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Abstract 52 

Various natural patterns4such as terrestrial sand dune ripples, lamellae in vertebrate bones, 53 

growth increments in fish scales and corals, aorta and lamellar corpuscle of humans and 54 

animals4comprise layers of different thicknesses and lengths. Microstructures in manmade 55 

materials4such as alloys, perlite steels, polymers, ceramics, and ripples induced by laser on the 56 

surface of graphen4also exhibit layered structures. These layered patterns form a record of 57 

internal and external factors regulating pattern formation in their various systems, making it 58 

potentially possible to recognize and identify in their incremental sequences trends, periodicities, 59 

and events in the formation history of these systems. The morphology of layered systems plays a 60 

vital role in developing new materials and in biomimetic research. The structures and sizes of 61 

these two-dimensional (2-D) patterns are characteristically anisotropic: That is, the number of 62 

layers and their absolute thicknesses vary significantly in different directions.  63 

 64 

The present work develops a method to quantify the morphological characteristics of layered 65 

patterns that accounts for anisotropy in the object of study. To reach this goal, we use Boolean 66 

functions and an N-partite graph to formalize layer structure and thickness across a 2-D plane 67 

and to construct charts of 1) <layer thickness vs. layer number= and 2) <layer area vs. layer 68 

number.= We present a parameter for structural disorder in a layered pattern (DStr) to describe 69 

the deviation of a study object9s anisotropic structure from an isotropic analog and illustrate that 70 

charts and DStr could be used as local and global morphological characteristics describing 71 

various layered systems such as images of, for example, geological, atmospheric, medical, 72 

materials, forensic, plants, and animals. Suggested future experiments could lead to new insights 73 

into layered pattern formation.  74 

 75 

Keywords: 0-gravity, anisotropy of layered systems, biomimetics, Boolean functions, image 76 

processing, N-partite graph, structural anomaly, structural disorder of layered systems, world 77 

ocean 78 

  79 
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1. Introduction 80 

Layered structures can be found in many natural patterns4including satellite images of the 81 

surfaces of Mars, Pluto (Fig. 1A), and Titan (Fig. 1B) and terrestrial tidal sand ripples4exhibit 82 

layered patterns of varying sizes, ranging from meters to hundreds of kilometers. Fish skin, fish 83 

scales, coral growth increments, leaf structures and flower surface microstructures, snake and 84 

spider skin (Fig. 2A, B), bird plumage patterns, three-dimensional (3-D) images of shells (Fig. 85 

2C), clouds and lightning, human and animal hairs, and wild turkey wings (Fig. 2D) all exhibit 86 

patterns of this type. Other examples are microstructures in manmade materials and in lamella 87 

bones (Fig. 1C). 88 

 89 

Natural layered patterns are attractive objects of study for specialists of different disciplines for 90 

several reasons. First, layer thickness and structure represent the cumulative effect of internal 91 

and external factors regulating pattern formation. Thus, layered patterns serve as a record of 92 

diverse events occurring in different space3time domains. This record makes it possible to link 93 

the morphology of layered patterns to external factors such as variability in the Earth9s rotation 94 

(Pannella, 1972), climate cycles (Radebaugh et al., 2011; Ewing et al., 2014), and the state of 95 

the environment (Guyette and Rabeni, 1995; Costa et al., 2002).  96 

 97 

Some soft tissues4including the human aorta, skeletal muscle (Fig. 2E), and Pacinian (lamellar) 98 

corpuscles4exhibit layered structures. Pacinian corpuscles are nerve endings in the skin 99 

responsible for detecting and locating skin deformations produced by air vibrations and skin 100 

contact (Kaas, 2012). Studying their morphological parameters has implications for the 101 

development of new technology for conveying speech and visual information through 102 

somatosensory channels (Rothenberg et al., 1977; Bau et al., 2010; Biswas et al., 2015). The 103 

human aorta has a layered (i.e., lamellar) structure (Fig. 14) that typifies the elastic lamina found 104 

in human and animal blood vessels. The study of aortic microstructure and age-related changes is 105 

an urgent area of medical research (Novotny et al., 2017; Tonar et al., 2015; Akhtar et al., 2011; 106 

