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Abstract1

This paper provides a unifying review of some recent approaches to2

decomposing data into sets of components. We start from the classical3

algebraic method of singular value decomposition and then introduce prin-4

cipal and independent component analysis. The text continues with the5

main subject of this paper, sparse representation and decomposition, em-6

phasizing its biological plausibility. In this paper emphasis will be given7

to the geometric perspective, with the mathematics kept to an essential8

minimum.9

1 Data modelling: A probabilistic approach10

In an exploratory approach to data analysis, it is often useful to consider the ob-11

servations as generated from a set of latent generators or ‘sources’ via a generally12

unknown mapping. Our goal is to recover the generators from the observations,13

an inverse problem. This can be often stated as a data decomposition problem:14

the data matrix is decomposed into factors, each one of them representing some15

salient characteristics of the data. In fact, many well known algorithms, such as16

singular value decomposition (SVD) and principal component analysis (PCA),17

indepedent component analysis (ICA), as well as k–means and many others can18

be stated under this formulation, providing a unifying framework for unsuper-19

vised learning. Another view is that of the representation of data sets in a new20

coordinate system such that certain properties hold. For example, in PCA we21

seek a new coordinate system in which the data become linearly uncorrelated.22

For the noisy overcomplete case, where we have more sources than observations,23

the problem of reconstructing the sources becomes extremely ill-posed. Solu-24

tions to such inverse problems can, in many cases, be achieved by incorporating25

prior knowledge about the problem, captured in the form of constraints.26

When modelling complex systems we are unavoidably faced with imperfect27

or missing information, especially in the measurement and information sciences.28

This may have several causes, but it is mainly due to29
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Figure 1: Seeking structure in data. Component analysis can be viewed as
a family of data representation methods. The challenging task is to find
informative directions in data space. These correspond to the column vectors of
the observation (transformation, or ‘mixing’) matrix and form a new coordinate
system. Their directions are non-orthogonal in general. (Left) Rotational invari-
ance of the distribution of independent Gaussian random variables with equal
variance. A scatterplot (point cloud) drawn from two such Gaussian sources
illustrates the fact that there is not enough structure in the data in order to
find characteristic directions in data space. Algebraically, we can only estimate
the linear map up to an orthogonal transformation. (Center) Point cloud gen-
erated from a non-Gaussian distribution. (Right) The data cloud contains more
structure in this case, which we want to exploit. In particular, the geometric
shape of the point cloud of this figure is an example of a dataset that is sparse
with respect to the coordinate axes shown by the two arrows.

• Lack of, or incompleteness in, our understanding or knowledge of the30

phenomena involved.31

• The cost of obtaining and processing the vast amounts of information often32

needed for a more complete measurement of the phenomena.33

• Inherent system complexity and stochasticity.34

Probability theory is a conceptual and computational framework for reasoning35

under uncertainty. Probabilities model uncertainty regarding the occurence of36

random events. Assigning probability measures on uncertain quantities reflects37

precisely our lack of information about the quantities at hand. According to38

Cox’s theorem [17], probability is the only consistent, universal logic framework39

for quantitatively reasoning under uncertainty. Moreover, probability theory40

offers a consistent framework for modelling and inference. Jaynes [38] viewed41

probability theory as a unifying tool for plausible reasoning in the presence42

of uncertainty. From a modeler’s point of view, the greatest practical advan-43

tage of probability theory is perhaps that it offers modularity and extensibility:44

probability theory acts as “glue” for linking different models together.45
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2 Second order decompositions: Singular value46

decomposition and Principal Component Anal-47

ysis48

Singular value decomposition is an important method, originating in the Linear49

Algebra and Numerical Analysis communities, with a vast repertoire of applica-50

tions in the Applied Sciences and Data Analysis. It is often used as a subroutine51

in more complicated models, and there exist versions of it that are very compu-52

tationally efficient. We only present the basic ideas here; see [28] for a reference.53

Let X be a M ×N rectangular data matrix, where each row is a data point
and each column is a “feature”,

X
M×N

=






x1,1 · · · x1,N

...
. . .

...
xM,1 · · · xM,N




 ,

and assume without loss of generality that M ≥ N . The singular value decom-
position (SVD) is a factorization of matrix X such that

X = USVT , (1)

where the M ×M orthogonal matrix U =
[
ui

]
is called the left eigenvector54

matrix ofX, and the N×N orthogonal matrixVT =
[
vT

i

]
is its right eigenvector55

matrix. The square roots of the N eigenvalues of the covariance matrices1 XXT
56

and XTX are the singular values of X, σi =
√
λi, forming the diagonal matrix57

S = diag (σi). The singular values are nonnegative and sorted in decreasing58

order, such that σ1 ≥ σ2 ≥ · · · ≥ σN , forming the spectrum of X.59

The singular value decomposition of X can be also written as

X =

r∑

i=1

σiuiv
T

i , (2)

where ui is the i–th eigenvector ofXXT and vi is the i–th eigenvector ofXTX, as60

above, and r ≤ N is the rank of X. In other words, a matrix, X, can be written61

as a linear superposition of its eigenimages, i.e. a sum of the outer products62

of its left and right eigenvectors, uiv
T

i , weighted by the square roots of the63

eigenvalues, σi. The important fact here is that often relatively few eigenvalues64

contain most of the ‘energy’ of matrix X. Now if r < N , the energy of a data65

matrix, X, can be captured with fewer variables than N , since the relevant66

information is contained in a lower-dimensional subspace of the measurement67

space. This is a form of dimensionality reduction. Note that due to the presence68

of noise in the data we may actually have r = N , though. In other words, in69

practice all eigenvalues may be non-vanishing. This, however, also hints at a70

denoising scheme in which one regards the smaller eigenvalues as corresponding71

1Note that XTX = VS2VT and XXT = US2UT.
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to the noise and then forms a truncated SVD, Xt = UtStV
T
t , where t < r.72

