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Abstract

A realistic hope has been that it may become possible to understand the steps
of evolutionary changes from ontogeny, which may assist in understanding the
mechanism of nervous system functions. However, explaining how first-person
internal sensations are formed in the nervous system makes this approach very
difficult. In this context, if it becomes possible to derive an operational princi-
ple by using constraints from observations at different levels, then it will enable
examining whether it is possible to arrive at its specific circuit features from
single neuronal cells using simple steps of introducing variations and selection.
In this context, semblance hypothesis is examined. Inter-neuronal inter-spine in-
teraction leading to the formation of inter-postsynaptic functional LINK (IPL) is
necessary for generating units of internal sensations and their computation. The
results show its suitability as an evolved mechanism. Significant neuronal and
spine loss during ontogeny indicate that following these events, IPLs resulted
from the selection of a suitable variation. This can only be achieved through
transient inter-neuronal inter-spine fusion, which leads to inducible molecular
changes for keeping the spines separate by arresting fusion at the stage of hemi-
fusion. The importance of sustaining this one-time induced IPL mechanism for
retaining cognitive functions throughout life is discussed.

1 Introduction

“Does understanding how or why a brain evolved helps to decipher how that same brain works?”
(Striedter 2007). This is a thought-provoking question and is associated with a difficult puzzle that
does not provide any clue where to begin to solve it. This difficulty is due to the fact that we haven’t
understood how the brain generates first-person internal sensations within it with details that will
enable us to undertake the gold standard of replication in an engineered system. In this context,
to answer the above question it is necessary to build a hypothesis of brain functions and examine
whether it is capable of evolving to reach its present stage. At one stage of evolution, motor
capabilities were the prominent survival mechanism of animals in a predator-prey relationships.
Initially, operated through reflexive motor actions, the system further evolved to acquire the feature
of first-person internal sensations of memories of past events and associations. Eventually, it led
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to the generation of thought process for informed decision making. This transition from reflexive
motor action to the internal sensation of memories, and to hypothesis building is expected to have
evolved through certain key milestones, knowledge of which is essential to understand the brain
development, function and its disorders.

Since generation of first-person inner sensations is the key function of this system that enables
the animal to take decisions based on previous experiences, the changes in the system is expected
to fine-tune and maximize the rewards by generating the best possible internal sensations of both
memories and predictions. In this regard, while considering the fact that selection acts upon neural
output for behavior (Arbas et al. 1991), it is equally important to consider the generation of
suitable internal sensations that can provide informed decision making. In fact, internal sensations
have dominated over the ability for motor action for survival. In the above contexts, it is expected
that once we understand the mechanism of operation of the system, it will reveal the stages of
evolution of neuronal processes that gradually started generating internal sensations within the
system.

Darwin’s theory of natural selection (Darwin 1859) has two main features. 1) Offspring are
produced with at least some heritable variations. 2) More offspring are produced than their
environment can support. These features make some fitter variations in some members of the
offspring that enable them to survive better than others. The heritable traits of fitter variations will
eventually get spread in the population. In this process, the nerve cells are also expected to undergo
a large number of variations. Some examples of changes that are observed at the synapses, dendrites
and even neurons themselves were reviewed (Arbas et al. 1991). The difficulties in understanding
the evolution of the nervous system, using the interpretations of structure and function were
discussed previously (Niven and Chittka 2016). In the context of the difficulty in accepting cortical
structural patterns, both as the units of development and evolution (Finlay and Brodsky 2007), the
major question is “Did natural evolution led to the generation of any type of unitary structure-
function mechanism?” “If so, what was the natural driving force behind it?” “How are these
unitary mechanisms associated with selecting variations to optimize the computations that generate
internal sensations?”

Even though there are some evidence suggesting rapid evolution through minor changes in ex-
isting neural circuitry (Chittka et al. 2012), further progress is difficult without knowing how the
nervous system functions. Ontogeny is the development of a single individual, or a system within
the individual, from the fertilized egg to maturation and death (Smith 1960). Even though the
sequence of events during the ontogeny within a species was considered to represent the sequence
of changes that its ancestors traversed during evolution by Ernst Haeckel (Russell 1916), Haeckel
himself identified two types of deviations from this - change in position (heterotopy) and change
in order of succession of changes (heterochrony). However, it is reasonable to expect that using
ontogeny a rough sketch of probable events during evolution can be made. It was found that in hu-
mans, compared to other primates, ontogeny of cognitive ability recapitulates cognitive phylogeny
with two changes — changes in velocity and additional terminal changes (Parker and McKinney
1999). Since evolution cannot make the nervous system to unwire to “start over,” the solution that
it has reached are constrained by its evolutionary history (Niven and Chittka 2016). Therefore,
once we understand the mechanism of nervous system functions, a forward moving sequence of
events are expected to be reached.

A reasonable expectation is that hypothesis development for understanding brain evolution
will require that the hypothesis be explicit about the nature of networks and the nature of the
computations embodied in it (Finlay and Brodsky 2007). It is viewed that evolution can cause
phase transitions to bring new phases with new properties with their own internal grammars that
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describe their computational complexity (Solé 2016). Our task is to examine how the nervous
system generated its cognitive abilities that provides an exemplary advantage for survival as an
autonomous system. The difficulty is that inner sensations of higher brain functions are first-person
properties to which only the owner of the nervous system has access. One of the methods to solve
the system is to derive a basic operational principle explaining how first-person internal sensations
are generated by using constraints from all the third-person observations from different levels. The
strength of the solution depends on whether it can triangulate findings from different levels of both
normal and “loss of function” states of the system. It is also viewed necessary to examine top-down
effects such as the evolutionary and developmental aspects of the system function, since the lower
level elements are adapted to perform their higher level functions (Ellis 2018). One method of
verification is to examine whether the circuit features that incorporate the operational mechanism
have the feasibility for getting evolved through the introduction of variations and selection of best
fitting ones several times, to arrive at the present day nervous systems.

1.1 Unique feature of first-person internal sensations

The circuitry that generates internal sensations is expected to have evolved from certain accidental
coincidences that were evolutionarily well-established to get efficiently reproduced during different
stages of development. Since ontogeny provides information regarding the events taken place as
the nervous systems were evolving, the true mechanism of operation of the system is expected to
provide substantial evidence to match with the stages of ontogeny. Present day nervous systems
have been surviving in a predator-pray environment. These animals have multiple sensory systems
and they use different sensory stimuli - light, sound, touch, taste, smell, vibration, etc. When
an item or an animal (predator or prey) is close to the nervous system, different sensory stimuli
from that item or animal arrives the nervous system almost simultaneously and generate changes
at locations wherever they converge to associate them. Later, when the item is away from the
nervous system, the fastest or first arrived sensory stimulus induces internal sensations of late
arriving or non-arriving sensory stimuli from that item. Thus, the key feature that differentiates
the nervous system from other systems is its ability to generate first-person internal sensation of
sensory features (memory) from an item, when one of the associated stimuli from that item is
presented.