Selçuk et al., 2015). 107 

 108 

Additionally, analyzing layer morphology is an essential element of solving many problems in 109 

materials science, biomimetic, and forensic research. For instance, biometric research has 110 
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explored the structural properties of butterfly photonic systems (Vukusic and Sambles, 2003), 111 

flower surfaces (Barthlott et al., 2016; Huang et al., 2017), and snakeskin (Abdel-Aal and 112 

Mansori, 2011; Klein and Gorb, 2012). In materials science, a material9s mechanical and 113 

physical characteristics are determined by its microstructure, which in many instances is layered 114 

(Moya, 1995; Mayer, 2005). Understanding the relationship between microstructure and these 115 

properties is vital for developing porous materials with new mechanical characteristics (Deville, 116 

2018). In forensic research, morphological features of layered systems in hair and fingerprints 117 

can be used for identification purposes (Champod, 2015; Lee et al., 2014; De Marinis and 118 

Asprea, 2006).  119 

 120 

The study and commercial applications of various categories of layered systems requires 121 

formalizing aspects of their analysis. One of the first steps toward this goal is quantitatively 122 

describing the morphology of a layered pattern. Formalizing this morphology is problematic 123 

because of the numerous breaks and confluences (i.e., bifurcations) in the layers of 2-D and 3-D 124 

objects (Blumberg, 2006). The number and thickness of these layers is a function of the direction 125 

in which they are measured; that is, they are anisotropic in both size (including thickness and 126 

area) and structure, thereby making it difficult to develop a formal procedure for their analysis.  127 

 128 

Layered systems4irrespective of their nature or size4share several key elements, including the 129 

idea of layers, number of layers, and their thicknesses. If layers have no breaks or confluences 130 

(i.e., layers are structurally isotropic), then calculating the thickness, area, and number of these 131 

layers across a 2-D plane is a straightforward task. But if layers have breaks and confluences, 132 

quantifying a pattern9s characteristics becomes problematic.  133 

 134 

To address this problem, we have proposed an empirical model M = {BF, G(N), TM,N} of 2-D 135 

layered patterns, with the aim of providing tools to quantify the morphological features of 136 

anisotropic layered objects (Smolyar et al., 1987; Smolyar and Bromage, 2004; Smolyar, 2014; 137 

Smolyar et al., 2016). This model has three components: a Boolean function (BF) (Fig. 3B3D), 138 

an N-partite graph (G(N)) (Fig. 3A) to describe the 2-D structure of layers, and Table TM,N, 139 

which comprises the thickness of layers along transects R1, …, Rj, …, RN, plotted from a 140 

pattern9s lower margin to its upper margin. Transects R1, …, Rj, …, RN are straight lines always 141 
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distributed evenly across a 2-D layered pattern. The concept of open/closed gates (Fig. 3B,C) 142 

makes it possible to describe all possible versions of layer structure using Boolean functions. 143 

 144 

The second set of key elements shared by 2-D anisotropic layered systems are the concepts of 145 

layer structure across a 2-D plane and layer length, which are defined in terms of transects that 146 

cross a pattern from its lower to its upper margins (Fig. 4A). We introduce the concept of 147 

synchronizing layer formation across a 2-D plane in order to quantify the structure of layers and 148 

develop a procedure for plotting 1) <layer thickness vs. layer number= and 2) <layer area vs. 149 

layer number= (Smolyar et al., 2016). That is, to construct the structure of each layer across a 2-150 

D plane, it is necessary to synchronize layer formation in the space3time domain. Because layers 151 

are anisotropic, more than one version of the layered structure could be used for synchronization, 152 

resulting in fuzziness in the charts for <layer thickness vs. layer number= and <layer area vs. 153 

layer number.= Fuzziness is an unavoidable attribute when parameterizing anisotropic layered 154 

patterns. When describing the variability of layer size in anisotropic patterns across a 2-D plane, 155 

high accuracy and high confidence are mutually exclusive.  156 

 157 

Smolyar et al. (2016) introduced the idea of an <index of confidence,= which allows a 158 

compromise between detail and signal-to-noise ratio4either more detail and a lower signal-to-159 

noise ratio or less detail and a higher signal-to-noise ratio4when describing the variability of 160 