Xt is the unique minimizer of ‖X−Xt‖F among all rank-t matrices under the73

Frobenius norm and also a minimizer (perhaps not unique) under the 2–norm.74

75

Remark 1 For many important applications, such as fMRI and other biosig-76

nals, the signal of interest represents only a small part of what is measured77

(Lazar, [43]; Calhoun et al., [10]), in terms of signal power. Consequently,78

an optimization criterion that searches for components with maximum signal79

power, such as PCA, will fail to recover the signals we are looking for. Methods80

that exploit higher-order statistics in the data are therefore needed. Second-81

order methods can still be very useful as a preprocessing step, however, e.g. for82

dimensionality reduction, and are often used as such.83

3 Higher-order decompositions: Independent Com-84

ponent Analysis85

In this section we review the independent component analysis (ICA) approach to86

source separation, with an emphasis on the aspect of non-gaussianity. Method-87

ological and review literature includes [57], [31], [58], [25]. Additional resources88

are given below.89

90

ICA is a family of data analysis methods that aims at decomposing datasets
into maximally statistically independent components. In the noiseless setting,
the observation model for linear ICA is

x = As , (3)

where we have assumed that the observations have been de-meaned (i.e. we
have translated the coordinate system to the data centroid). ICA employs the
principle of redundancy reduction (Barlow, [5]) embodied in the requirement
of statistical independence among the components (Nadal and Parga, [50]).
In statistical language, this means that the joint density factorizes over latent
sources:

P (s) =

L∏

l=1

Pl(sl) , (4)

where P (s) is the assumed distribution of the sources, s = (s1, . . . , sL), regarded91

as stochastic variables, and pl(sl) are appropriate non-Gaussian priors. Non-92

Gaussianity is the defining characteristic of the ICA family with respect to PCA.93

We seek non-Gaussian sources for two, complementary, reasons:94

• Identifiability,95

• “Interestingness”.96
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Gaussians are not interesting since the superposition of independent sources97

tends to be Gaussian. The concept of interestingness is directly exploited in the98

related method of Projection Pursuit (Friedman and Tukey, [24]), where the99

goal is to find the projection directions in a data set that show the least Gaus-100

sian distributions. An important result relating to the probability densities101

of the individual sources, due to Comon and based on the Darmois-Skitovitch102

theorem2 [18], formalizes the above and states that for analysis in independent103

components at most one source may be Gaussian, in order for the model to104

be estimable [16]. Geometrically, this indeterminacy of Gaussian point clouds105

is due to the rotational invariance of the Gaussian distribution under orthog-106

onal transformations (Hyvärinen, [34]). Gaussian point clouds are optimally107

described in terms of the PCA decomposition method (Figure 1 (left) [Lewicki108

and Sejnowski] (right)). This, geometric view of component analysis is a funda-109

mental one in this paper.110

A related concept is that of linear structure (Rao, [55]; Beckmann and Smith,111

[7]). A vector, x, is said to have a linear structure if it can be decomposed as112

x = µ +As, where s is a vector of statistically independent random variables113

and the matrix A is of full column rank. Beckmann and Smith use results from114

Rao [55] in order to ensure uniqueness of their ICA decomposition. In particular,115

they use the fact that conditioned on knowing the number of sources and the116

assumption of non-Gaussianity, there is no non-equivalent decomposition into a117

pair (A, s), that is, there is no other decomposition with mixing matrix that is118

not a rescaling and permutation of A.119

Equation (4) is equivalent to minimizing the mutual information among the120

inferred sources3 [8],121

{

min I(s1, . . . , sL), where

I(s1, . . . , sL) =
´

p(s) log p(s)∏
l
p(sl)

ds
,

or, equivalently, the “distance” between the distribution p(s) and the fully fac-
torized one,

∏

l p(sl), measured in terms of the Kullback-Leibler divergence,

KL
[
p(s)||∏l p(sl)

]
. This is defined as KL

[
p(x)||q(x)

]
= Ep(x)

[

log p(x)
q(x)

]

. This

2The Darmois-Skitovitch theorem reads:

Theorem 1 (Darmois-Skitovitch) Let ξ1, . . . , ξn be independent random variables and let

αi and βi, i = 1, . . . , n be nonzero real numbers such that the random variables
∑n

i=1
αiξi

and
∑n

i=1
βiξi are independent. Then the ξi’s are Gaussian.

See, for example, V. Bogachev, ‘Gaussian measures’ [9], p. 13.
3For two stochastic variables X and Y to be independent, it is necessary and sufficient

that their mutual information equals zero:

I(X, Y ) = H(X) +H(Y )−H(X, Y )

=

ˆ

dXdY PX,Y (X, Y ) logPX,Y (X, Y )

−

ˆ

dXPX(X) logPX(X) −

ˆ

dY PY (Y ) logPY (Y ) = 0 ,

where the quantity H(Z) is the ‘differential’ entropy of the random variable Z.

5
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enables ICA algorithms to separate statistically independent sources, up to pos-
sible permutations and scalings of the components [16]. The mutual informa-
tion (“redundancy”) can be equivalently computed as

I(s1, . . . , sL) =

(
L∑

l=1

H(sl)

)

−H(s1, . . . , sL) ,

where the first term at the RHS is the sum of the entropies of the individual122

sources and the second the joint entropy of (s1, . . . , sL). As shown by Bell123

& Sejnowski (1995), independence can lead to separation because the method124

exploits higher-order statistics in the data, something that cannot be done with125

methods such as PCA.126

In practice, many ICA algorithms minimize a variety of ‘proxy’ function-
als. Bell and Sejnowski’s ICA approach uses the InfoMax principle (Linsker,
[46]), maximizing information transfer in a network of nonlinear units (Bell &
Sejnowski, [8]). Based on this, Bell and Sejnowski derive their very successful
Infomax-ICA algorithm. The sources are estimated as

ŝ = u = Wx , (5)

where W is the separating (unmixing) matrix that is iteratively learned by the
rule

W←W + η
(

I− E
[
φ(u)

]
uT

)

W , (6)

where the vector valued map φ(u) = (φ1(u1), . . . , φL(uL)) is an appropriate127

nonlinear function of the output, u, such as a sigmoidal ‘squashing’ function,128

applied component-wise. Popular choices are the logistic transfer function,129

φ(u) = 1
1+e−u , and hyperbolic tangent, φ(u) = tanh(u). The expectation op-130

erator, E[ · ], is approximated by an average over samples in practice. Finally,131

the factor η is an appropriate learning rate. The above equation incorporates132

Amari et al.’s natural gradient descent approach [1]. Bell and Sejnowski show133

that optimal information transfer, that is maximum mutual information be-134

tween inputs and outputs, or equivalently maximum entropy for the output, is135

obtained when highly-slopping parts of the transfer function are aligned with136

high-density parts of the probability density function of the inputs.137

Hyvärinen chooses to focus explicitly on non-Gaussianity and derives a
fixed-point algorithm, dubbed FastICA [33]. Non-Gaussianity can be quantified
using the negentropy, J ,