An operational mechanism for memory in biological systems is expected to generate hallucina-
tions (inner sensation of a stimulus in the absence of that stimulus, at the time of memory retrieval)
as the basic property (Minsky 1980). It is necessary to examine whether a derived mechanism that
has features to generate hallucinations (internal sensations) can be evolved through the simple
steps of variations and selection of the fittest ones. Initially derived by logical arguments, and
later verified by using constraints available from a large number of findings from several levels,
semblance hypothesis has provided evidence for a probable mechanism of operation of the system
(Vadakkan 2007, 2013, 2016a, 2019). A summary of the mechanism is given in (Figure 1. Present
work specifically aims to examine its evolutionary suitability. Formation of inter-postsynaptic
functional LINKs (IPLs) during associative learning of two stimuli from the environment and re-
activation of IPLs generating first-person internal sensation of memory of the second item upon
the arrival of stimuli from the first item are the key features of its operational mechanism. Inten-
tionality to self-feed, procreate and protect from harmful stimuli among lower forms of animals
indicate that they generate some form of internal sensations. It is possible that several species
of animals branched out after acquiring this property. Since there were only limited options for
neurons to self-organize, it is expected that the event of evolution involves simple steps.
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Figure 1: Learning induced change that can generate units of internal sensation during memory
retrieval. When associatively learned stimuli 1 and 2 arrive through presynaptic terminals 1 (Pre
1) and 2 (Pre 2) respectively where postsynaptic terminals Post 1 and Post 2 are abutted, inter-
postsynaptic functional LINK (IPL) is generated. This is facilitated by membrane reorganization
(MR) taking place at the lateral spine margins of the spine heads in milliseconds by exocytosis of
vesicles (V) containing AMPA receptor subunits at these locations. For memory retrieval, when
stimulus 1 arrives at postsynaptic terminal 1 (Post 1), it reactivates the IPL and induces semblance
(hallucination) at the postsynaptic terminal 2 (Post 2) that was previously activated by stimulus
2. The sensory qualia of units of internal sensations induced at the inter-LINKed postsynaptic
terminal Post 2 are determined by identifying a minimum set of stimuli (called semblion) needed
to stimulate specific subsets srl, sr2 etc. of sensory receptor set SR whose activation is able to
activate Post 2. In order to identify the sensory qualia of semblions, a retrograde extrapolation
from the inter-LINKed Post 2 towards all the sensory receptors from which it used to receive inputs
in the past is carried out. The semblance is a virtual first-person internal sensation of the sensory
properties of the associatively learned stimulus 2 and is shown in an inverted dotted triangle (Note
that no neurotransmission is taking place in the circuitry within this triangle at the time of memory
retrieval). When the best possible computational product of all the semblions induced at several
inter-LINKed spines in the nervous system that match with the sensory features of stimulus 2
is generated, it forms memory of stimulus 2. This computation is a system property of systems
where the perpendicular direction of synaptic transmission (ver: vertical) and propagation of
potentials along the IPL (hor: horizontal) contribute to a specific range of frequency of oscillating
extracellular potentials (shown as a wave form). ECM: Extracellular matrix; s: synaptic vesicle
(Figure modified from Vadakkan 2013).
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1.2 Role of non-adaptive determinants in guiding evolution

It is viewed that the existence of a specific mechanism of operation of the nervous system can be
understood only by examining how non-adaptive determinants have guided its evolution (Dumont
and Robertson 1986). Significant number of neurons were found to die at different locations
at different stages of development (Glucksmann 1951; Blaschke et al. 1996; Southwell et al.
2012; Lance-Jones 1982). The molecular mechanisms underlying apoptosis were shown to be
evolutionarily conserved (Metzstein et al. 1998). It was highly stressed that when there is cell
death during development, it is necessary to attempt to uncover the benefits to be gained by
such loss (Oppenheim 1991). This argument was based on the view that neuronal death appears
to have evolved to mediate a wide variety of adaptive functions during the development of the
nervous system. This shows that neuronal death has paved the way for the eventual introduction
of changes that are beneficial to the organism. In this context, the exact role of neuronal death
in establishing neuronal connectivity for its functions is considered as one of major importance
(Dekkers et al. 2013).

Dye injection experiments have shown neuronal coupling at early stages of the mitotic phase at
the ventricular zone (Bittman et al. 1997). This was followed by its reversal. Post-mitotic cells then
migrate from proliferative ventricular zone to become layers in the cortical plate as a sheet (Rakic
1995). Dye coupling between neuronal cells were also found during later stages of development
(Gutnick and Price 1981; Yuste et al. 1995). These were followed by uncoupling between neurons.
These inter-cellular coupling followed by uncoupling during different stages of ontogeny indicate
that transient forms of inter-neuronal fusion had occurred during different stages of evolution. The
resulting mixing of the cytoplasmic contents between cells is a definite non-adaptive event since
studies have shown that, at least in mature neurons, adjacent neurons of the same type within a
neuronal order are different as evidenced by their different mRNA expression profiles (Kamme et
al. 2003; Cembrowski et al. 2016). What is the functional role of transient inter-cellular fusion?
The balance of evidence in the presence of significant neuronal death and dye mixing between
adjacent neurons during development favours the following. a) Transient inter-cellular fusion that
triggers mechanisms to prevent such fusion events is a probable variation that was selected during
evolution. b) Transient inter-cellular fusion, allowing cytoplasmic content mixing is necessary to
trigger certain cellular mechanisms to prevent inter-cellular fusion, and c) the selected variation
that cause transient inter-cellular fusion leads to expression of genes to prevent IPL mechanisms
to undergo IPL fusion.

1.3 Theory of continuity of mind

The importance of understanding the circuit mechanism that generates cognitive abilities is re-
garded as important in understanding hereditary variations in cognition (Chittka et al. 2012).
Examination shows that cognitive domains of human and non-human primates are remarkably
similar except that humans have the ability for abstract theoretical concepts. “What made hu-
mans so unique?” According to Subiaul et al. (Subiaul et al. 2007) the best possible answer lies
in the theory of continuity of mind by Charles Darwin (Darwin 1871), which has two components.
1) the mind is subjected to selection and change over time, and 2) having directly descended
from other living organisms, human and non-human animal minds have only quantitative but not
qualitative differences. This has led to the question, “Can quantitative differences in the sensory
systems result in qualitative differences?” (Subiaul et al. 2007). How does an increase in brain size
subserve additional functions? One hypothesis is that as brains get bigger, more specific aspects of
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sensory stimuli may provide the correlational structure necessary to allow the segregation of new,
functionally specific cortical areas (Finlay and Brodsky 2007). It is estimated that the mammalian
ancestor originated nearly 250 million years ago and since then the neocortex has undergone expan-
sion primarily in surface area rather than the thickness (Rakic and Kornack 2007). In agreement
with this, cognitive skills resulting from general intelligence were shown to have strong empirical
correlations with brain size and executive functions (Burkart et al. 2017). Can computation of
internal sensory units from a large cortical area improve the cognitive abilities? It is reasonable to
expect that the true operational mechanism can provide answers.

2 Major Stages of Development

Following are the most probable steps starting from the arrival of simple neuronal cells to the
final circuitry that can provide the expected operational mechanism. These stages are numbered
arbitrarily. Following this, key ontological stages that match with some of the key milestones in
the evolution are examined.

