

followed by an optional occurrence of B.

<S> ::= <A> <B> * MOG, EBNF, PEG, RE Zero-or-more operator. Non-terminal S

is a sequence of exactly one occurrence of

A, followed by zero or more occurrences

of B.

<S> ::= <A> <B> + MOG, EBNF, PEG, RE One-or-more operator. Non-terminal S

is a sequence of exactly one occurrence of

A, followed by one or more occurrences of

B.

<S> ::= (<A> <B>) + MOG, EBNF, PEG, RE Grouping operator. Non-terminal S con-

sists of one or more sequences of exactly

one occurrence of A followed by exactly

one occurence of B.

<S> ::= <A> | <B> MOG, EBNF, BNF Non-deterministic (unordered) choice

operator. Non-terminal S consists of ei-

ther exactly one occurrence of A or exactly

one occurrence of B.

<S> ::= <A> & <B> MOG, PEG Conditional-and operator. Non-terminal

S consists of exactly one occurrence of A,

only if it followed by B. B is not consumed.

<S> ::= <A> ! <B> MOG, PEG Conditional-not operator. Non-terminal

S consists of exactly one occurrence of A,

only if it is not followed by B. B if present

is not consumed.

Table 1. Operators common in MOGs and other formalisms

(c) Recognize multi-ordered grammars (MOGs) consisting of both deterministic and non-deterministic253

alternatives, augmented by scoped (||) and recursively ordered-choices (/ or \).254

The Gray chart consists of a two-dimensional memory Π, filled with πi, j entries of unique (non-255

duplicate) dotted-rules. The i-dimension, denotes the i-th terminal in the recognition process, while the256

j dimension denotes the j-th state (dotted-rule) processed during the recognition of the aforementioned257

terminal. Dotted rules πi, j are grammar rules, augmented by (i) their starting position α in the input I,258

(ii) a dot . on the left of the currently processed sub-rule and (iii) the dot position ω in the input. As259

an example consider the dotted rule <e> → <e> . "+" <e> [0,3], describing the recognition260

attempt of e starting at α = 0, having successfully recognized its recursive invocation up until position261

ω = 3 and waiting to process the terminal rule ”+”. A state with a dot after its last constituent (for e.g.,262

<e> → <e> "+" <e> . [0,8]), is said to be completed/recognized. C(πi, j) returns true if πi, j263

is complete or f alse otherwise. Γ denotes the set of rules describing the grammar to be recognized,264

with γk referring to each particular rule. γ0 references the rule: <γ0> → <S> where S is the starting265
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MOG-Specific Operators Appears In Description

<S> ::= <A> || <B> MOG, PEG (no-scope) Deterministic (ordered) choice op-

erator. Non-terminal S consists of

exactly one occurrence of A. If recog-

nition of non-terminal A fails then S

consists of exactly one occurrence of

B. Deterministic choice can be ex-

haustive in MOGs (successful recog-

nition of A should lead to success-

ful recognition of the input). || in-

troduces a new scope for recursive

ordering that is MOG-specific (see

below).

<S> ::= <A> / <B> MOG-ONLY Self-recursive (ordered) choice op-

erator. Non-terminal S consists of

exactly one occurrence of A. If recog-

nition of non-terminal A fails then

S consists of exactly one occurrence

of B. If S is to be recursively rec-

ognized from within A, start at A.

If S is to be recursively recognized

from within B start at B. If non-

recursive ordered choice || is in-

voked from within S, start a new

scope for S at A.

<S> ::= <A> \ <B> | <C> MOG-ONLY Recursive (ordered) choice opera-

tor. Non-terminal S consists of ex-

actly one occurrence of A. If recog-

nition of non-terminal A fails then

S consists of exactly one occurrence

of B (similarly for C). If S is to be

recursively recognized from within

A, start at A. But if S is to be

recursively recognized from within

B, start at the next alternative (i.e.,

C).

<S> ::= <A> \ <B> | <C> MOGs-ONLY Taint operation. If either || or /
or \are present in a rule, the rule

is tainted (i.e., all alternatives are

ordered). If the recursive order

of a tainted sub-rule is not explic-

itly set, it defaults to self-recursion.

Here S consists of of a self-recursive

A. If A fails it consists of a simply

recursive B (explicitely set). If B fails

it consists of a self-recursive C.

Table 2. MOG-specific operators, or operators that have significantly different semantics in

Multi-ordered grammars
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non-terminal of the language. ∆(γk) returns the index of γk as a sub-rule, and γ ≡ γ ′ is true if γ and γ ′ are266

sub-rules of the same parent. γkid
represents the name of rule γk, rather than the rule itself (from which it267

follows that γ ≡ γ ′↔ γid = γ ′id). Our backtrack stack B holds πi, j alternatives that will be added to Π in268

the order they where pushed, only if the current considered alternative in Π fails. Failures are memoized269

and identical states that have previously failed are ignored. Λs denotes a stack of scopes, with each scope270

s describing a mapping from a rule γi to the index of its alternative that is currently being processed by the271

algorithm.272

Algorithm 1 The Gray Base Algorithm

1: procedure GRAYBASEPARSE(Γ, S, Π, I)

2: Π0,0← (γ0→•S [0,0])

3: for all πi, j ∈Π do

4: if ¬C(πi, j) then

5: if K′(πi, j) 6∈ (T (Γ)∪{ε}) then

6: GRAYBASEPREDICT(πi, j,Γ,Π, I)

7: else

8: GRAYBASESCAN(πi, j, I,Π)

9: end if

10: else

11: GRAYBASECOMPLETE(πi, j,Π)

12: end if

13: end for

14: return Π

15: end procedure

16: procedure GRAYBASEPREDICT(πi, j,Γ,Π, I)

17: for all γ ∈ Γ where γ ≡ K′(πi, j) do

18: π ← (γid →• . . . [Ω(πi, j),Ω(πi, j)])
19: if π 6∈Π then Πi,max( j)+1← π

20: end for

21: end procedure

22: procedure GRAYBASESCAN(πi, j, I,Π)

23: α ←Πindex(I) , ω ←Πindex(I,K
′(πi, j))

24: if ω > 0 then

25: π ← (K′id(πi, j)→ . . .• [α,ω])
26: if π 6∈Π then Πi+1,max( j)+1← π

27: end if

28: end procedure

29: procedure GRAYBASECOMPLETE(πi, j,Π)

30: for all π ∈Π where K′(π)≡ K(πi, j)∧Ω(π) = A(πi, j) do

31: π ′← (Kid(π)→ . . .Kid(πi, j)• . . . [A(π),Ω(πi, j)])
32: if π ′ 6∈Π then Πi,max( j)+1← π ′