J(u) = H(uGauss)−H(u) ,

where uGauss is a Gaussian random variable with the same covariance as u. The
FastICA algorihm maximizes an approximation of J using the estimate

J(ul) ≈
{

E
[
G(ul)

]
− E

[
G(uGauss)

]}2

,

where G(·) is an appropriate nonlinearity, such as the non-quadratic function
G(z) = z4, and that is implicitly related to the source distributions (see below),

6
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uGauss is a standardized Gaussian r.v., and u1, . . . , ul, . . . , uL are also of mean
zero and unit variance. The unknown sources, {ul}Ll=1, are again estimated
using the projections ul = wT

l x, where wl is the l–th separating vector (column
of W), found by the iteration

w← E
[
xg(wTx)

]
− E

[
g′(wTx)

]
w ,

where g(·) is the derivative of G(·) and g′(·) is the derivative of g(·) and w is138

each time rescaled as w ← w
‖w‖ . For an application of the non-Gaussianity139

principle to fMRI see the Probabilistic ICA algorithm of Beckman and Smith140

[7].141

ICA as Unfolding plus Rotation of a Dataset142

An important result in the theory of ICA, with practical value, is that the ICA
decomposition can be written as a factorization of an “unfolding” matrix times
a rotation matrix. The former is usually implemented by pre-whitening (pre-
sphering) the observations, such that E

[
x̃x̃T

]
= ID, where x̃ now denotes the

whitened observations:
x̃ = Wsphx .

Wsph can be computed from the eigendecomposition of the data covariance
matrix, Cxx = E

[
xxT

] .
= UΛUT, where the matrix U is a unitary matrix4

containing the eigenvectors of Cxx and Λ = diag(λ1, . . . , λD) is the diagonal
matrix of eigenvalues. Then the decomposition problem can be written (taking
the “square root” and inverting) as

x̃ = Λ− 1
2UTAs = WsphAs = Ãs, i.e. A = W−1

sphÃ .

That Λ− 1
2UT spheres the data can be seen by simply performing the operations

for E
[
x̃x̃T

]
, taking into account that U is an orthogonal matrix [29]. The above

whitening operation transforms the original data vectors to the space of the
eigenvalues and rescales the axes by the singular values. Alternatively, one may

use UΛ− 1
2UT for whitening, which maps the data back to the original space.

This often makes further processing easier. In any case, since the whitening
transformation removes any second-order statistics (correlations) in the data,
learning the ICA matrix Ã is equivalent to learning a pure orthogonal rotation
matrix:

E
[
x̃x̃T

]
= ÃE

[
ssT
]
ÃT = ÃÃT = I .

3.1 Probabilistic Inference for ICA143

Note that until now, while we have used probabilistic concepts to define information-
theoretic quantities such as the negentropy and the mutual information, we have
taken the view that the solution of the blind source separation problem can be

4If we restrict ourselves to the field of real numbers, R, then the matrices U become
orthogonal matrices.
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Latent sources, sl

Observation data, xi

Coefficients, {ail}

Figure 2: Graphical probabilistic model of the generative approach to compo-
nent analysis. All models in this paper can be represented in this form.

achieved by transforming the observed signals through nonlinear functions in
a bottom-up, filtering manner. Many classical component analysis algorithms,
however, including ICA, can also be interpreted under the same probabilistic
framework as top-down, generative models. This requires the construction of a
density model. The model we consider here is the noisy transformation

s 7→ x = As + ε
︸︷︷︸

noise

, (7)

where an L–dimensional vector of latent variables, s, is linearly related to a
D-dimensional vector of observations via the observation operator A. Observa-
tion noise, ε, may in general be added to the observations. In other words, the
observed data is ‘explained’ by the unobserved latent variables, while the mis-
match between the observations and the model predictions, x−Aŝ, is explained
by the additive noise. The fundamental equation of ICA, which we write again
below,

P (s) =

L∏

l=1

Pl(sl) , (8)

can be seen as a modelling assumption, i.e. a working hypothesis, as a fac-144

torization of a multi-dimensional distribution into a product of simpler one-145

dimensional distributions, in another interpretation. Classical ICA models such146

as Infomax ICA and FastICA assume noiseless and square mixing. This restric-147

tion is removed in more recent algorithms. A representation of the generative148

model for component analysis as a graphical probabilistic model is shown in149

Fig. 2.150

Remark 2 The generative model of Eqns (7), (8) defines a constrained prob-151

ability distribution in data space. Referring back to Fig. 1, the “arms” of the152

point-cloud are oriented along the directions of the “regressors”, which are en-153

coded in the column vectors of the mixing matrix. Thus, when defining and154

learning a probabilistic ICA model, we are are in fact defining at least three155

things: the source distributions, the mixing matrix, and the noise model, given156

the constraints of Eqns 7 and 8.157
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This remark is important, as it gives an insight into why ICA algorithms are158

so successful in decomposing certain types of data such as fMRI [19].159

In the general, noisy and non-square mixing case, one can formulate the
penalized optimization problem (see e.g. [47], [11], [54], [61], and [59] for a nice
concise review)

ŝ = argmax
s

{

− 1

2σ2
‖x−As‖2 +

L∑

l=1

log pl(sl)

}

, (9)

assuming spherical Gaussian noise, ε ∼ N
(
0, σ2IL

)
, for example, in order to160

reconstruct the sources from the inputs at their most probable value.161

As shown by MacKay [47] and Pearlmutter and Parra [54], Infomax-ICA
can be interpreted as a maximum likelihood model. Assuming square mixing
(i.e. as many latent dimensions as observations, L = D), and invertibility of the
mixing matrix, the separating matrix is W = A−1. We can then immediately
write down the probability of the data, as

p(x) = | det(J)| p(s) ,

where J is the Jacobian matrix of the transformation, with Jli =
∂sl
∂xi

. Under
the linear model, and using the fundamental assumption of ICA, of mutual
independence of the latent variables, p(s) =

∏L
l=1 p(sl), we have

p(x) = | det(W)|
∏

l

p(sl) .