2.1 Single cell structural adaptations

Unicellular organisms developed robust mechanisms for membrane changes both during endocy-
tosis to obtain nutrients from the surroundings and during exocytosis to remove waste products
from inside the cell. Neuronal cells with the unique property of excitability started emerging.
Excitability is a feature whereby a stimulus can depolarize (change polarity of ionic distribution
inside and outside the membranes) a location of the neuronal process, which can propagate to other
neuronal processes along the membranes. As the neurons moved away from each other, specialized
neuronal processes were developed as input and output terminals. Expansion of cell membranes
of the neuronal processes takes place by the addition of new membrane segments through exocy-
tosis of plasmalemmal precursor vesicles (Pfenninger 2009). Both input and output terminals of
neurons further branches out. Input terminals formed a tree-like structure called dendritic tree.
Further specialization of the dendritic branch tips is called dendritic spines (also called postsynap-
tic terminals after they form synapses). The output processes at the end of axonal terminals are
presynaptic terminals.

2.2 Multi-cellular interactions

When excitable neuronal cells started interacting with each other, their inter-cellular communi-
cation was to generate a provision for transmitting depolarization to the neighbouring neurons.
As the neurons started moving away from each other, inter-neuronal interaction further evolved
to form chemical synapses with unidirectional neurotransmission as a method of communication
between them (Fig.2A). In neurons that are close to each other, passive conduction of depolar-
ization along the cell membranes to transmit information from one end of the cell to the next cell
is found suitable (Dowling 2009). As the neuronal cells moved away from each other, it was nec-
essary to transmit information to long distances. It was necessary to summate the depolarisations
arriving at the axon hillock region of a neuron to form a large spike of depolarization called an
action potential, which was able to propagate to long distances. An alternate explanation is also
possible. Since branching of input connections generated arrival of a large number of inputs at
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Figure 2: Neuronal cells and their processes. A) Two neurons (marked N) that are connected
through a synapse between the output region of a neuron and input region of another neuron.
Direction of neurotransmission is shown by a black arrow. B) Six neurons formed from progenitor
cells migrated to form two neuronal layers of two neurons each. The area in between the neuronal
layers is dense in synapses. This is a common finding in cortex. N: Neuronal cell body. Triangular
shaped tip: presynaptic terminal: Rounded tip: postsynaptic terminal (dendritic spine).

the same time, instead of responding to every input, neurons might have developed a threshold
for firing an action potential that can be propagated to all its output terminals.

2.3 Electrically isolating the spines from each other

The first order of neurons in a chain of synaptically-connected neurons acquired sensory receptors
that depolarize the membrane when they receive sensory inputs from the environment. When
neurons that were formed from progenitor cells migrated, they formed several neuronal orders
(Fig.2B). This also allowed the regions in between those neuronal orders to get crowded with
synapses. How was the synaptically-connected neurons separated from each other? The outer
layers of lipid membranes of the spines of a neuron are electrically separated due to the presence
of electrostatic forces between them (Disalvo et al. 2008; Song et al. 2014; Dreier et al. 2018).
It is necessary to overcome the counteracting electrostatic forces for enabling interaction between
the outer lipid membrane layers (Jahn et al. 2003). This is Step 1 fusion prevention. Bringing
lipid membranes together is considered as one of the most energy-demanding processes (Cohen
and Melikyan 2004; Martens and McMahon 2008).

2.4 Intra-neuronal inter-spine interaction

Neurons formed densely located spines on their dendritic arbors (Figs.3A, B). When two abutted
spines of the same neuron received associated sensory stimuli from the environment, an IPL was
formed between them. This interaction was limited to removal of repulsive forces between the
spines. This IPL was a rapidly reversible one. During the short period of its existence, when
one of the associated stimuli arrived at one of the inter-LINKed spines, an incidental spread
of depolarization across the IPL resulted in depolarization of the second inter-LINKed spine.
Activation of an inter-LINKed spine from a lateral direction in the absence of its depolarization by
its own presynaptic terminal sparked a hallucination that it is receiving sensory input through its
presynaptic terminal (for details, see Vadakkan 2013). Semblance is an element of hallucination
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expected to form within biological systems for generating internals sensation of memory (Minsky
1980). This short-lasting hallucination is responsible for the qualia of the internal sensation and
it is very primitive. Note that this hallucination is occurring from a first-person perspective and
only the system senses it as an internal sensation. This crude form of hallucination that lasted
only for a very short time is Type I Semblance.

Figure 3: A) Highly dense dendritic spines (inputs) on a neuron at the early stages of development
of single neurons. As the number of inputs increased, to prevent neuronal firing for every input
arriving, selection of variations among neurons brought neurons with threshold for firing. Neuronal
firing was the major functional property within the system that allowed propagation of activity
to higher neuronal orders that allowed basic motor functions. Note that many of the spines are
abutted to each other that can allows inter-spine fusion. B) A neuron shown with only two dendritic
branches with several closely located spines on it. Note that these spines are almost abutted to
each other.

Type 1 semblance can be considered as the initial stage that further developed to form various
internal sensations. Semblance (hallucination) is generated due to unique circumstances that
are prevailing at the location of inter-spine interaction. Its occurrence necessitates one essential
feature — to trick system to momentarily hallucinate, something else should be dominating all the
time. What is dominating is the continuous activation of the spine head by the quantal release
of neurotransmitter molecules from the presynaptic terminal and intermittent depolarization of
the postsynaptic terminal when a volley of neurotransmitter release occurs when action potentials
arrive at its presynaptic terminal. Transient IPLs between the spines of the same neuron provide
only transient generation of internal sensations and outputs. Further refinement of the internal
sensations generated in the system is explained from sections 2.9 to 2.12.

2.5 Suitability of Earth for the evolution of the nervous systems

From the above section, it is clear that for tricking the system to hallucinate, the depolarization of
the spine head by neurotransmitter molecules arriving from presynaptic terminal should dominate.
How can the system make sure the existence of such a dominating state? For this, it should
also be possible to achieve one or more of the following. a) Minimize all the lateral activations
through the IPLs. At night, in the absence of light, number of cue stimuli arriving to induce
internal sensations will be very minimal. In this context, night time without light provided a
suitable period that prevented lateral activation by light stimuli. In effect, this is equivalent to
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shutting down the system. b) For minimizing lateral activation, it is necessary to minimize all
the incoming sensory stimuli by shutting down the system. c¢) Block the integration of units of
internal sensations, if such a mechanism exists. These factors allowed depolarization of spine heads
by neurotransmitter molecules from the presynaptic terminals to dominate. In other words, sleep
became a substantive part of the system operation that periodically re-instates the dominant state
of postsynaptic terminal depolarization resulting from the arrival of neurotransmitter molecules
from its presynaptic terminal (Vadakkan 2016b). It is in this dominant state of the system that an
incidental lateral activation induces hallucination (semblance). In other words, the system gained
the property to induce units of internal sensations of the associated second stimulus at the arrival
of the first or fastest arrived stimulus (cue stimulus). Transient IPLs between the spines of the
same neuron provide only transient generation of internal sensations and outputs.