33: end for

34: end procedure

We also define the following helper functions to aid our description: K(πi, j),K
′(πi, j) return the rule γk273

at the head or at the dot of a state πi, j. T (Γ),N(Γ) denote respectively the set of terminals and non-terminal274

rules in Γ. A(πi, j),Ω(πi, j) return the α and ω of the dotted-rule πi, j. P(I),Pindex(I) return the current275

character and index of the input. While Pindex(I,γk) returns the new input index after the terminal rule γk276

has been recognized (or 0 otherwise). Op(γk) returns the operator associated with the rule γk in the current277

context (&, !, | , ||, / or \). While Chindex(γk, i) maps the type of ordered choice {||,/,\} associated with278

a sub-rule at index i, to the integer indexes {−1,0,1}.279
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Algorithm 2 The Gray Ordered Overrides and Extensions

1: procedure GRAYORDPREDICT(πi, j,Γ,Π, I)

2: if Op(K′(πi, j)) ∈ {&, !} then

3: if ¬ GRAYORDFORK(Π,πi, j,Γ, I) then return

4: end if

5: for all γ ∈ Γ where γ ≡ K′(πi, j) do

6: π ← (γid →• . . . [Ω(πi, j),Ω(πi, j)])
7: if π 6∈Π∧¬n then

8: Πi,max( j)+1← π , n← true

9: else

10: Bi,max( j)+1←{π,Pindex(I)} ⊲ Push-op (optim. hook)

11: end if

12: end for

13: end procedure

14: procedure GRAYORDCOMPLETE(πi, j,Π)

15: for all π ∈Π where K′(π)≡ K(πi, j)∧Ω(π) = A(πi, j) do

16: π ′← (Kid(π)→ . . .Kid(πi, j)• . . . [A(π),Ω(πi, j)])
17: if π ′ 6∈Π∧¬n then

18: Πi,max( j)+1← π ′ ,n← true

19: else

20: Bi,max( j)+1←{π,Pindex(I)}
21: end if

22: end for

23: end procedure

24: procedure GRAYORDBACKTRACK(Π,B, I)

25: b← Bpop

26: if b ∈Π then

27: GRAYORDBACKTRACK(Π,B, I)

28: else

29: Πbi,b j
← b[π] ⊲ Del. or memoize the rest

30: Pindex(I)← b[Pindex]
31: end if

32: end procedure

33: procedure GRAYORDFORK(Π,πi, j,Γ, I)

34: i← Pindex(I)
35: Π

′← GRAYBASEPARSE(Γ,S→ K′(πi, j),Π
′, I)

36: s← ((γ0→ S•) ∈Π
′)

37: Pindex(I)← i ⊲ Restore input

38: if (Op(K′(πi, j)) = &∧ s)∨ (Op(K′(πi, j)) =!∧¬s) then

39: Πi, j← (Kid(πi, j)→ . . .K′id(πi, j)• . . . [A(πi, j),Ω(πi, j)]) ⊲ Advance dot and continue

40: return true

41: else

42: return f alse ⊲ Process next state

43: end if

44: end procedure

3.1.1 The GrayBase Algorithm280

Our chart-parsing base (Alg. 1) includes the main parsing loop (GrayBaseParse), which receives (in281

line 1) the grammar (Γ), the starting non-terminal (S), the charts (Π) and the string to recognize (I), as282

input. At the end of this procedure the filled charts will be returned, from which the parsing tree(s) can be283

derived, with the existence of a completed γ0 state (γ0→ S• ∈Π) signaling success. As we saw earlier,284
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Algorithm 3 The Gray Mixed-Ordered Overrides

1: procedure GRAYMIXEDPREDICT(πi, j,Γ,Π, I)

2: if Op(K′(πi, j)) = | then

3: GRAYBASEPREDICT(πi, j,Γ,Π, I)

4: else

5: if Op(K′(πi, j)) ∈ {&, !} then

6: if ¬ GRAYORDFORK(Π,πi, j,Γ, I) then return

7: end if

8: γ ′index← Λmax(s)[K
′(πi, j)]

9: opindex←Chindex(K
′(πi, j),γ

′
index)

10: if opindex =−1 then

11: altindex = 1

12: else

13: altindex = γ ′index +opindex

14: end if

15: for all γ ∈ Γ where γ ≡ K′(πi, j)∧∆(γ)≥ altindex do

16: π ← (γid →• . . . [Ω(πi, j),Ω(πi, j)])
17: if π 6∈Π∧¬n then

18: Πi,max( j)+1← π , n← true

19: if Chindex(γ,∆(γ)) =−1 then Λmax(s)+1←{} ⊲ New Scope

20: else

21: Bi,max( j)+1←{π,Pindex(I)}
22: end if

23: end for

24: end if

25: end procedure

26: procedure GRAYMIXEDCOMPLETE(v, u, p)

27: if Op(K′(πi, j)) = | then

28: GRAYBASECOMPLETE(πi, j,Γ,Π, I)

29: else

30: GRAYORDEREDCOMPLETE(πi, j,Γ,Π, I)

31: π ←Πmax(i),max( j)

32: if C(π)∧Chindex(K(π),∆(K(π))) =−1 then Λpop ⊲ Exit Scope

33: end if

34: end procedure

this base algorithm deviates from other chart-based approaches by handling ε-rules as terminals (line 5),285

allowing us to implement all EBNF operators (+, *, ?, ()). Another notable difference is the complete286

absence of a separate lexing-phase, with the terminal recognition completely driven by the syntax (in lines287

8 and 23). This is also the reason why both the α and ω indexes describing the recognition progress of288

dotted-rules, are defined in terms of character positions rather than terminals.289

More specifically, starting at line 2 we add our first dotted-rule (γ0) to our charts at position 0,290

describing the attempt to recognize the starting non-terminal of the grammar (i.e., the • is at the left of S).291

Then from lines 3 to 13 we will iterate over all dotted-rules in the charts, calling one of the three base292

methods (grayBasePredict, grayBaseScan, grayBaseComplete) for each state. The reason we need to loop293

(despite having started with just the initial γ0 state), is that all three methods add additional states to Π294

during recognition. The decision on which method to call depends on the state of each dotted rule, so that295

if πi, j is not complete (line 4) we will either call predict (line 6) or scan (line 8), depending on whether296

the rule at the left of the • is a terminal or not (line 5). If πi, j has instead been completed (i.e., has been297

recognized), we will call the complete method instead (line 11).298

GrayBasePredict (lines 16 to 21), will expand all alternatives of the rule at the left of the dot in πi, j299