Then, the log–likelihood of an i.i.d. data set, X = {xn}Nn=1, under the model
can then be written as

L(θ) def
= log p(X|θ) = log

(
N∏

n=1

p(xn|θ)
)

= N log | det(W)|+
N∑

n=1

L∑

l=1

log
(
pl
(
wT

l xn

))
,

where we have substituted sl,n with ul,n = wT

l xn =
∑D

i=1 wl,ixi,n. The param-162

eter vector, θ, here contains the matrix, A, or equivelently the unmixing one,163

W = A−1, since these are uniquely related in this case.164

We can now derive a maximum likelihood algorithm for ICA via gradient
descent, in order to learn the separating matrix, W. Taking the derivative of
L(θ) with respect to W and using well-known derivative rules we finally find
the learning rule

∂

∂Wli
L(θ) = Ali + zlxi ,

where we have used the shorthand notation zl = φl(ul), where the ICA nonlin-165

earity is the score function of the sources, φl(sl) = − ∂
∂sl

log pl(sl), where pl(sl)166

are the assumed source priors. Multiplying with WTW, to make the algorithm167

covariant [47], we get exactly the Infomax-ICA update rule, Eq. (6). Note that168

9
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the above multiplication is equivalent to using the ‘natural gradient’ approach of169

Amari [1], a learning algorithm based on the concept of information geometry.170

The FastICA algorithm can be also interpreted as an instance of the EM171

algorithm [20], an iterative method for finding maximum likelihood or maxi-172

mum a-posteriori solutions of statistical estimation problems. (See the “The173

EM Algorithm” sidebar.) Lappalainen [41] derives it as an algorithm that fil-174

ters Gaussian noise. This is an important interpretation, as it leads us to a175

conceptually new framework for ICA, that of source separation via denoising.176

Here, the term ‘denoising’ is interpreted as filtering out irrelevant information.177

It is worth going through the main steps of the derivation.178

The EM Algorithm

The general idea of the EM algorithm is to estimate the latent variables,
Y, and model parameters, θ, of a probabilistic model (which in this case
are the sources, S, and mixing matrix, A, of the BSS problem, respec-
tively), in two alternating steps. The ‘E’ (expectation) step computes the
expectation of the log–likelihood with respect to the posterior distribu-

tion p
(

Y

∣
∣
∣X, θ(τ)

)

, using the current (τth) estimate of the parameters,

θ(τ), giving the so-called ‘Q–function’,

Q
(

θ

∣
∣
∣θ

(τ)
)

= EY|X,θ(τ)

[

logL(θ;X,Y)
]

;

this is a function of θ only. (Recall that X is observed and θ(τ) is
temporarily fixed to it current point estimate.) The ‘M’ (maximization)
step then computes the model parameters that maximize the expected
log–likelihood,

θ(τ+1) = argmax
θ

Q
(

θ

∣
∣
∣θ

(τ)
)

.

This scheme is iterated until the algorithm converges. It can be shown
that the EM algorithm is guaranteed to increase the observed data like-
lihood at each iteration [20].

179

Applying the above generic EM recipe, we can compute the maximum like-
lihood estimate of the mixing matrix of our ICA model as

Â =
(

XE [S]
T
) (

E
[
SST

])−1
,

where the expected sufficient statistics5 of the sources, E [S] and E
[
SST

]
, are

computed with respect to their posterior6. In the low sensor noise (σ2 → 0) and
square-mixing case of FastICA, Lappalainen approximates the posterior mean

5A sufficient statistic is the minimal statistic that provides sufficient information about a
statistical model. Typically, the sufficient statistic is a simple function of the data, e.g. the
sum of all the data points, sum of squares of the data points, etc.

6These are relationships that will become useful later in the paper as well.

10
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of the sources as

ŝ = E
[
s
∣
∣A,x, σ2ID

]
≈ s0 + σ2

(
ATA

)−1
φ(s0) ,

where s0
def
= A−1x and the function φ(·) is defined as before, as the vector180

of the logarithmic derivatives of pl(sl). For prewhitened data, this expression181

simplifies even more, since A is orthogonal, and therefore,
(
ATA

)−1
= IL.182

Then Â ≈ A+ σ2Xφ(S0)/M .183

Now Lappalainen makes the crucial observation that while the EM algorithm
has not yet converged to the optimal values, the sources, s0, can be written as
a “mixture”

s0 = αsopt + βsG, with α2 + β2 = 1 ,

where the “noise” sG is mostly due to the other sources not having been perfectly
unmixed. When far from the optimal solution, we have β ≈ 1 and α ≈ 0. Using
an argument based on the central limit theorem, as the number of the other
sources becomes large he then approximates the mixing matrix corresponding
to those other sources as

âG ≈ a+ σ2XGφ(s0G)
T/L ,

where XG are Gaussian-distributed “sources” with the same covariance as X,

as is done in the standard FastICA algorithm, and the sources s0G are s0G
def
=

aTXG. Then the update equation for the mixing matrix, normalized to unity,
is estimated by

ânew =
â− âG

‖â− âG‖
≈ σ2

[
Xφ(s0)

T −XGφ(s0G)
T
]
/L

‖â− âG‖
.

Lappalainen interprets the above E-step as filtering Gaussian noise.184

The final step that will bring us to the standard FastICA is to note that the185

term XGφ(s0G)
T/L is equal to as0Gφ(s0G)

T/L, where the factor s0Gφ(s0G)
T/L186

is constant, and therefore the numerator of the update equation becomes the187

standard FastICA update, â− âG = Xφ(s0)
T − ca.188

While Teh [59] computes the data likelihood in a maximum likelihood frame-189

work, Knuth [39] uses a maximum a-posteriori framework. The latter allows us190

to impose constraints on the model parameters as well. This was further ex-191

plored in Hyvarinen and Karthikesh in [32] in order to impose sparsity on the192

mixing matrix.193

Up to now we have either assumed equal number of sources and sensors194

or we have implicitly assumed that their number is somehow given. Roberts195

[56] derives a Bayesian algorithm for ICA under the evidence framework that196

estimates tha most probable number of sources as a model order estimation197

problem. The evidence framework, as applied in [56], makes a local Gaussian198

approximation to the likelihood conditioned on the mixing matrix using a nested199

Laplace approximation, but takes into account the local curvature by estimating200

the Hessian. Due to computational reasons, this is approximated by a diagonal201
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matrix here, setting the off-diagonal elements to zero. The noise width, regarded202

as a hyperparameter, is computed at its maximum likelihood value.203

Finally, Choudrey et al. [15] and Miskin and MacKay [49] propose a fully204

Bayesian approach to ICA using a variational, ensemble learning approach under205

a mean-field approximation. They use a flexible source model based on mixtures206

of Gaussians and perform model order estimation using a variety of techniques.207