2.6 Stabilization of inter-cellular interactions

Cells have already developed phagocytosis, which is a cell process to internalize and destroy other
deleterious cells through the focal delivery of endomembranes at the locations of vesicle exocy-
tosis (Lee et al. 2007; Vashi et al. 2017). Significant membrane reorganization is expected to
occur at the locations of exocytosis. Artificial stimulation of synapses during long-term poten-
tiation (LTP) stimulation initiates exocytosis of vesicles containing different types of AMPAR
(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) subunits at the spine head re-
gion of postsynaptic terminals (Shi et al. 1999; Passafaro et al. 2001; Park et al. 2006) (Fig.4A).
Since learning and LTP occlude with each other in either direction (Moser et al.1998; Whitlock
et al. 2006), their cellular level mechanism is expected to have common shared feature. The IPL
mechanism provides matching explanations how learning changes occurring at physiological time-
scales are scaled-up during LTP induction (Vadakkan 2019). Since the contents of the vesicles are
receptor subunits that need to be assembled and trafficked towards the postsynaptic membrane
surface of the synaptic cleft, the most probable location of exocytosis of these vesicles is expected
to occur on the lateral margins of the spine heads close to the synapse. Experimental findings also
support this (Makino and Malinow 2009). This also matches with the finding that AMPAR GluR1
subunits are concentrated on the postsynaptic membranes within 25nm from the outer synaptic
margin (Jacob and Weinberg 2015).

When activity from two sensory inputs arrive at two abutted spine heads, it leads to exocytosis of
AMPA subunit vesicles and add more membrane segments at the abutted locations that results in
membrane reorganization at the lateral spine head regions (Fig.4B). SNARE proteins are known
to mediate fusion of vesicles containing AMPAR subunits with the spine membrane (Lu et al. 2001;
Kennedy et al. 2010). It is also known that SNARE protein pull membranes together very tightly
(Hernandez et al. 2012). These factors significantly overcome both the electrostatic forces that
repel the membranes and hydration exclusion between the spines. This leads to the formation of
electrical continuity between the spines that will allow propagation of depolarization across them
in either direction.

2.7 Inter-neuronal inter-spine interaction

IPLs between the spines of the same neuron are transient in their interaction. Moreover, these IPLs
will reduce the surface area of inputs, which will defeat the very purpose of their structural feature.
Stabilizing such IPLs will not provide much functional advantage since the type I semblance is
very primitive in nature. Furthermore, since inter-LINKed spines belong to the same neuron, it
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Figure 4: Inter-spine interaction that led to their fusion, which was followed by generation of
variation that prevents fusion by forming hemifusion. A) Cross-section through two spine heads
marked p and q each having one intracellular vesicle inside them close to the locations where these
cells are abutted to each other. B) The fusion of the vesicles with membranes of the lateral aspects
of the spine heads shown in Figure A) leads to mild enlargement of the total surface area of these
spines. Spines surrounded by ECM will not be able to able to expand uniformly; instead, it often
increases the curvature of the local membranes at the locations of exocytosis (not shown). C)
The spine heads p and q undergoes fusion. Dendritic spines of two different neurons act like two
independent cells. When inter-neuronal inter-spine fusion remains, mixing of cytoplasmic contents
will cause spine loss and eventual neuronal death. From ontogeny, it is deduced that transient
fusion at one stage is necessary to trigger mechanisms to restrict future fusion events of their
spines with spines of other neurons only up to the stage of hemifusion. D) The spine heads p and

q undergo inter-spine hemifusion at the location where intracellular vesicles are fused with the cell
membranes (conceptualized from (Wassarman and Litscher, 2008).

will provide only a single output. In contrast, interaction between spines that belong to different
neurons, is expected to provide an advanced Type II Semblance. This is because, large number
of neurons within a given order of neurons will start interacting laterally, which can start building
a binding property within the system. Furthermore, since the outputs from the interacting spines
belong to different neurons, it will provide the benefits of operating as a conditioning paradigm.
Since the inter-spine interaction is between two different neurons, the nature of such interactions
will be determined by the differences in the composition of lipid membranes of these different
neurons.

2.8 Inter-neuronal inter-spine fusion and neuronal death

Cells that are undergoing exocytosis have the tendency to undergo inter-cellular fusion. For ex-
ample, acrosome reaction in the sperm that occur prior to the intercellular event of sperm-egg
fusion (Wassarman and Litscher 2008) is a common finding. It shows that when the locations
of membrane reorganization at the sites of exocytosis in two cells get abutted to each other, it
predisposes those cells to get fuse to each other. In this context, even though the interaction
between spines that belong to different neurons generated improved semblance, it also led to an
adverse sequelae to advance to inter-spine fusion. In the case of synaptically-connected neurons,
regions of AMPA receptor subunit vesicle exocytosis at the spine head regions are locations that
are predisposed to fusion (Fig.4C). A fusion between spines that belong to different neurons will
be deleterious to both the neuronal cells since mRNA profiles of even adjacent neurons of the same
type within a neuronal order are different (Kamme et al. 2003; Cembrowski et al. 2016). This
can lead to the development of homeostatic mechanisms for survival, such as loss of spines (Zuo
et al. 2005; Tjia et al. 2017) or cell death (Glucksmann 1951; Blaschke et al.1996; Southwell et
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al. 2012; Lance-Jones 1982) by activating certain molecular cascades (apoptosis) of one of the
cells that undergoes fusion. This major event during evolution is expected to reflect as a stage
of ontogeny. A significant amount of neuronal death that occur at different stages of neuronal
development (section 1.2) supports this.

2.9 Variations that prevented inter-neuronal inter-spine fusion

Loss of spines and eventual damage to the neurons led to selection of variations that acquired
features to prevent inter-spine fusion. This is Step 2 fusion prevention. However, inter-spine
interaction has a major beneficial feature that sparks an internal sense of previously associated
sensory stimulus. In order to utilize the beneficial aspect of semblance formation, it is advantageous
to a variation that gave the benefits of IPL formation, but at the same time prevents inter-spine
fusion. This led to select a variant with a robust mechanism to arrest progression of IPL formation
before the stage of fusion. Since hemifusion is a stable intermediate stage of fusion (Wong et
al. 2007), it is an optimal stage at which variations in molecules can be brought in place to
arrest fusion (Fig.4D). However, mechanisms to stabilize the IPLs somewhere between hydration
exclusion and the stage of complete hemifusion are possible. All these stages are totally reversible.
If the system continuously receives same associative inputs, then homeostatic mechanisms are
able to stabilize the IPLs. Since the physical properties of a very large number of items in the
environment have shared properties, repetition of activation of a large number of pairs of sensory
stimuli was inevitable. This led to stabilization of several IPLs for a long period of time.