(lines 17, 18). Then it will store them at the end of the current chart Πi,max( j)+1 (line 19), if they have not300

already been added by a previous prediction (i.e., all identical states in a specific position will be analyzed301
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exactly once). GrayBaseScan (lines 22 to 28), will store the current input position (in α) and attempt to302

recognize the terminal left of the • in πi, j, storing the resulting position in ω (line 23). If the recognition303

of the terminal was successful (i.e., ω > 0), a completed state for the terminal rule (with an end-• in line304

25) will be added at the end of the next chart Πi+1,max( j)+1. Finally, GrayBaseComplete (lines 29 to 34)305

will search for states in Π that are waiting for the completed state πi, j at position A(πi, j) (line 30). It will306

then create a copy of the waiting states, advancing the • and ω of the copy at the right of the recognized307

rule (line 31). Finally it will attempt to add the updated copy in the current chart Πi,max( j)+1, checking for308

duplicates (line 32).309

3.1.2 The GrayOrdered Algorithm310

The GrayOrdered algorithm (Alg. 2), overrides the base predict and complete methods with the grayOrd-311

Predict and grayOrdComplete procedures (lines 1 to 23). Moreover, it adds two additional operations to312

the chart-parsing base (backtrack and fork, lines 24 to 39). Essentially, these extensions treat all choice313

operator as non-scoped versions of the ordered choice (||) while implementing the two look-ahead opera-314

tors (&, !). This is achieved by maintaining the backtrack stack B of πi, j alternatives, and introducing a315

single alternative of ordered rules at a time. If said alternative fails, Π will backtrack at the top alternative316

of B. Failures can be memoized so that identical states that have previously failed can be ignored.317

More specifically, at line 2 the overridden predict checks the operator associated with the rule at the318

left of the dot in the current state Op(K′(πi, j)). If this is found to be one of the look-ahead operators319

(that does not consume input), the algorithm will fork (lines 28 to 39) to deal with this rule. The fork320

operator first stores the current input index Pindex(I) (line 34), and then enters a nested parsing loop (line321

35), with a new empty chart Π
′, the same grammar Γ and input I, but different starting rule. This starting322

rule S→ K′(πi, j) is the rule of the initial invoking loop, which we wanted to look-ahead. Then on line 31323

we will check if the nested parsing succeeded or not, by testing for the existence of a completed starting324

rule (γ0→ S•) storing the result in s. Finally on lines 33 and 34 we will advance the dot in place (Pi, j) at325

the right of the rule K′id(πi, j) , only if the look-ahead operator matches the result of the nested parsing (at326

which case we will return true on line 35) or f alse otherwise (line 37).327

Back to the overridden predict on line 3, if the look-ahead failed, the method will return so that the328

algorithm can continue parsing at the next state in the chart. If the look-ahead succeeded (with the dot329

advancing in-place during fork) we will proceed with the prediction normally. Ordered prediction (lines 5330

to 12) consists of attempting to add a single alternative for K′(πi, j) to Π making sure that (a) it does not331

already exist (π ∈Π) and (b) one has not already been added (¬n), as seen in line 7. The single alternative332

to be considered ends up at the end of the current chart Πi,max( j)+1 (line 8). The remaining alternatives333

will be pushed at the top of B, marking the current input index Pindex(I) to return to (line 10), as well as334

the current chart indexes (i,max( j)+1). The push operation on line 10, also serves as a hook for failure335

memoization (i.e., identical states that have already failed do not need to be added to the stack).336

The overridden complete (lines 14 to 23) will first search (line 15) for those states in Π that are waiting337

for the completed state πi, j at position A(πi, j). As before, for each waiting state it will create a copy338

(line 16) advancing the • and ω . Then, similarly to the overridden predict it will attempt to add a single339

alternative at the end of the current chart Πi,max( j)+1 (line 18), while pushing the rest at the top of B340

(on line 20, marking input and chart indexes to return to). Finally during backtrack (lines 24 to 32, for341

failed predicted/completed states), the algorithm will check (line 26) if the popped backtrack state (line342

25) is already in Π and recursively continue backtracking (line 27). Else, it will rewind Π to the stored343

bi,b j indexes, over-writing the previous alternative (lines 29, 30) and restoring the input index to b[Pindex]344

(previously stored on line 20).345

3.1.3 The GrayMixedOrder Algorithm346

The GrayMixedOrdered algorithm (Alg. 3), extends both the base and ordered versions of Gray, to347

(a) allow the co-existence of both deterministic and non-deterministic ordering in the grammar and348

(b) implement the MOG-only recursive and scoped ordering operators (|| , / and \). The mixing of349

deterministic with non-deterministic choices, is achieved by overriding the predict and complete operations350

to delegate execution to either their base (non-deterministic) or ordered (deterministic) counterparts,351

depending on whether a rule is ordered or not. The additional scoped and recursive operators are352

implemented by maintaining the Λ stack (lastSeenStack), that remembers the current ordered alternative353

for each rule. Λ consists of a stack of scopes that registers which alternatives have been seen, taking into354

account that rules can be recursively invoked and backtracked.355
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More specifically, starting at line 2 we check the operator Op(K′(πi, j)) that is associated with the356

rule at the left of the •, in the current state πi, j. If the rule is unordered we delegate prediction to the357

base-predict procedure (line 3), otherwise we proceed (lines 5 to 24) with an extended version of the358

ordered case. As before (in GrayOrdPredict), we begin (lines 5 to 7) by handling the look-ahead operators.359

If there is a look-ahead operator at the current • position and the look-ahead succeeded (with the dot360

advancing in-place during fork) we will proceed with the prediction (lines 8 to 24), otherwise we will361

return to handle the next state in the chart.362

Ordered prediction in the mixed case first determines the value of γ ′index (at the current Λmax(s) scope)363

which represents the index of the last seen alternative of K′(πi, j). Then for that particular index it will364

retrieve the integer value Chindex(K
′(πi, j),γ

′
index) associated with the scoped or recursive choice of the365

K′(πi, j) sub-rule. Remember here that Chindex maps the type of ordered choice {||,/,\} to the integer366

indexes {−1,0,1} respectively. We can thus now calculate the index (altindex) of the alternative that367

should be recursively considered. If the alternative that was last seen was that of a scoped ordered choice368

(i.e., opindex = −1), the recursive invocation re-starts at the top of the rule (altindex = 1). If the opindex369

is either 0 or 1 (for self-recursive or simply recursive ordered choices) the next alternative will be at370

altindex = γ ′index +opindex. That is for the self-recursive case we will re-start invocation by repeating the371

last seen alternative (altindex = γ ′index). While for the simply recursive ordered choice we will continue372

parsing at the next alternative (altindex = γ ′index +1). Mixed-ordered prediction will proceed (lines 15 to373