We can now select an appropriate functional form for the individual marginal208

distributions, pl(sl,n), based on our prior knowledge about the problem, as was209

done in the original formulation of InfoMax ICA of Bell & Sejnowski for the210

separation of speech signals, for example. The source model should model211

the real source distributions as accurately as possible. Many natural signals212

exhibit characteristic amplitude distributions, which can provide some guidance213

and indeed should be exploited when possible. This allows us to utilize fixed214

source models in our separation algorithms. Bell and Sejnowski, for example,215

use several nonlinearities (recall that these are uniquely related to the assumed216

PDFs of the sources), such as 1/(1+e−ui), tanh(ui), e
−u2

i , etc., as well as propose217

general-purpose ‘score functions’ (see Figure 2 of Ref. [8]) in their Infomax-ICA218

algorithm. FastICA uses nonlinearities such as u3
i , tanh(αu), uie

−αu2
i/2, and219

u2
i . However, this is not always possible. The problems that can arise from an220

incorrect latent signal model and possible solutions are discussed in section 4.221

4 The Importance of using Appropriate Latent222

Signal Models223

Many classical ICA algorithms, such as Infomax-ICA and FastICA, allow the224

plug-in setting of the respective nonlinearity function in the system, as men-225

tioned above. For successful separation, the form of the nonlinearity must226

somehow match, as far as possible, the underlying (unknown) statistical prop-227

erties of the sources, such as their super- or sub-gaussianity. This was first stated228

as “matching the neuron’s input-output function to the expected distribution229

of the signals” in [8]. Since the estimating equations for the mixing matrix and230

sources are coupled, the functional form of the nonlinearity is critical for their231

correct estimation: an incorrect choice of nonlinearity will lead to an incorrect232

estimation of the (un-)mixing matrix, which will map the observations back233

to the source space incorrectly, etc. Cardoso [12] gives a compelling example234

of how estimation can go wrong. Another example of how classical ICA fails235

in separating sources in an image processing context is given in Fig. 4 (from236

Tonazzini et al., [60]).237

Remark 3 Tonazzini et al. use a Markov random field in order to impose an238

image prior. However, the images of Fig. 4 (left) are actually also prime exam-239

ples of sparse sources. In [27] and [19], an extensive study of how justified and240

robust are ICA algorithms for functional MR imaging of the brain was conducted241

and various simulations of fMRI “brain” activations under well-controllable sit-242

uations with shapes similar to that of ref. [60] were performed that highlighted243
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Figure 3: Effect of an incorrect source model specification [12]. Left: true
distribution; Middle: Hypothesized distribution; Right: Estimated distribution.

the need for alternative decomposition algorithms that are effective for fMRI,244

based on sparsity.245

It can be shown that the Infomax-ICA as well as the FastICA algorithms
are instances of maximum likelihood estimation [47], [54], [30], [41]. Under this
interpretation, one can see that the nonlinearity, φ(·), is actually the logarithmic
derivative of the (hypothesized) probability density of the sources (the ‘score’
function): for the l–th source, sl,

l : φl ([Wx]l) = −
∂

∂sl
log pl(sl) = −

p′l(sl)

pl(sl)
,

where the symbol W denotes the separating operator from observation space246

to source space and x is an observation. In other words, in a perfect match the247

nonlinearity is exactly the cumulative distribution function of the sources. Of248

course we do not know the actual source PDFs, since the sources themselves249

are unobserved, but we may try to estimate them from the data. For this250

purpose, we can employ a parameterized model source PDF, pl(sl; θsl), and251

learn, instead of fix, its parameters, θsl , from the data. A flexible prior that is at252

the same time mathematically tractable is a mixture distribution. Lawrence and253

Bishop [42] uses a Mixture of Gaussians (MoG) prior for ICA, albeit in a fixed254

form. Attias [3] has used MoGs as source models for blind source separation255

under a maximum likelihood framework, leading to a flexible algorithm dubbed256

‘Independent Factor Analysis’ (IFA). Choudrey et al. [15] and Lappalainen [40]257

use the same prior under a Bayesian ensemble learning approach, i.e. with a258

factorized posterior (the so-called ‘naive’ mean-field method).259

5 Sparse Decompositions260

As noted by Cardoso [13], non-Gaussianity is not the only possible route to inde-261

pendent component analysis, and indeed to blind source separation in general;262

other possibilities also exist—including exploiting non-stationarity and time-263

correlation in signals. Such a different paradigm, sparsity, in combination with264

doing away with the assumption of independence, will be explored next.265
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Figure 4: Effect of an incorrect source model specification for a blind image sep-
aration problem. Left: true sources; Middle: noisy mixtures; Right: Estimated
sources from ICA. The model clearly fails to recover the sources. In particular,
one of the sources is not recovered at all.

5.1 Parsimonious representation of data266

ICA works well for a variety of blind source separation problems. However, in267

order for the decomposition to make sense the true sources must themselves268

indeed be (nearly) independent. This may make sense in the separation of voice269

signals that are independently generated by people with no interaction among270

them, for example. For other problems, however, searching for components271

that are maximally independent may not be so meaningful. Recently, another272

paradigm for BSS, and inverse problems in general, sparsity, has emerged as an273

alternative. Sparsity refers to the property of a representation to form compact274

encodings of signals, data, or functions, using a small number of basis functions.275

Those basis functions are used as “building blocks” to build more complex276

signals.277

There has been a variety of algorithms for sparse representation, or sparse278

coding, originating from the computational neuroscience and neural networks279

communities as well as several others from a signal processing perspective.280

Sparse decomposition, and ways to impose sparsity constraints, has recently281

also been a topic of much research in the statistics and machine learning liter-282

ature.283

284

Sparse coding. In the study of the visual system, Field [23] proposed sparsity285

as an organization principle of the visual receptive field. He conjectured that286
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populations of neurons optimize the representation of their visual environment287

by forming sparse representations of natural scenes, a hypothesis that has high288

biological plausibility since it is based on the general idea of a system using289

its available resources efficiently. According to his theory, the visual system290

performs efficient coding of natural scenes in terms of natural scene statistics291

by finding the sparse structure available in the input. Field’s theory directly292

reflects the principle of redundancy reduction of Barlow [5], [6].293

Dictionary learning. Olshausen and Field [51] further test the above the-
ory, seeking experimental evidence for sparsity in the primary visual cortex (V1)
by building a predictive (mathematical) model of sparse coding. In their model,
images are formed as a linear combination of local basis functions with corre-
sponding activations that are as sparse as possible. These bases model the V1
receptive fields and form overcomplete sets adapted to the statistics of natural
images. Olshausen and Field’s model is an early example of dictionary learning.
Formally, the model of Olshausen and Field is described by:

xp ≃
∑

i

ap,iφi ,

where xp is an image “patch” (i.e. a small image window) and {φi} are the
underlying basis elements. A network representation of their model, Sparsenet,
is shown in Fig. 5. They proposed the following objective:

I(Φ) = min
ap,i

{
∑

p

∥
∥
∥
∥
∥
xp −

∑

i

ap,iφi

∥
∥
∥
∥
∥
+ λ

∑

i

log
(
1 + ap,i

2
)

}

,

to be minimized over bases, Φ, learned by searching for bases that optimized the294

sparsity of the coefficients, {ap,i}, (subject to appropriate scale normalization295

of {φi}). In general, the basis set can be overcomplete. That is, the number296

of bases, |Φ|, can be greater than the dimensionality of the ‘input’ data space,297

D (see for example [52]). The reason for this is that the ‘code’ can be more298

sparse if one allows an overcomplete basis set, as the algorithm can select the299

bases that better match the structures contained in the signal (the “active”300

elements). See also Asari, [2]. As shown in Fig. 6 this objective results in highly301

sparse distributions for the coefficients. Astonishingly, the learned receptive302

fields (filters) have properties that resemble the properties of natural simple-cell303

receptive fields, that is they are spatially localized, oriented and bandpass, i.e.304

selective to structure at different spatial scales (Fig. 7).305

In the signal processing community, Mallat and Zhang [48] proposed a306

greedy algorithm analogous to the projection pursuit in statistics, called ‘match-307

ing pursuit’, that iteratively finds the best matching projections of signals onto308

a fixed overcomplete dictionary of time-frequency ‘atoms’. Linear combinations309

of those atoms form compact representations of the given signal.310

311
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Figure 5: The Olshausen and Field model [51] as a neural network, Sparsenet.
The inputs to the network are images, I(x), where x denotes picture el-
ements (pixels) over an image domain, Ω, and the outputs are the coef-
ficients of the representation, ai. The symbol r(x) is the residual image,
r(x) = I(x) −∑i aiφi(x). Each output neuron evolves according to the dif-
ferential equation ȧi =

∑

x∈Ωφi(x)r(x) − λS′(ai), where the derivative of the
sparsity activation function S(·) induces non-linear self-inhibition, and the mul-
tiplier λ ≥ 0 is a regularization parameter. This enfoces sparsity, as it drives
activities towards zero. The regularization parameter balances the first, data
fidelity term, which ensures accurate reconstruction. During the ‘analysis’ (“fil-
tering”) phase, a given image, I(x), is decomposed in a dictionary, Φ, and its
corresponding coefficients, ai, are computed. During the ‘synthesis’ phase a
learned dictionary predicts an estimate of an image, Î(x), with residuals r(x).
The optimal value of each ai is determined from the corresponding equilibrium
solution.
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Figure 6: Activities, ai, resulting from the model of Olshausen and Field [51].
The input image on the left is reconstructed from learned bases using their
algorithm. Note how the coefficients ai resulting from the model (first row) are
highly sparse, compared to reconstructing the image patch using random bases
(second row) or pixel (canonical) bases (third row). The canonical basis offers
no compression at all, as it is merely a copy of the original image.
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Figure 7: Learned receptive fields (filters) from the sparse coding algorithm of
Olshausen and Field Sparsenet [51]. These filters exhibit properties of simple-
cell receptive fields such as locality, orientation and spatial selectivity.

Geometric interpretation of sparse representation. A geometric inter-312

pretation of sparse representation is depicted in Fig. 8. Each data vector can be313

viewed as a point in a D–dimensional vector space, the whole dataset forming314

a cloud of points. We now seek a linear transformation of the dataset such315

that the inferred “projections” on to the new coordinate system defined by the316

column vectors of the learned transformation matrix, A =
[
al
]L

l=1
, are as sparse317

as possible.318

Note that it is the sparseness of the components (and the selection of a319

suitable model prior) that drives learning of the new representation (unmix-320

ing) directions. This sparseness is reflected in the shape of the point-cloud:321

referring to the above figure (where D = L
.
= 2), sparse data mapped in to322

the latent space produce a highly-peaked and heavy-tailed distribution for both323

axes (Fig. 8 (lower right)). This is indeed a result of the sparseness property of324

the dataset: the two ‘arms’ of the sparse data cloud are tightly packed around325

the directions of the unmixing vectors, al. Algebraically, this means that for326

a particular point, n, either the coefficient s1,n (l = 1) or the coefficient s2,n327

(l = 2) is almost zero, as the particular datum is well described by the a2 or328

the a1 “regressor”, respectively. On the contrary, non-sparse data will typically329

produce a projection that corresponds to a “fat” empirical histogram, as shown330

in Fig. 8 (upper-right).331

7Field studied the statistics of natural scenes and their relation to computer vision and
perception in [23]. The ‘state-space’ in this context is a state-space of neural activation
amplitudes.
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Figure 8: Geometric interpretation of sparse representation. State-spaces (in
the terminology of Field7[23]) and projections of two datasets, one sparse (lower
row) and the other non-sparse (upper row), are shown. Each dataset, plotted
in the measurement coordinate system, xy, produces a point cloud (left part
of the figure) — for visualization purposes, both observation and latent dimen-
sionalities are equal to D = L = 2 in this figure. By projecting the point clouds
on to each coordinate we can produce the corresponding empirical histograms
of ‘state’ amplitudes (middle part of the figure). We now seek a linear trans-
formation to a latent space, uv, such that it optimizes some suitable criterion
(this is shown in the right part of the figure). Sparse data mapped in the la-
tent space produce heavy-tailed distributions for both latent dimensions (lower
right), while for non-sparse data this is not the case (upper right).