Since the default state is to prevent any type of inter-spine interaction (by steps I and II
of fusion prevention), it is reasonable that resistance has developed against any type of inter-
spine interactions. It is possible to find mechanisms towards achieving this goal. First, IPLs are
restricted to smallest possible area of the membrane, which protects the spines from undergoing
fusion; but at the same time enabled propagation of depolarization to induce internal sensations.
The smallest area of IPL will also be advantageous to concentrate the ionic channels for better
propagation of depolarization across it. Moreover, it can reverse back quickly once mechanisms
to stabilize the IPLs stop (i.e. when the arrival of associative stimuli from environment stops).
Secondly, molecules and mechanisms that can cause AMPA receptor endocytosis are expected to
have selected at the postsynaptic membranes (Beattie et al. 2000; Awasthi et al. 2018). These
features of IPL can be viewed as part of a favorable variation that was selected.

In this context, one may ask, “Are there any molecular evidence to suggest that fusion would
have occurred between the spines at one stage and it was restricted to hemifusion later on?”
Examination of postsynaptic terminal shows the presence of molecules with variations of func-
tion that are involved in synaptic vesicle fusion at the presynaptic terminal. SNARE protein is
an example. SNARE proteins are known to facilitate very fast synaptic vesicle fusion with the
presynaptic terminal for releasing neurotransmitter molecules within them to the synaptic cleft.
Specific SNARE-operated molecular machinery capable of arresting the mechanism at the stage of
hemifusion is present in the postsynaptic terminal (Giraudo et al. 2005; Liu et al. 2008). Hemi-
fusion intermediates are characteristic of SNARE proteins, including that of neuronal SNARESs
(Hernandez et al. 2012; Lu et al. 2005). Another protein synaptotagmin takes part in synaptic
vesicle fusion at the presynaptic terminal. One variant, synaptotagmin 4, which is ubiquitously
present at the postsynaptic compartment (Adolfsen et al. 2004) has unique features to regu-
late Ca®*(calcium)-dependent exocytosis (Mori and Fukuda 2011). Additional proteins are also
involved in the exocytosis at the spines (Kennedy and Ehlers 2011). These specialized proteins
provide checkpoint mechanisms to prevent any inter-spine fusion by limiting inter-spine interaction
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to hemifusion (Fig.4D).

2.10 Variations that refined internal sensations

Initially, semblance was in a crude form of internal sensation of the previously associated items. A
major variation whereby new types of neurons that had average inter-spine distance more than the
spine diameter as observed in pyramidal neurons (Konur et al. 2003) started appearing (Fig.5).
This led to the formation of IPLs between spines that belong to different neurons. This led to
two distinct features for the operation of the system. They are features expected of a conditioning
paradigm where it generates a) both internal sensations of memory of the second associatively
learned item at the arrival of the first one, and b) concurrent behavioral motor actions reminiscent
of the arrival of the second stimulus when the associated first stimulus was presented. With the
appearance of these neurons, the number of IPLs formed during an associative learning event
increased. The number of units of internal sensations induced in response to a cue stimulus also
increased proportionately. This increased the efficiency of the system by maximizing the number
of internal sensory units for memory.

Figure 5: The selected new variant of neuron had mean inter-spine distance more than the spine
diameter. Note the spacing between the dendritic spines (small blue round structures on the
dendritic branches). This increased the probability of a spine belonging to one neuron to interact

with a spine of another neuron. This in turn increased the number of inter-neuronal inter-spine
IPLs.

The above feature led to the refinement of internal sensations so that the sensory qualia of
memories are close to that of the item whose memory is being retrieved. With the beginning of
the formation of inter-neuronal inter-spine IPLs, continued learning events allowed several IPLs to
get inter-LINKed to form large clusters of inter-LINKed spines. This favored the horizontal spread
of potential along the inter-LINKed spines. Since the direction of propagation of potentials through
the IPLs is perpendicular to that through synapses involved, this led to oscillation of potentials
involving large number of neurons of different neuronal orders of the cortex. This provided certain
binding property for computing the units of internal sensations. This refined the net semblance
and is the Type III semblance (Fig.6).

2.11 Further refinements of internal sensations

Formation of ECM separating the neuronal processes prevented inter-spine interaction by virtue
of the presence of hydrophilic properties that allowed the abutted spines to remain separate by
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Figure 6: Inter-neuronal inter-spine interaction that leads to inter-postsynaptic functional LINK
(IPL). A) Since the average inter-spine distance of new variants of neurons are more than their
average spine diameter, it allowed spines from different neurons to become abutted to each other.
In this figure one spine each of neurons N1 and N2 (in blue and violet) are abutted to each other
so that their simultaneous activation can lead to the formation of an IPL between those spines.
B) Formation of IPL enabled propagation of potentials in a lateral direction along them, which
provides one vector component. This along with the vector component formed by the synaptic
transmission at right angles to it contribute to composite periodic signals across the neurons and
their processes (shown by a waveform in red). The ionic changes caused by them across the
membranes within the extracellular matrix contribute to oscillating potentials recorded from the
extracellular matrix (not shown).

default. This is Step 3 fusion prevention. In addition, different repulsive forces also prevent
spread of depolarization in a non-specific manner within the system. In short, ECM provided an
insulating medium that prevented the spread of depolarization between non-LINKed spines.

There were two important developments that led to further refinement of semblances. First is
the continuity of ECM between the spines and secondly increasing number of IPLs formed within
the system. The propagation of the potentials along the membranes has proportional fluctuation
in ionic changes in the extracellular matrix space. The variations in ionic changes in the ECM
space are reflected on the recorded field EPSP changes (Buzséki et al. 2012). Since the ECM
space is being shared by all the neuronal processes, it allows integration of ionic changes generated
in the ECM parallel to the intra-neuronal ionic changes (Fig.7). Thus, the shared ECM space
provides a unique opportunity to integrate the ionic changes occurring at different IPLs that
are formed between different neuronal types that belong to different neuronal orders. In other
words, as the number of IPLs increased this allowed binding of the units of internal sensations
that generated a more refined semblance, which is Type IV Semblance. The ontogeny shows
discontinuous oscillating extracellular potentials in EEG waveforms in prematurely born infants
(Selton et al. 2000) (section 3.4). Eventual filling of discontinuities of oscillating extracellular
potentials is expected to take place through the formation of additional IPLs.

2.12 Process that led to self-awareness of internal sensations

There are a very large number of common shared associations that are part of the natural envi-
ronment. At every moment, the system receives a very large number of (cue) stimuli from the
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Figure 7: Oscillating extracellular potentials. Both learning and generation of internal sensations
of higher brain functions occur only at a narrow range of oscillating extracellular potentials. These
oscillations are the net effect of large number of composite periodic signals (see Fig.5B) result-
ing from both synaptic transmission, propagation of potentials across the IPLs, neuronal firing,
recurrent collaterals and activity from feedback loops.

environment that will force the system to induce internal sensations of their associated items. This
will reduce the efficiency of the system significantly. This resulted in several variations to generate
an optimal condition. The selected variation continuously activates all the inter-spine LINKSs for
common associations and integrates all the induced semblances to form a net semblance called
C-semblance responsible for consciousness (Vadakkan 2010). This occurs in a narrow range of
frequency of oscillating extracellular potentials. Conformation of C-semblance will be influenced
by all the previous associative learning events, which can explain subjective changes in conscious-
ness. The background matrix of C-semblance provided both awareness of the self and that of
the environment. An optimal C-semblance provides a matrix upon which a more refined internal
sensation of memory of the associatively learned second item is formed in the presence of the first
item. This is Type V Semblance.