23) as before, by attempting to add a single alternative for K′(πi, j) to Π (line 18) while the rest of the374

alternatives will end-up in the backTrack stack B (line 21). What is different from the ordered case is that375

(a) only the alternatives whose index satisfies ∆(γ)≥ altindex (line 15) will be considered (implementing376

as we saw above the semantics of scoped and recursive choices) and (b) in the case where the single377

alternative that was added in Π is associated with a scoped ordered choice (Chindex(γ,∆(γ)) =−1), a new378

scope will be created (line 19) at the top of Λ (our last-seen stack of alternatives).379

Finally the mixed-ordered complete (lines 26 to 34), will first check for the choice operator associated380

with K′(πi, j) and invoke either the base version of complete (line 28) or the ordered one (line 30). In the381

latter case, it will also check if the ordered alternative that has just been added is complete (through C(π)),382

and if said alternative was a scoped ordered choice: Chindex(K(π),∆(K(π))), previously introduced at383

line 19. If both conditions are true then the current scope has been successfully recognized and can thus384

be removed from Λ (line 32). The backtrack operation in the mixed-order case is essentially the same as385

before with the additional step of restoring Λ, at the backtrack index.386

4 RESULTS & DISCUSSION387

We conducted two case-studies to assess the expressiveness of MOGs, compared to CFGs and PEGs. The388

first consists of two idealized examples from literature (an expression grammar and a simple procedural389

language). The second examines a real-world case (the entire Smalltalk grammar and eleven new Smalltalk390

extensions) probing the complexities of practical needs. All MOG-based examples in this section are391

readily reproducible, by simply downloading and running the alpha-version of the Lan.d.s platform392

at: https://npapoylias.gitlab.io/lands-project/. This on-line portal is dedicated to393

Multi-ordered grammars and hosts several additional examples that you can explore. The Lan.d.s project394

is currently implemented on top of the Pharo [9] and Moose platforms [19], but only its visualization395

and code-generation sub-systems (that depend on the Roassal [7] and Opal frameworks [6]), are specific396

to the Pharo ecosystem. Both the MOG formalism and the Gray algorithm are language agnostic.397

The source-code is distributed under the MIT License, and is available at: https://gitlab.com/398

npapoylias/lands.399

4.1 Case-study I: Expressions and Control-Flow400

Figures 7 and 9 show us the expression language defined through a Multi-Ordered Grammar. These401

expression rules are both valid MOG-rules, recognized using the same algorithm (Gray). Their only402

difference is their choice of operators (beginnings of lines 2 to 6), that can be lively edited from within403

our environment. Figure 7 shows us a full non-deterministic MOG-rule (all alternatives are unordered),404

that can be used to explore ambiguities arising from the structure of the grammar. Figure 8 depicts what405

this exploratory parsing looks like inside the Lan.d.s platform (this is a still shot of an interactive session),406

while parsing the expression: (2∗3∧4∧5)+(6∗7/8). The parenthesized expression in the left has 5407

alternatives in total that can be explored. Two of them are readily accessible in the current configuration of408
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the sub-tree. The other three can be viewed by navigating through the up/down arrows on the composite409

nodes of the left side. Similarly the right-parentheses has two alternatives that can be explored, with a410

total of 5∗2 = 10 alternatives for the whole expression. Notice here that these ambiguous alternatives411

essentially present us with all possible precedence and associativity configurations of the numerical412

expression.413

Figure 7: The Explorative MOG for Expressions (1/2)

1 <expression> ::=

2 | <expression> "[+-]" <expression>

3 | <expression> "[*/]" <expression>

4 | <expression> "ˆ" <expression>

5 | "(" <expression> ")"

6 | <number>

7 <number> ::= [0-9]+

Figure 8. Parsed View: The MOG Expr. Grammar (1/2)

Subsequently, through experimentation and live-editing of the choice operators we end up with the414

MOG-rule of Figure 9, that produces the correct unambiguous parsing tree seen in Figure 10. This415

incremental live-editing is what we call incremental disambiguation. As seen in Figure 9, incremental416

disambiguation is based on the recursively scoped MOG-operators that we introduced (|| , / and \), acting417

within (not instead of) an ambiguous grammar. In lines 2 and 3 of Figure 9 the [+−] and [∗/] alternatives418

are declared simply-recursive. As we discussed in Section 3.1, this means that the alternatives are ordered419

and that any expression recursively invoked from within line 2, will continue from the alternative at line420

3 (similarly, recursive invocation from within line 3 continues at 4). Since expressions already include421

ordered alternatives, the rest of the rule is tainted, with non-ordered sub-rules defaulting to self-recursion.422

This is the case for the ∧ (exponentiation) alternative, which by being self-recursive will recurse on itself423

for expressions invoked from within line 4. The last alternative (number rule on line 6) is typically also424

self-recursive, but with no explicit or implicit recursion from line 6, only its order in the rule matters.425

Finally the grouping operator () in line 5 is declared as recursively scoped, which as we saw means426
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that a new recursive scope will be pushed before and popped after its successful recognition. Recursive427

invocation of expressions from within line 5 will begin again (in a new scope) at line 2.428

What the rule ordering and the semantics of the MOG operators achieve here is to: (a) Define the429

precedence of numerical expressions (the lower we are in a rule, the higher the precedence).(b) Properly430

handle associativity ([+−∗/] are left-associative, while ∧ is right-associative), while (c) allowing rules431

with both left and right recursion. And finally (d) facilite the exploration of ambiguities (seen in Figure 7)432

and their incremental disambiguation.433

Indeed any other combination we may have wished for precedence or associativity can be lively434

explored by re-ordering the alternatives or editing the choice operators (e.g., a left-associative ∧, can be435

achieved by simply switching the tainted self-recursion of line 4 to a simply-recursive choice \).436

Figure 9: The Unambiguous MOG for Expressions (2/2)

1 <expression> ::=

2 \ <expression> "[+-]" <expression>

3 \ <expression> "[*/]" <expression>

4 | <expression> "ˆ" <expression>

5 || "(" <expression> ")"

6 | <number>

7 <number> ::= [0-9]+

Figure 10. Parsed View: The MOG Expr. Grammar (2/2)

Comparing with state-of-the-art solutions for CFGs and PEGs (discussed in Section 2), the MOG437

version here is able to handle ambiguity, recursion, precedence and associativity without resorting to438

external directives or asking users to refactor their grammars. In terms of expressive power and clarity, this439