With respect to the soft clustering view of component analysis (Miskin, [36]),
discussed in the Introduction of the paper, if the data vectors are sufficiently
sparse, their images on the unit hypersphere SD−1, i.e. the radial sections of
their position vectors with the unit hypersphere, mapped as

xn ∈ E
D 7→ x̂n ∈ S

D−1 ,

where the projection operator P : u 7→ û = u
‖u‖ maps vectors along their radii,332

concentrate around the unit vectors
{
âl
}L

l=1
; see Fig. 9 and Ref. [62]. While333

Miskin did not use this property per se for sparse decomposition, one can design334

separation algorithms that exploit it [45].335

5.2 Sparse Decomposition of Data Matrices336

Inspired by the model of Olshausen and Field, Donoho [21] first points out337

the connection and differences between the two lines of research, independent338

component analysis and sparse decompositions, and he promotes the idea of339
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Figure 9: Clustering of a sparse set of points on the unit hypersphere, SD−1,
embedded in a D–dimensional space. The points cluster around the direction
vectors corresponding to the columns of the mixing matrix.

sparsity, overcompleteness, and optimal atomic decompositions as a better goal340

than independence. He provides a rationale of why sparsity is a more plau-341

sible principle, being “intrinsically important and fundamental”, due to both342

biological and modelling reasons. Regarding the former, he too cites the ex-343

tremely efficient sparse representation achieved by the human visual system,344

and its higher compression performance compared to the best engineered sys-345

tems. With respect to the latter, he notes that independence is inherently a346

probabilistic assumption and of unknown interpretability (with respect to vi-347

sion) because natural images are composed by occlusion. Occlusion inevitably348

creates dependent components. He finally suggests that one of the future chal-349

lenges of ‘sparse components analysis’ would be to search over spaces of objects350

of much larger scale than the image patches of Olshausen and Field.351

It turns out (see Olshausen, [52]) that the Infomax-ICA algorithm becomes,352

in fact, a special case of the sparse linear algorithm of Olshausen and Field353

when there is an equal number of basis functions/latent dimensions and inputs,354

the φis are linearly independent, and there is no observation noise. In this case,355

there is a unique set of coefficients {ai} that is the root of ‖X −Φa‖, and we356

can write a as a = WX, where W = Φ−1 (note that based upon the above357

assumptions, Φ becomes invertible). If, in addition, the ICA nonlinearity is358

chosen to be the cumulative density function of the sparse components, then359
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the sparse algorithm gives exactly the algorithm of Bell and Sejonwski. The360

point here is actually to show that sparsity constraints can lead to separation.361

Many researchers have indeed shown that this can be indeed the case. Indeed,362

as pointed out by Li, Cichocki and Amari [45],363

Remark 4 Sparse decompositions of data matrices can be used for the blind364

source separation problem.365

They provide various examples from simulations and EEG data analysis that
demonstrate the performance of sparse decompositions in signal separation. Li,
Cichocki and Amari performed a sophisticated mathematical analysis for the
case of sparse representation of data matrices under the ℓ1 prior, for given
basis matrices. They tackle the two-step decomposition problem of learning
the base matrix first, via clustering, and then estimating the coefficients of the
decomposition. If X is a data matrix and A = {al} is a given basis, Li et al.
start from the mathematical model shown below:

min
{ L∑

l=1

N∑

n=1

|sln|
︸ ︷︷ ︸

S(S)

∣
∣
∣ subject to AS = X

}

, (10)

with S(·) the sparsity function on the sources. This particular case of optimiza-366

tion problem can then be solved using linear programming. While the ℓ0–norm367

solution is the sparsest one in general, its optimization is a non-trivial combina-368

torial problem. Li et al. show that, for sufficiently sparse signals, the solutions369

to the problem of sparse representation of data matrices that are obtained using370

the ℓ0 and ℓ1 norms are equivalent. This fact was previously shown by Donoho371

and Elad [22] but Li et al. [45] give a less strict sparseness ratio (i.e. the ratio372

of zero versus non-zero elements).373

374

Uniqueness. Importantly, Li et al. [45] also show that the above problem
has a unique solution. While in general there would be an infinite number of
solutions for the underdetermined system of equations

As = x ,

where theD×LmatrixA (observation operator) with L > D maps the unknown
signal s in to the observed signal x, the sparsity constraint makes the particular
linear inverse problem well-posed. A geometric interpretation of why ℓ1–type
sparsity regularization works well for signal recovery under sparsity constraints
is shown in Fig. 10. We want to find the optimal x as the minimum-norm
vector that satisfies the constraint x = As, i.e. such that the hyperplane does
not intersect the ℓ1 ball. More generally, the problem can be stated (in the
deterministic framework) as:

min
s

{

‖s‖1 : ‖As− x‖ < c
}

21

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27456v1 | CC BY 4.0 Open Access | rec: 30 Dec 2018, publ: 30 Dec 2018



x

y

z

{x : y = Φx}

ℓ1 ball in R
N

x̂

1

Figure 10: Why ℓ1 works: A geometric intuition into sparse priors. We seek
the sparsest vector x ∈ R

N under the ℓ1 norm, in this case, that satisfies the
linear constraint y = Φx, where Φ is a dictionary. The ℓ1 penalty corresponds
geometrically to a cross-polytope (the ‘ℓ1 ball’ in RN ) and the linear constraint
to a hyperplane. The shape of the polytope dictates the form of the solution.
The optimal vector, x̂, is the one that touches the hyperplane without the
latter intersecting the cross-polytope. Mathematically, this is the solution to the
problem x̂ = argminy=Φx ‖x‖1. As can be seen from the figure, the inclusion of
ℓ1 norm necessarily drives all components of x but one towards zero, leading to
sparse solutions.
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(Chen and Haykin, [14]), where x can be a “corrupted” (noisy, blurred, etc)375

version of the original signal and c is a positive scalar constant that plays a376

role similar to the noise variance in the probablistic framework (Li et al., [45]).377

In this case, the hyperplane becomes an orthotope (hyperrectangle), defining a378

“zone” in which the vertex of the ℓ1 ball must fall. In addition, Li et al. [45]379

use k–means clustering to get an estimate of the basis, which is then used380

in a linear programming algorithm in order to estimate the coefficients of the381

representation.382

5.2.1 Probabilistic Solutions383

Lewicki and Sejnowski [44], introduce a probabilistic method for sparse over-
complete representations. A Laplacian prior on the coefficients of the basis was
used, p(sl) ∝ e−θ|sl|, enforcing parsimonious representations. They then pro-
pose a gradient optimization scheme for maximum a-posteriori (MAP) learning.
For the linear model x = As+ε, with Gaussian observation noise with variance
σ2, we seek the most probable decomposition coefficients, ŝ, such that

ŝ = argmax
s

{

p(x|A, s)p(s)
}

. (11)

The probability of a single data point is obtained by integrating out the unknown
signals, s:

p(x|A) =

ˆ

p(x|A, s)p(s)ds .