Since the new variation resists formation of all types of IPLs, the system that maintains robust
mechanisms to form a large number of IPLs also have the capability to reverse majority of these
IPLs back quickly, which allowed them to have working memory. IPLs that can last for more time
can explain short-term and long-term memories. Motivation induced dopamine release that cause
spine enlargement enables stabilization of IPLs and their long-term maintenance.

2.13 Nature of internal sensations in different species of animals

The nervous systems of lower species in the animal kingdom are likely generating semblances of
different types described above (shown in Table 1) or their subtypes. It is possible to undertake a
comparative study of the structural details of the possible inter-neuronal interactions to understand
the nature of internal sensations that they can use for survival. In lower species, IPLs may
be formed by direct interaction between neuronal cells or their few neuronal processes. IPLs
can be formed even if the spines are not formed. The same effect induction of semblances can
occur when depolarization propagates from one postsynaptic zone on a neuronal process to the
neighbouring postsynaptic zones. The generated internal sensations are likely become optimized
for their survival needs. Due to the limitations of IPLs that can be formed in lower forms of animals,
they have limited scope for associative learning. The qualia of internal sensations depends on the
complexity of the neuronal circuitry, the nature of interactions between the postsynaptic zones
over the neuronal processes, development of extracellular matrix space, and the ability to generate
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oscillating potentials to refine the internal sensations.

Types of semblances

I Semblance at the inter-LINKed spines on the same neuron

11 Long-lasting semblance at the inter-LINKed spines on
different neurons
11 Computation of large number of units of internal sensations

in the background of oscillation of potentials between
neuronal processes

IV Semblance in the background of oscillating extracellular
potentials due the presence of a continuous ECM space

Vv Semblance induced in the background matrix of C-
semblance

Figure 8: Table enlisting different types of semblances generated during neuronal development.

3 Key Milestones of Ontogeny

3.1 Dendritic spine loss during development

In young adolescent mice 13% to 20% of the spines were eliminated in multiple cortical areas (Zuo
et al. 2005). There is substantial loss of dendritic spines in L5 layer pyramidal neurons during
adolescent stage (Zuo et al. 2005; Tjia et al. 2017). Apical dendrites of L2/3 pyramidal neurons
show the higher formation and elimination rates than L5 pyramidal neurons in both adolescent
and adult mice (Tjia et al. 2017). These observations indicate that spine loss was a major stage
of ontogeny. This eventually resulted in variations that limited IPL fusion to progress only to the
stage of hemifusion.

3.2 Neuronal death during development

Neuronal cell death has been observed at various stages of neuronal development and different
locations within the nervous system (Glucksmann 1951). 70% of cortical cells were found to be
dying by embryonic day 14 and it reduced to 50% by embryonic day 18 (Blaschke et al. 1996).
Nearly 40% of developing cortical interneurons are eliminated through Bax (Bcl-2-associated X)-
dependent apoptosis during postnatal life (Southwell et al. 2012). Between 13 and 18 days
of embryonic development, 67% of the motor neurons initially present in the motor column die
(Lance-Jones 1982). Cells in the ventricular zone undergo sporadic cell death by apoptosis. Based
on the present work, apoptosis is triggered by inter-cellular fusion and that such a stage during
evolution has led to variations whereby an initial transient cytoplasmic content mixing acted as a
stimulus to trigger molecular mechanisms for preventing any further inter-cellular fusion (section
2.8), while still generating mechanisms for the formation of different IPLs. Even though artificially
preventing apoptosis at one stage of development can increase the number of cells, it will prevent
the development of precise mechanisms for restricting the formed IPLs from undergoing fusion.
This is evidenced by the findings that normal brain development was severely affected when genes
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involved in apoptosis were genetically manipulated (Kuida et al. 1996; Haydar et al. 1999). Since
evolution can only move forward in one direction (Niven and Chittka 2016), it can be inferred that
the genes responsible for apoptosis were evolutionary selected to subserve a function and that a
transient stage of inter-cellular fusion was a necessary stage in the evolution of the nervous system.

3.3 Anchoring of apical tuft regions of the dendritic tree to the inner
pial surface

After reaching the inner pial surface area, when neurons descent towards the direction of the
ventricle their apical tufts were anchored to the inner pial surface. This allowed overlapping
of dendritic spines of neurons that are located in different cortical neuronal layers. This led to
overcrowding of the spines that belong to different neuronal orders and made it inevitable for the
occurrence of inter-spine interactions that lead to the generation of IPLs.

3.4 Achieving continuity in oscillating extracellular potentials

Discontinuity of tracings in the electroencephalogram (EEG) among premature infants (Selton et
al. 2000) suggests the discontinuous formation of IPLs at the early stages of development. The
eventual development of continuous EEG tracings matches with the formation of additional IPLs
in the lateral direction that led to lateral spreading of potentials through them. This is essential
for integrating all the background semblances for the generation of C-semblance at a narrow range
of oscillating extracellular potentials.

3.5 Regulation of IPL formation by dopamine

Dopamine is phylogenetically an old neurotransmitter molecule (Yamamoto and Vernier 2011).
From the effect of dopamine on spine expansion, it can be seen that dopamine may cause IPL fu-
sion for a brief period of time that may allow cytoplasmic content mixing between the spines that
belong to different neurons. This is evident from findings such as dye coupling between neurons of
the nucleus accumbens (O’Donnell and Grace 1993). The spine enlarging action of this neurotrans-
mitter would have led to the avoidance of dopamine immediately following this evolutionary stage.
Due to the development of a robust mechanism to prevent any inter-spine interactions (section
2.8), the system had to find ways to circumvent this resistance to form IPLs during certain spe-
cial circumstances by introducing new variations. Reintroduction of dopamine at a later stage in
evolution (Yamamoto and Vernier 2011) matches with dopamine’s spine enlargement action (Yag-
ishita et al. 2014) that promotes associative learning. The release of dopamine during motivation
promoted learning (Bromberg-Martin et al. 2010) also have a similar mechanism. At locations of
release of dopamine, it is reasonable to expect the selection of mechanisms for reversing any IPL
formation for protecting those spines.

3.6 Regulation of excitation

Potentials arriving trough IPLs formed by the spines of excitatory neurons led to excessive exci-
tation of these neurons. It necessitated controlling this excessive excitatory activity. This led to
selection of variants that produced glutamate decaboxylase enzyme that catalyze the formation of
GABA (gamma amino butyric acid) from glutamate. Neurons expressing this enzymatic activity
were selected and started inhibiting the outputs of excitatory neurons, practically raising their
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threshold for action potential generation. It was possible to regulate the excitatory neurons at dif-
ferent levels (Palmer et al. 2012; Lovett-Barron et al. 2014; Karnani et al. 2014). Since inhibitory
interneurons are known to have electrical synapses between them, oscillations of extracellular po-
tentials likely present at some brain regions such as the ventral tegmental area may also lead to
oscillations of potentials between neurons at their output locations such as the nucleus accumbens.
At this stage, some of the spines of that synapse with inhibitory inputs inter-LINKed with
spines that received excitatory inputs. In this situation, lateral activation of inter-LINKed spines
led to hyperpolarization of the spines of excitatory synapses that generated semblance of different
conformations. These are expected to induce internal sensations different feelings and emotions.