MOG version is only comparable to the Earley CFG (in Figure 1). The difference being that MOGs have440

a well-defined incremental way to resolve ambiguities through the choice operators, without re-writing441

the grammar. Specifically for Earley the grammar needs to be re-written in a way resembling the PEG442

version of Figure 3.443

Moreover, if we take practical considerations into account (seen in Figure 11) the external directives444

for CFGs of Figure 2, although work as advertised for the expression grammar (seen in actual use in lines445

16 to 18 of Figure 11 for the SmaCC framework [10]), do not scale well in larger cases (see sub-section446

4.2). For PEGs, apart from the directives we saw in Figure 5 of Section 2 and the inherent inability to447

explore ambiguities, we may also be presented with API artifacts as those seen in lines 1 to 11 of Figure448

11. Here the PEG-based PetitParser framework [36, 33], is forced to introduce an additional programmatic449
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API for terms, groups and associativity on top of its PEG back-end, for the sole purpose of properly450

handling arithmetic grammars. In essence, the PEG formalism needs to be completely encapsulated so451

that (as J. Kegler notes in [28]) the proper arithmetic semantics are reproduced in a second hard-coded452

pass.453

Figure 11: Additional Considerations for PEGs and CFGs

1 "PParser, REPL/Class based:"

2 expression := PPExpressionParser new.

3 parens := $( asParser token trim , expression , $)

4 asParser token trim.

5 number := #digit asParser plus flatten trim.

6 expression term: parens / number.

7 expression group: [ :g | g right: $ˆ asParser token trim ];

8 group: [ :g | g left: $* asParser token trim.

9 g left: $/ asParser token trim];

10 group: [ :g | g left: $+ asParser token trim.

11 g left: $- asParser token trim].

12

13 "SmaCC, File based:"

14 '<number> : [0-9]+ ;

15 <whitespace> : \s+;

16 %left "+" "-";

17 %left "*" "/";

18 %right "ˆ";

19 Expression

20 : Expression "+" Expression

21 | Expression "-" Expression

22 | Expression "*" Expression

23 | Expression "/" Expression

24 | Expression "ˆ" Expression

25 | "(" Expression ")"

26 | Number

27 ;

28 Number

29 : <number>

30 ;'

4.1.1 The Calc Grammar454

Incremental disambiguation can be aplied in larger examples as well (as we show in Figure 12). Here455

we define the three main MOG-rules of a small procedural language that comprises of assignments,456

conditionals, loops, print statements and code-blocks (lines 1 to 6). As before we started with a fully457

unordered grammar and worked our way towards an unambiguous definition. As seen in Figure 13, we458

had two different kinds of ambiguities co-occuring (while parsing the input: i f (x) i f (y) z = x/2 else z =459

3∗ x+1). The first one on the top of the figure, is related to the dangling-else ambiguity, while the one460

in the bottom is an expression ambiguity similar to those we saw previously. It is worth noting that461

not all rules in the grammar needed to be ordered for complete disambiguation (as seen in Figure 12).462

In contrast with PEGs, MOGs can seamlessly mix the unordered statement rule (lines 1 to 6) with the463
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ordered conditional and expression rules (lines 7 to 20) without forcing the user to make ordering choices464

where there is no need to.465

The expression rule on lines 10 to 20 is an extension of our previous example, with 8 more operators466

in order of precedence (similar to those found in languages like C). All additions (lines 10 to 12) are467

simply-recursive, resulting in them being left-associative as expected. The conditional rule on lines 7 and468

8 (Figure 12) shows us how to handle the dangling-else ambiguity with MOGs. Our goal here is to match469

”else” statements only with inner if constructs. We thus first try to match all outer bare-if statements470

(as seen on line 7). The logic here is completely equivalent to that of the expression case where we471

were trying to first match the outer [+−] operators that have lower precedence. The sub-rule in line 7 is472

tainted (since line 8 has an ordered scope) defaulting to self-recursion. This means that both if and if/else473

statements (in that order) can correctly (recursively) occur from within the if statement of line 7. On line474

8 the if/else sub-rule is recursively scoped meaning that although the sub-rule is at the end, recognition475

can resume from the top if needed (which is the case when we have a bare-if statement after the else).476

Of course, as we did before, we can deduce the correct definition for conditions that will complete the477

disambiguation of Figure 13 (resulting in the parsing tree of Figure 14) by lively re-ordering and editing478

our MOG operators.479

With the aid of Figure 15 we can contrast this result with the way PEGs (in [24]) and CFGs (in [17])480

solve the dangling else problem. MOGs handle the ambiguity at least as naturally as PEGs (lines 3 to481

4) with the main difference being that MOGs are fully explorable. This is achieved either by using an482

unordered choice to navigate the parsing trees or by re-ordering and editing the choice operators. This483

is not possible with PEGs since (by construction) they cannot handle ambiguity. Specifically for this484

case an alternative ordering for the PEG version (i.e., switching lines 3 and 4) will completely mask the485

bare-if alternative. This is a known issue with PEGs documented by Ford himself [24]. In a PEG-rule486

of the form A→ a|ab the second alterantive will never be considered, since upon every recognition of487

a, the A rule will always eagerly succeed. The CFG version on the other hand, has to use one of the488

directives seen in lines 8 to 11 to handle ambiguities, but not without some well documented caveats489

(described by Donnelly and Stallman in [17]). First, if we use the external %expect directive in line 8,490

we are essentially instructing the algorithm to expect n shift/reduce conflicts (and to shift by default).491

Yet, we are not guranteed that these n conflicts we expect are those n that will actually occur during492

parsing, and we run the risk of mishandling some other ambiguity [17]. In the case of the %precedence493

(lines 9 and 10) and %right (line 11) directives both precedence and associativity is set globally (i.e., in494

relation with all other operators in the grammar) and can thus cause problems even in simple cases (such495

as ”i f test then 1 else 2+3”) if scope is not taken into account (as noted in [17]).496

Figure 13. Parsed View: The MOG Calc Grammar (1/2)
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Figure 12: The MOG Calc Grammar

1 <statement> ::= <assignment>

2 | <conditional>

3 | <loop>

4 | <print>

5 | <block>

6 ...

7 <conditional> ::= "if" "(" <expression> ")" <statement>

8 || "if" "(" <expression> ")" <statement> "else" <statement>

9 ...