In order to derive a tractable algorithm, they make a Laplace approximation to
the data likelihood, by assuming that the posterior is Gaussian around the poste-
rior mode. This involves computing the HessianH = ∇s∇s {− log [p(s)p(x|A, s)]} =
1
σ2A

TA−∇s∇s log p(s). To make a smooth approximation of the derivative of
the log–prior, and a diagonal approximation to the Hessian, they then take
p(sl) ≈ cosh−θ/β(βsl), which asymptotically approximates the Laplacian prior
for β →∞. Moreover, a low noise level is assumed. The above approximations
finally lead to the gradient learning rule

∆A = ATA ∇A log p(x|A) ≈ −A
(
I+ zŝT

)
,

where, again, zl = ∂ log p(sl)/∂sl. Note that this has the same functional form384

as the Infomax-ICA learning rule, however the basis matrix is generally non-385

square in this case. In contrast to the standard ICA learning rule, and where386

the sources are estimated simply by s = Wx, where the unmixing matrix is387

W = A−1, here we must use a nonlinear optimization algorithm in order to388

estimate the coefficients, using Eq. (11). Due to the low-noise assumption, the389

level of the observation noise is not estimated from the data and has to be set390

manually. Lewicki and Sejnowski’s algorihm, however, is faster in obtaining391

good approximate solutions than the linear programming method and is more392

easily generalizable to other priors.393
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Girolami [26] proposes a variational method for learning sparse represena-
tions. In particular, his method offers a solution to the problem of analyti-
cally integrating the data likelihood, for a range of heavy-tailed distributions.

Starting from the heavy-tailed distribution p(s) ∝ cosh−
1
β (βs), he derives a

variational approximation to the Laplacian prior by introducing a variational
parameter, ξ = (ξ1, . . . , ξL), such that the prior p(s) =

∏L
l=1 exp(−|sl|) becomes

p(s; ξ), with s|ξ ∼ N (s;0,Λ) and Λ = diag (|ξl|). Then p(s) is the supremum

p(s) = sup
ξ

{[
L∏

l=1

ϕ(ξl)

]

N (s;0,Λ)

}

,

with ϕ(ξ) → exp(− 1
2 |ξ|)

√

2π|ξ| as β → ∞. The above is derived using a vari-394

ational argument and using convex duality [37], [53]. In essence, what this395

approximation means is that, at each point of its domain, the intractable prior396

is lower-bounded tightly by a best-matching Gaussian with width parameter ξ,397

with this variational parameter being estimated by the algorithm along with the398

model parameters. Using the above, the posterior takes a Gaussian form. This399

enables him to derive an EM algorithm in order to infer the sparse coefficients400

and learn the overcomplete basis vectors of the representation. Girolami applies401

his sparse representation algorithm to the problem of overcomplete source sep-402

aration and achieves superior results compared to the algorithm of Lewicki and403

Sejnowski.404

The problem of sparsely representating a data matrix described above is405

a special case of the more general problem of recovering latent signals that406

themselves have a sparse representation in a signal dictionary (Zibulevsky et407

al., [62]). Many real-world signals have sparse representations in a proper signal408

dictionary but not in the physical domain. The discussion in Zibulevsky et al. is409

motivated by starting from the case of representing sparse signals in the physical410

domain, depicted in Fig. 8, and then noting that the intuition there carries over411

to the situation of sparsely recovering signals in a transform domain.412

6 Conclusion413

This paper provided a high-level overview of the philosophy and basic principles414

of the data decomposition approach to data analysis. Starting from the classical415

Singular Value Decomposition method of Linar Algebra and progressing towards416

newer and more powerful methods, such as Independent Component Analysis,417

we showed how the interplay of a geometric depiction of the data space and418

the use of prior constraints on the unknowns can lead to stable solutions to the419

inverse problem of reconstructing the sources. Moreover, we gradually lifted420

the biologically implausible priors imposed by earlier methods and focused on421

the principle of parsimony and on sparsity. These have already given exciting422

results in the field of Computational Neuroscience and promise to give analogous423

results in other fields of Science and Engineering as well.424
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A A Primer on Probability Theory428

A.1 Probability Space429

The axiomatic formulation of probability starts by defining a probability space,430

which is a tuple, (Ω, P ), that describes our idea about uncertainty with respect431

to a random experiment. It defines:432

• A sample space, Ω, of possible outcomes, {ωi}, of a random experiment433

and434

• A probability measure, P , which describes how likely an outcome is.435

Now, let A be a collection of subsets of Ω, called random events. Then for436

A ∈ A the two following conditions must hold:437

• Probabilities must be non-negative, P (A) ≥ 0, and P (Ω) = 1,438

• Probabilities must be additive: for two disjoint events, A, B,

P (A ∩B) = P (A) + P (B) .

We also define the conditional probability, which can be thought of as “a prob-
ability within a probability”,

P (A|B) =
P (A ∩B)

P (B)
, P (B) 6= 0 .

Then random variables (r.v.’s) are defined as functions from Ω to a range,
R, e.g. a subset of R or N, etc. These can, inversely, define events as:

R→ Ω : A(x) =
{

ω ∈ Ω :
[
x(ω)

]}

,

where
[
·
]
denotes a “predicate”8 (e.g. the event ‘x > 2’), and therefore act as439

“filters” of certain experimental outcomes.440

Probability densities are defined as densities of probability measures:

p(x) =
d

dx
P (A(x))|x, with A(x) =

{

x′ ∈ [x, x+ dx]
}

, x ∈ R .

Finally joint densities (e.g. for the case of two random variables X , Y ) are
defined as

pXY (x, y) = p
({

ω : X(ω) = x ∧ Y (ω) = y
})

.

Joint densities of more than two r.v.’s are defined analogously.441

8This is called an ‘Iverson bracket’ in Iverson notation [35].
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A.2 Three Simple Rules442

Probability theory is a mathematically elegant theory. The whole construction443

can be based on the following three simple rules:444

1. The Product rule, which gives the probability of the logical conjunction
of two events A and B,

P (A ∩B) = P (A|B)P (B) .

This can be generalized for N events, giving the chain rule

P

(
N⋂

i=1

Ai

)

=

i−1∏

i′=1

P

(

Ai

∣
∣
∣
∣
∣

i⋂

i′=1

Ai′

)

, i′ < i .

This will be valuable for reasoning in Bayesian networks later.445

2. Bayes’ rule, which is a recipe that tells us how to update our knowledge
in the presence of new information, and can directly be derived from the
definition of conditional probability and the product rule,

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) 6= 0 .

3. Marginalization: given a joint density, pXY (x, y), get the marginal den-
sity of X or Y by integration (i.e. ‘integrate out’ the uncertainty in one
variable):

pX(x) =

ˆ

{Y ∈Y}

pXY (x, y)dy .

In principle, this is everything we need to know in order to perform proba-446

bilistic modelling and inference.447
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