3.7 Comparatively long durations for development in humans

Humans with advanced nervous system have a comparatively long duration for brain development
after birth. This indicates a possible role of environmental stimuli in optimizing the system that
had to undergo a long route to incorporate all the beneficial variations during evolution for the
generation of internal sensations.

3.8 Age is the most important contributing factor for neurodegenera-
tive disorders

Prevention of inter-spine interaction that can lead to different types of IPLs is the default mech-
anism. This was evolved due to the occurrence of IPL fusion at one stage of development and it
necessitated the selection of variants that prevent formation of IPL fusion. The mechanisms to
prevent fusion include a) mechanisms that are inherent to lipid membranes due to repulsive forces
between them (Disalvo et al. 2008; Song et al. 2014; Dreier et al. 2018), and b) modified proteins
that prevent IPL fusion (Giraudo et al. 2005; Liu et al. 2008) (section 2.8). When these mech-
anisms fail due to aging, it will predispose to spine fusion. This will lead to cytoplasmic content
mixing, protein precipitation and triggering of spine loss and eventual neuronal death (Vadakkan
2016¢).

4 Discussion

4.1 What does structure inform about function?

Following the last division neurons migrate in a radial fashion, which is responsible for the columnar
organization of neocortex in primates (Rackic 1988). What determined the columnar nature of
cortical neuronal assembly? Since net internal sensation is expected to be the result of a combined
effect of all the units of internal sensations generated, the system might have optimized such
combinations by maximizing the even distribution of inputs arriving the cortex. This increases the
number of possible combinations of interactions between spines that are possible when associative
inputs arrive from the environment. This may have evolved in an effort to naturally fine-tune the
internal sensation of memory of an item with that of the actual sensory stimuli from the item. The
columnar organization may also be facilitating to maximize C-semblance (section 2.11). Hypothesis
building capabilities in humans are expected to result from the formation of large islets of inter-
LINKed spines. Efficient long-term memory in humans, in contrast to other primates indicates
development of mechanisms to stabilize IPLs for long period.
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The ratio of surface area of the neocortex between macaque monkey and humans is approx-
imately 1:10 without having significant difference in thickness (Blinkov and Glezer 1968) or in a
cyto-architectural organization (Shkol’nik-Yarros 1971). Humans and macaque monkeys diverged
from a common ancestor nearly 23 million years ago (Fleagle 1988). What changes might have
contributed to the higher cognitive abilities of humans? According to Rakic and Kornack, the
larger cortical surface area in humans compared to monkeys is likely due to two reasons. a) For-
mation of more founder cells at the periventricular region due to an increase in the number of initial
mitotic symmetric cell divisions at the ventricular zone secondary to a delay in the initiation of the
second phase of asymmetrical cell division, and b) Formation of 15-fold more post-mitotic cells in
humans compared to macaque monkeys that are compacted within the cortex without affecting its
thickness (Rakic and Kornack 2007). These changes are likely contributed to the comparatively
large number of inter-LINKable abutted spines that can increase the number of IPLs formed for a
given associative learning and enabled optimization of internal sensations of memory of an item.
The details of this is likely to obtain when we fully understand the computational algorithm of the
units of internal sensations within the cortex.

4.2 'Transient inter-cellular fusion is a necessary stage

Dye coupling was followed by uncoupling as the cells migrated away from the ventricular zone
towards the sub-pial zone. However, the apical tuft region of all the neurons anchored to the
sub-pial region before the cell bodies moved back towards the direction of the ventricle. This led
to overcrowding of spines that belong to different neurons. This has again led to IPL fusion as
evident from a second stage of dye coupling (Gutnick and Price 1981; Yuste et al. 1995). This
stage was also followed by uncoupling. The cytoplasmic content mixing at this stage of evolution
likely triggered the expression of proteins that prevented fusion by halting the process at the stage
of hemifusion (Fig.9). This event provides evidence that IPL hemifusion is a cell fate that required
a transient inter-cellular fusion at one stage of evolution.

A A

S S2 S3 S4

oy
N1 N2 N3

Figure 9: Inner-neuronal inter-spine fusion triggers long-lasting cellular mechanisms for hemifusion.
Fusion between spines S1 and S2 of neurons N1 and N2 respectively undergo fusion at an early
developmental stage. As a result neuron N1 dies. Entry of cytoplasmic content from neuron N1 to
neuron N2 triggered long-lasting molecular mechanisms in neuron N2 for arresting future events by
its spines at the stage of hemifusion. As a result, during learning IPL formation between spines S3
and 5S4 that belong neurons N2 and N3 respectively is getting arrested at the stage of hemifusion.
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The necessity for a transient inter-cellular fusion at one stage of development indicates the
possibility that certain gene expression and molecular events are triggered by such an event. Once
the mechanisms for inducing inter-spine hemifusion start functioning fully, it will maintain the
formation and stabilization of IPLs for generation of internal sensations. In short, adult animals
are dependent on developmentally-primed neurons for optimal IPL formation and maintenance.
Since a) 70% of cortical cells were found to be dying by embryonic day 14 and it reduced to 50%
by embryonic day 18 (Blaschke et al. 1996), b) 13% to 20% of the spines were eliminated in young
adolescent mice in multiple cortical areas (Zuo et al. 2005), and c) it is only necessary for one
spine out of large number of spines of a neuron to undergo fusion for triggering mechanisms to
arrest any future fusion events at the stage of hemifusion, it is reasonable to expect that all the
remaining neurons have completed triggering this mechanism by the time they reach adult stage.

4.3 Vulnerable state of spines continues

Inter-cell fusion is one of the early inter-cellular change necessary for killing harmful cells. It is a
basic cellular mechanism needed for fusion between sperm and egg for zygote formation. In the
case of inter-neuronal inter-spine interaction, it was not possible to avoid fusion altogether. What
evolution has adapted is the strategy to undergo a transient fusion that will trigger intracellular
mechanisms in both the cells to stop any future inter-cell fusion events. In this regard, the cells
can prevent inter-cellular fusion only as long as such mechanisms can persist. At this juncture it
becomes very important to know “How long can a neuronal cell sustain such mechanisms?” One
possible mechanism to limit the harm caused by inter-cellular fusion in neurons can be achieved
by virtue of the structure of the spines. In the event of an inter-neuronal inter-spine fusion occurs,
neurons can trigger spine loss to save the cell from causing further damage. However, losing spines
reduces the computational elements available in the nervous system. Continued loss of spines
will eventually cause a functional decline, which is a hallmark of neurodegenerative disorders. In
summary, even though, the inter-spine interaction provided the benefit of inducing units of internal
sensations, this evolutionary stage has left the neurons in a vulnerable state. In the above context,
preventing the spine from undergoing fusion is a constant challenge for the neurons. This can be
observed from reports of spine loss at different time intervals following normal associative learning
(Lai et al., 2012; Sanders et al., 2012) and indicate the vulnerable state of the spines.