10 <expression> ::= \ <expression> ("|"|"&") <expression>

11 \ <expression> ("=="|"˜=") <expression>

12 \ <expression> ("<="|">="|">"|"<") <expression>

13 \ <expression> ("+"|"-") <expression>

14 \ <expression> ("*"|"/"|"%") <expression>

15 | <expression> "ˆ" <expression>

16 || "(" <expression> ")"

17 | "true"

18 | "false"

19 | <variable>

20 | <number>

Figure 14. Parsed View: The MOG Calc Grammar (2/2)
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Figure 15: PEG and CFG handling of dangling-else

1 ... B. Ford 2004

2

3 IF Cond THEN Statement ELSE Statement

4 / IF Cond THEN Statement

5

6 ... Gnu/Bison, one directive + caveats

7

8 %expect n

9 %precedence "then"

10 %precedence "else"

11 %right "then" "else"

12 stmt:

13 expr

14 | if_stmt

15 ;

16

17 if_stmt:

18 "if" expr "then" stmt

19 | "if" expr "then" stmt "else" stmt

20 ;

21

22 expr:

23 "identifier"

24 ;

4.2 Case-study II: Parsing and Extending Smalltalk497

Thus far we have seen classic examples from literature for which we argued that MOGs are more flexible498

than CFGs/PEGs without needing to resort to external directives. We now turn our attention to a real-world499

case where external directives are even harder to apply and disambiguation of PEGs or CFGs can only be500

achieved through inflexible rule definitions that severely obfuscate the grammar.501

This is the case of Smalltalk messages discussed in this section, although the problem we illustrate is502

more general. At its root is the need for describing recursive precedence of arbitary rules without any503

anchoring terminals (like arithmetic operators or the ”then”, ”else” keywords) with respect to which we504

can define ordering (see also discussion of non-operators in [17]). In order to easily follow the examples505

we will briefly explain here the role of messages in Smalltalk.506

In Smalltalk everything is a message (including control structures, like if, while loops etc). There are507

three types of messages: unary, binary, and keyword messages. Unary messages have the highest priority508

and are parsed first, then binary messages are parsed followed by keyword ones. Messages are send to509

receivers with attached arguments, in which case we talk of a message-send. As syntactic structures,510

messages allow for a more fluid way to express method invocations. For example, if in a language like511

Java you were to write:512

1 emailService.sendTo(mail + attachement , contact.address())

This would be expressed in Smalltalk as follows:513

1 emailService send: mail + attachment to: contact address
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Notice here that we did not need to parenthesize an empty argument list for contact address to514

invoke the address method, since #address is simply a unary message, with the highest parsing precedence,515

taking no arguments. Similarly the + operator (in mail + attachment), is just a binary message (ie516

a #+ is sent to ’mail’ with ’attachement’ as an argument). Finally, the results of the two aforementioned517

message-sends will serve as arguments for the keyword message send: arg1 to: arg2 invoked518

with emailService as a receiver. In case we needed to send multiple emails we would use what is519

called a cascade (i.e., seperated messages with a semicolon as follows):520

1 emailService send: mailA + attachmentA to: contactA address;

2 send: mailB + attachmentB to: contactB address

Messages (besides primitive expressions) accept other messages as arguments, always following the521

unary > binary > keyword precedence. This recursive precedence rule (that does not involve any clear522

anchoring terminals) is naturally expressed in MOGs as follows:523

Figure 16: The MOG Smalltalk Msg-Sends

1 ...

2 <msgSend> ::= <expression> <message> (";" <message>) *

3 <message> ::=

4 \ ( <keyword> <expression> ) +

5 \ <binaryOp> <expression>

6 | <identifier>

In line 2 of Figure 16 we define the syntax of msgSends which consist of an expression (that plays the524

role of the receiver) followed by a message. Then optionally this receiver can be sent multiple messages525

seperated by commas (the cascade). Expressions here can either be primary expressions or other msgSends526

invoked recursively. On lines 3 to 6 we define the structure of our messages. These can consist of a list of527

one or more keywords followed by expressions (line 4, keyword-messages). Keyword messages appear528

first since they are the outer-most (i.e., smallest precedence) messages. Followed (on line 5) by binary529

messages that consist of a binary operator (like + , - , / etc.) and an expression as a message argument.530

Finally on line 6 we describe the highest priority unary messages, which simply consist of an identifier.531

Both keyword and binary message-rules are simply recursive, meaning that recognition of message-532

rules from within these alternatives, will only consider the next alternatives in the rule. The design logic533

here apart from being compact is completely equivalent to what we did before for the expression and534

dangling-else ambiguities. Moreover, by using MOGs the language designer does not need to statically535

reason about recursion, precedence and ambiguity, but can incrementally find the correct syntactical536

definition through exploration. Figure 17 shows us the parsed view of a completely unordered message537

definition, parsing the following Smalltalk snippet:538

1 at: index put: aValue

2 dict at: index asNumber put: aValue

Where line 1 consists of a method definition for the keyword message #at:put:, and line 2 delegates539

this #at:put: message to a variable named dict, with the unary message index asNumber as first540

argument and aValue as second. Figure 17 shows us that the unordered case has four different ways to541

parse the message-send in line 2 (for all different precedence combinations). By recursively ordering the542

message rule as we showed in Figure 16, we can arrive at the unambiguous parse of Figure 18.543

Let us now contrast the simplicity of the MOG definition in Figure 16 with two CFGs and one PEG544

Smalltalk grammars in active use. The first one is the CFG appearing in the ANSI standard of the language545

itself [37], seen here on Figure 19. The ANSI definition starts by defining message-sends (on line 2,546

through the ”basic expression” rule) as constructs starting from a primary value (the receiver) followed by547

messages and zero or more cascades. Notice here that both the receiver and the messages (plural) are548

defined in a way that aims to avoid recursion. Receivers for e.g., are not only primary values in the general549
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Figure 17. Parsed View: The MOG Smalltalk Grammar (1/2)

case (they can also be message-send themselves). But here the grammar is trying to define the left-most550

part of a series of expanded messages (lines 4 to 13). Lines 4 and 5 hard-code unary messages that follow551

each other and act as subsequent receivers for binary messages, themselves optionally followed by a552

single keyword message (in that order). Then on lines 8 to 13 unary, binary and keyword messages are553

defined as distinct entities (from each other) and from unary, binary and keyword arguments, again for the554

sole purpose of hard-coding precedence. Binary arguments can only consist of primaries with optionally555

zero or more unary msgs as arguments (line 10) and keyword arguments can only consist of primaries and556

optional unary or binary messages in exactly that order (line 11). This obfuscated expansion is indeed557

here mandatory, since CFGs have no easy way to define precedence in general, let alone precedence of558

complicated mutually recursive rules.559

But even when external directives are available, like in the case of the SmaCC framework [10] for560

CFGs (seen in Figure 20), this hard-coded precedence is unavoidable. The reason is that there are no561

anchoring terminals in the message definition (like arithmetic operators or the ”then”, ”else” keywords that562

we saw earlier) with respect to which the directives can define ordering. The result is again a one-by-one563

expansion of rules in order to define precedence, that severely obfuscates the grammar, seen in Figure 20.564

Again, each type of message-send, message and argument (unary, binary and keyword), has each own565

distinct rule (9 in total + 3 for cascades) in order to avoid recursion. Keyword message sends (lines 12566

to 14) hard-code their receivers (only primary, unary and binary receivers are allowed) and so do their567

arguments (line 17 to 19). Similary for binary message sends (lines 20 to 22) and arguments (24 to 25),568

which accept only their primary and unary counter-parts. Finally because of this decomposition, cascades569
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Figure 18. Parsed View: The MOG Smalltalk Grammar (2/2)

Figure 19: CFG Ansi/Smalltalk Msg-sends

1 ...

2 <basic expression> ::= <primary>

3 [<messages> <cascaded messages>]

4 <messages> ::= (<unary message>+ <binary message>*

5 [<keyword message>] )

6 | (<binary message>+ [<keyword message>] ) |

7 | <keyword message>

8 <unary message> ::= unarySelector

9 <binary message> ::= binarySelector <binary argument>

10 <binary argument> ::= <primary> <unary message>*

11 <keyword message> ::= (keyword <keyword argument> )+

12 <keyword argument> ::= <primary> <unary message>*

13 <binary message>*

14 <cascaded messages> ::= (';' <messages>)*

(lines 2 to 5) need to be defined through a seperate SimpleMessage rule (lines 9 to 11) that re-states the570

fact that keyword messages accept only keyword arguments (lines 15 to 16) or that binary messages571

receive only binary arguments (line 23).572

Unsuprisingly, PEG versions (given their strict ordering semantics) handle this case in a very similar573

way as their CFG counter-parts. Here is how Smalltalk messages are defined in the PEG-based PetitParser574

framework [36], seen in Figure 21. Starting at lines 2 to 7 cascades are described by defining them as575

keyword expressions followed by optional cascade messages. This is at first glance peculiar, since a576

cascade receiver can be any kind of message-send, yet in closer inspection this is yet another manual ex-577

pansion that avoids recursion. Keyword expressions themselves are defined as possible binary expressions578
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Figure 20: CFG (LR) Smalltalk Msg-sends

1 ...

2 Cascade: MessageSend CascadeList

3 | Primary;

4 CascadeList

5 | CascadeList ";" SimpleMessage;

6 MessageSend: KeywordMessageSend

7 | BinaryMessageSend

8 | UnaryMessageSend;

9 SimpleMessage: UnaryMessage

10 | BinaryMessage

11 | KeywordMessage;

12 KeywordMessageSend: BinaryMessageSend KeywordMessage

13 | UnaryMessageSend KeywordMessage

14 | Primary KeywordMessage;

15 KeywordMessage: keyword KeywordArgument

16 | KeywordMessage keyword KeywordArgument;

17 KeywordArgument: BinaryMessageSend

18 | UnaryMessageSend

19 | Primary;

20 BinaryMessageSend: BinaryMessageSend BinaryMessage

21 | UnaryMessageSend BinaryMessage

22 | Primary BinaryMessage;

23 BinaryMessage: binarySymbol BinaryArgument;

24 BinaryArgument: UnaryMessageSend

25 | Primary;

26 UnaryMessageSend: UnaryMessageSend UnaryMessage

27 | Primary UnaryMessage;

28 UnaryMessage: name

(in a top down fashion) followed by an optional keyword message (defined separately), hard-coding the579

precedence for the receiver in this case (lines 8 to 9). Keyword messages are then defined as keywords580

followed by binary expressions, in order to hard-code the precedence for their arguments (lines 10 to 11).581

Similarly binary expressions are potential unary expressions followed by optional binary messages (lines582

12 to 13) and binary messages are explicitely defined to receive only unary expressions (lines 14 to 15).583

Finally unary expressions are defined as possible primaries, followed by one or more unary messages584

(lines 16 to 17) as the final step of the hard-coded expansion.585

4.3 Extending Smalltalk586

To conclude this case study, we present in Figures 22 through 24 (see also Appendix A) a series of587

extensions for the Smalltalk grammar. The goal here is to show that the flexibility and expressiveness of588

MOGs is not limited only to language design, but can also prove useful for language evolution. During589

language evolution the main goal is to extend an existing grammar with entirely new language constructs,590

but it is preferable to do so in a comprehensible and non-intrusive way.591

Given the unfamiliar syntax that new Smalltalk users face in their first contact with the language,592

we consider here the following extensions that can give any Smalltalk method a more mainstream593

representation:594
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Figure 21: PEG Smalltalk Msg-sends

1 ...

2 cascadeExpression

3 ˆ keywordExpression , cascadeMessage star.

4 cascadeMessage

5 ˆ $; asParser smalltalkToken , message.

6 message

7 ˆ keywordMessage / binaryMessage / unaryMessage.

8 keywordExpression

9 ˆ binaryExpression , keywordMessage optional.

10 keywordMessage

11 ˆ (keywordToken , binaryExpression) plus.

12 binaryExpression

13 ˆ unaryExpression , binaryMessage star.

14 binaryMessage

15 ˆ (binaryToken , unaryExpression).

16 unaryExpression

17 ˆ primary , unaryMessage star.

18 unaryMessage

19 ˆ unaryToken.

Imperative declaration postcard(x): Allow keyword and unary declarations to be written in a595

more familiar imperative style. The above example would be expressed initially as a keyword596

method: postcard: x597

Method invocation a.intersection(b) Allow message sends to resemble familiar method invoca-598

tions using the dot operator. Here our example is the dot equivalent of the keyword message-send:599

a intersection: b600

Variable init var y := #[100] + self.bSize() + super.bSize().Declare and initial-601

ize variables in a single statement, using the familiar var keyword. Pure Smalltalk forces seperation602

of declaration (at the top of methods and blocks) and their initialization as follows:603

|y| ... y := #[100] + self bSize + super bSize.604

Bracket indexing t := t[1::t.size()-1]. d[t] := item. Allow familiar bracket index-605

ing both for interval t[from::to] and single value read/write access d[index]:= value.606

In the initial syntax these are plain messages resulting in the quite verbose statements:607

t := t copyFrom: 1 to: t size -1. d at: t put: item.608

Functor invocation step(x) Introduce a () operator for functor invocation, treating every object as609

callable. In the example above step can be a lambda but also any other object that responds to the610

message #value:. In plain Smalltalk we would write: step value: x611

Brace blocks { ... } Brace blocks are lambdas masqueraded as code-blocks. Depending on context612

they can receive one or more arguments from their surroundings (see function block and for-613

statements below). They are normally defined in the initial syntax as: [:a :b | |temp| ... ].614