4.4 1Is it possible to optimize the terminal stages of ontogeny?

The derived operational mechanism has shown its suitability as an evolved mechanism, which has
selected a robust step to prevent IPL fusion. The elements of this mechanism that prevent IPL
fusion is very crucial to prevent inter-spine fusion that can lead to spine loss and eventual neuronal
death. Normal aging is associated with both dendritic spine loss and neuronal death (Dickstein
et al. 2013). Aging is the commonest cause of neurodegenerative disorders such as Alzheimer’s
disease. Since IPL fusion is expected to lead to neurodegenerative disorders (Vadakkan 2016c¢),
factors that can prevent IPL fusion may prolong the life of the nervous system. Can we identify
those factors and use them for our benefits? In the interim, the finding that DRD4 genotype can
predict longevity in mouse and human (Grady et al. 2013) indicates that excess of dopamine in old
age may promote neurodegenerative changes. Maintaining optimal lipid membrane composition
by preventing defects in lipid metabolic pathways of synthesis, elongation or saturation is another
area that can be explored towards achieving this goal.
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5 Conclusions

The necessity of this work stemmed from the unknown nature of both the mechanism of the ner-
vous system functions and that of its evolutionary stages. When confronted with such a dilemma,
we are left with one option to derive a theoretically suitable operational mechanism of the system
using constraints from all the findings from different levels and examine whether it has features of
a mechanism that was evolved through variations and selection. As the nervous system evolved, it
was able to accommodate information about associations between large numbers of properties of
items and events from the environment. This necessitated storing information and then retrieving
information as first-person internal sensations. Variations and selection of the fittest ones were
continued towards generating a computational product of internal sensations for memory, match-
ing with that of the sensory features of the item that was associatively learned. Nervous systems
that can form large islets of inter-LINKed spines are expected to allow combinations of internal
sensations provided a survival advantage since they use the internal sensation of memories and
utilize the ability to build hypotheses to make predictions about items and events in the environ-
ment. This is expected to be the guiding principle that improved cognitive capabilities as humans
evolved. Language enabled communication and storing of knowledge from other members who
experienced the outcomes of learning different associations and the outcome of their behavioural
actions. This enabled further fine-tuning of the inner sensations for directing actions to maximize
the rewards for survival.

By using simple variations, how did the neuronal cells gain the capability to develop into a
system that can generate first-person internal sensations within them? If it is formed by simple
steps, why did it remain difficult to understand the operational mechanism? There were several
accidental coincidences that led to the development and optimization of this system. First, the con-
tinuous depolarization of the spine head by quantal release of neurotransmitter molecules provided
a dominant state for the system. Intermittent unidirectional activation of the spines by different
stimuli arriving from the environment also facilitated to maintain this dominance. Secondly, lack
of light stimulus during night on Earth augmented this dominant state for the development of
more efficient systems. This dominant state of unidirectional activation of a synapse enabled an
incidental lateral activation of the recipient side (inter-LINKed postsynaptic terminal) to momen-
tarily hallucinate that it is receiving sensory stimulus from the environment through its donor
side (presynaptic side). The oscillating extracellular potentials provided the system property of
semblance (internal sensations) only when the frequency of these oscillations occurs in a narrow
range. The difficulty in understanding the system prevailed due to the first-person nature of the
internal sensations and difficulties in making a theoretical approach towards the solution. Since
the present work has found that the derived mechanism has suitable features for a system to have
evolved, it supports undertaking further verification.

How did the human nervous system evolve to the present state? Theories of evolution starting
from Darwin have examined selection based on increase in brain size (Cartmill 1982). Compared
to other primates, humans have higher order forebrain systems that have undergone major mod-
ifications (Preuss 2006). However, a recent study has shown that the size of the human frontal
lobes increased only proportional to the increase in size of other cortices (Barton, and Venditti
2013) indicting that the mechanism of natural selection can be best understood by examining how
they participate in distributed networks. Another work has shown that prefrontal regions of both
human and non-human primates holds about 8% of cortical neurons (Gabi et al. 2016). This find-
ings necessitates a new explanation for the advanced cognitive abilities of humans. There are more
synapses (both symmetrical and asymmetrical) per neuron in layer II and III in human than in rat
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and mouse (DeFelipe et al. 2002). This may be contributing to the formation of more IPLs that
increase the qualia of computed net semblances. Based on the present work, formation of large
islets of inter-LINKed spines is necessary for hypothesis formation and ability to stabilize IPLs is
necessary for long-term memory that are special features of humans. To confirm that these are
factors contributing to the higher cognitive abilities of humans, it is necessary to demonstrate the
differences from that of the brains of chimpanzees (Preuss 2004). Whether the increase in surface
area of cortex in humans has increased the number of IPLs and size of islets of inter-LINKed spines
or their efficiency in functioning or providing more functional units for computation is yet to be
examined. It is also necessary to understand what kind of changes in the timing of developmental
stages (heterochrony), out of many kinds of possible events (Smith 2003), might have caused the
branching between different primates. The present work provides several heuristic avenues for
further exploring this area of investigation.

Evolution A - AA — A
ASPAQY
Development A — AA — A
ASPAN
Adult life A — A
)/ )/

=

o A2 A
X

Figure 10: What is evolution and development informing us? Figures on left column: A pair of
normal synapses. Middle column: Fusion between spines that belong to different neurons. Right
column: Hemifusion between spines that belong to different neurons. The event of fusion during
evolution let the system of neurons to progress through hemifusion state to form IPLs for generation
of internal sensation. The event of fusion during development primed the neurons with the ability
to restrict all the future fusion events (IPL formation) in adult life to the stage of hemifusion.
Is this function compromised in old age? It is necessary to investigate how long the neurons can
sustain the acquired function and whether we can artificially assist this process.

A general view is that once we understand the cause for neuronal cell loss during development,
it may help to understand the pathophysiology of neurodegenerative disorders (Dekkers, Niko-
letopoulou, & Barde, 2013). The unique observation of significant neuronal death at one stage
of development provides crucial information about the evolutionary stages of the nervous system
(Fig.9). This indicates a plausible mechanism by which evolution has preserved and optimized the
function of generation of internal sensations by maintaining IPLs through inter-spine hemifusion.
The inference made from these observations that transient fusion is a necessary triggering event for
expression of genes to arrest inter-spine fusion at the stage of hemifusion and prevent further inter-
spine fusion needs experimental verification. Does this information allow us to develop prevent
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disorders arising from fault of such a mechanism? Even though studies have shown some increase in
cell survival when genetic manipulations against apoptosis were carried out, they did not gain any
useful function (Hoeppner, Hengartner, & Schnabel, 2001; Reddien, Cameron, & Horvitz, 2001).
This indicates that manipulation of genetic make up of an evolutionarily developed system in the
middle of its development may in fact disturb a selected variation obtained through non-genetic
methods. A mechanism triggered by transient inter-spine fusion during development is expected
to be sustained throughout the lifespan. A realistic hope is that since the IPL formation is the
final stage of ontogeny, it may become possible to discover methods to prevent malfunctioning of
this mechanism.
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