Braces can be optional, in which case the resulting lambda will consist of a single statement (see615

for e.g., the while construct below).616

Function blocks f(i) { y := y + i } Function blocks are a more familiar way to define lamb-617

das, using the f (x) notation, binding the function arguments to the brace block that follows. The618

example above would be normally expressed as: [:i | y := y + i ]619
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For statements for item in inter do: { ... } For statements are parametric collection620

messages, that receive (a) a list of iteration variables (this would be the variable item in our621

example above) (b) a collection to iterate over (variable inter above) (c) a collection operation622

(like the #do: message) and (d) a brace-block that receives the initial variable list as input argu-623

ments. In the example above, we are iterating over the collection inter, passing item as a lambda624

argument to the brace-block for each iteration. In the initial form the loop would be defined as625

inter do: [ :item | ... ]626

While statements while y.first() + x < 255. step(x).A while statement that receives627

an expression as a condition and executes a brace-block (can be a single statement like in the ex-628

ample above) while the condition is true. In plain Smalltalk the above would be written as:629

[y first + x < 255] whileTrue: [step value: x].630

If statements if true & false.not() & nil.isNil() { ... } Similarly if statements631

consist of a condition followed by a brace-block. In the initial grammar our example would be632

written as: true & false not & nil isNil ifTrue: [ ... ].633

Return statements return x < y.first() A simple return statement, which in plain Smalltalk634

would be expressed as: ˆ x < y first635

Figure 22 shows us the key MOG rules of the base Smalltalk grammar that have been extended to636

accommodate our new constructs. Due to the recursive nature of the MOG semantics, we were able to637

keep the extension points brief and intuitive. Method and variable declarations have been extended in638

lines 4 and 7 with a simple unordered choice to accommodate the new imperative definitions. The brace639

block is defined in lines 9 to 12, using the scoped recursive choice (since it introduces a new lexical640

scope). Lines 11 and 12 define the brace-less block (used in one-liner if/while/for statements). Statements641

(lines 14 to 18), which previously consisted only of top level expressions (line 18), now include top-level642

if, while, return and for statements. The rule is ordered to avoid ambiguity between return statements643

and unary messages of the form: return var. Since the brace-block associated with statements is644

recursively scoped, they can all be mutually nested. The dot method invocation, functor invocation and645

indexing (lines 24 to 27) are all defined as messages (with scoped recursion used for the invocation646

parentheses and indexing brackets). Finally function blocks (line 32) are defined as primary values (i.e.,647

equivalent to block closures) with scoped recursion.648

The results can be seen in Figures 23 and 24 (of Appendix A). In the upper part of Figure 23 we649

can see an extended version of the famous Smalltalk postcard 3 (i.e., a method showcasing all syntactic650

structures of the language [9]). In the lower part of the same figure, we see an alternative mixed-postcard651

using both the original and the extended syntactic structures that we introduced. Finally in Figure 24, we652

take an even more radical approach, translating the entire Smalltalk postcard to the new constructs (seen653

in the upper part of Figure 24), with an annotated version of the same method at the bottom. Especially654

in this latter case we can see how the extension points that MOGs allowed us to introduce, were able to655

cover an entire alternative syntax for the language.656

5 CONCLUSION657

Starting with the realization that neither CFGs nor PEGs are sufficient for a complete description of658

common cases arising in language design, we propose Multi-Ordered Grammars (MOGs) as an alternative.659

In order to properly handle ambiguity, recursion, precedence or associativity, current solutions either660

introduce implementation specific directives or ask users to refactor their grammars to fit the needs of661

the framework/algorithm/formalism combo. To remedy this situation MOGs (a) allow both deterministic662

and non-deterministic choices to co-exist, and (b) define a form of recursive and scoped ordering. The663

formalism is accompanied by a new parsing algorithm (Gray), whose execution semantics we have664

presented in detail.665

Gray first extends chart parsing (normally used for Natural Language Processing) with the empty666

derivation (ε) to support common EBNF operators (+,*,?,()). Two additional chart operations (backtrack667

and fork) are then defined to handle ordered backtracking (||) and parsing look-aheads (&, !). Finally,668

Gray overrides the standard predict and complete procedures of chart-parsing, to accommodate for scoped669

3http://wiki.c2.com/?SmalltalkSyntaxInaPostcard
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Figure 22: Extending Smalltalk using MOGs

1 <methodDeclaration> ::= <identifier>

2 | <binaryOp> <variable>

3 | (<keyword> <variable>) +

4 | <impMethodDeclaration>

5 ...

6 <temporariesDeclaration> ::= "|" <variable> + "|"

7 | <impVarDeclaration> +

8 ...

9 <braceBlock> ::= || "{" <temporariesDeclaration> ?

10 <statements> "}"

11 || <dots> ? <statement>

12 || <return>

13 ...

14 <statement> ::= <classicIf>

15 / <classicWhile>

16 | <classicReturn>

17 | <classicFor>

18 | <expression>

19 ...

20 <message> ::=

21 \ ( <keyword> <expression> ) +

22 \ <binaryOp> <expression>

23 | <identifier>

24 | <impMethodInvocation>

25 | <functorInvocation>

26 | <impIndexingAssignment>

27 | <impIndexing>

28 ...

29 <primaryValue> ::= <literal>

30 || <dynArray>

31 || <block>

32 || <functionBlock>

33 ...

recursive ordering (/ , \) and the mixing of order with unordered choices. To optimize scanning and670

memoization, Gray precomputes all first, follow and predict sets to pre-filter unwanted alternatives.671

We assessed the expressiveness of Gray and MOGs through two case-studies, where we compared our672

results to equivalent CFG and PEG solutions. The first case-study analyzed two idealized examples from673

literature (an expression grammar and a simple procedural language). The second examined a real-world674

case (the entire Smalltalk grammar and eleven new Smalltalk extensions) probing the complexities of675

practical needs during language evolution. We showed that in comparison, MOGs were able to reduce676

complexity and more naturally express language constructs, without resorting to implementation specific677

directives.678

We conclude that combining deterministic and non-deterministic choices in a single grammar spec-679

ification is not only possible but also beneficial. Moreover, augmented by operators for recursive and680

scoped ordering the resulting Multi-ordered grammars present a viable alternative to both CFGs and PEGs.681
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Further research is indeed warranted to bring MOGs into maturity, in tandem with a detailed complexity682

analysis of the Gray algorithm.683
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A SMALLTALK POSTCARD EXAMPLES AND EXTENSIONS768

Figure 23. Parsed View: Original (top) and Mixed Smalltalk Example (bottom) (1/2)
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Figure 24. Parsed View: Extended Smalltalk Example (top) and Annotations (bottom) (2/2)
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