layer thickness and area across N transects. It is therefore possible to plot robust charts for <layer 161 

thickness vs. layer number= and <layer area vs. layer number.= These charts describe the global 162 

morphological characteristics of an entire 2-D layered pattern. For instance, if each layer (e.g., of 163 

tree rings, fish scales, lamellar bones, corals) is associated with the instant of time tj in which it 164 

was formed, then a layer9s thickness and area are measures of the growth rate of the layered 165 

system at that time. In this case, <layer thickness vs. layer number= and <layer area vs. layer 166 

number= are interpreted as growth-rate variability across the entire system of 2-D anisotropic 167 

layers.  168 

 169 

Using model M = {BF, G(N), TM,N} to analyze the growth-rate variability of lamella bones 170 

allows us to reveal cyclicity in bone formation not previously observed (Bromage et al., 2009). 171 

These results4as well as evidence that many factors controlling pattern formation are cyclic in 172 
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nature4motivate us to use M = {BF, G(N), TM,N} to reveal and quantify cyclicity for layered 173 

objects when layer formation is not associated with a moment of time, tj. 174 

 175 

The present paper continues our previous work (Smolyar et al., 2016). The goals of the paper are 176 

two-fold: 1) develop a method for quantifying the structural characteristics of layered patterns 177 

and 2) examine the applicability of DStr and the empirical model M = {BF, G(N), TM,N} for 178 

analyzing layered patterns of various categories. To reach these goals, we 179 

• review layered patterns appearing in the realms of medicine, forensics, geology, botany, 180 

zoology, atmospheric science, and materials science in order to justify that similarities in the 181 

structural anisotropy of layers can be described by M = {BF, G(N), TM,N};  182 

• introduce a structural characteristic of layered patterns called <layers structural disorder= 183 

(DStr) and propose a fully automated method for its calculation. DStr serves as a measure of 184 

deviation from an isotropic prototype in patterns with anisotropic layered structure; 185 

• illustrate that DStr is a universal characteristic applicable to any 2-D layered pattern, 186 

irrespective of nature and size, and could be used as a local and global defining 187 

characteristic of a layered pattern; 188 

• illustrate the possibility of using an empirical model of layered patterns, M = {BF, G(N), 189 

TM,N}, to quantify the variability of layer thickness across 2-D planes of images of objects of 190 

various categories.  191 

Various examples underline the applicability of DStr and M = {BF, G(N), TM,N} for quantifying 192 

the structural characteristics of various categories of living and non-living layered systems. We 193 

also give suggestions for further experiments that have the potential to help us better understand 194 

environmental influences on pattern formation. It is necessary to point out that using DStr and M 195 

= {BF, G(N), TM,N} to gain insight into any particular layered system is outside of the scope of 196 

the present work. 197 

 198 

In different publications, layers may be called growth lines, growth layers, circuli, bands, growth 199 

increments, lamellae, ripples, or ridges, depending on the object of study. The present work uses 200 

these terms synonymously. 201 

  202 
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2. Method 203 

This section explains DStr and describes two structural extremes of anisotropic 2-D layered 204 

systems: minimal disorder (DStr = 0) and maximal disorder (DStr = 1).  205 

 206 

2.1. Basic concept 207 

A precise definition of anisotropy/isotropy depends on the object of study. Our definition of 208 

isotropic and anisotropic layered patterns comes from the study of growth increments in fish 209 

scales. Growth rates of fish scales vary in different directions, resulting in numerous breaks and 210 

confluences in growth layers, which are the source of anisotropy in fish scale growth layers 211 

because more than one possibility exists for describing layer structure across a 2-D plane (i.e., 212 

across N transects). In other words, the structure of layers is a function of the state of gates (Fig. 213 

3B-D). Therefore, characteristics of anisotropy in a layered pattern are i) the possibility of more 214 

than one version of layer structure and ii) different lengths of layers, where length is defined as 215 

the number of transects crossing the layer. In an isotropic image, each layer is crossed all N 216 

transects (i.e., layers have no breaks and confluences), and only one possibility exists to describe 217 

the structure of each layer. Objects with isotropic layered structure are relatively rare. Hence, a 218 

general definition of anisotropy implies different properties in various different directions, and 219 

anisotropy in a layered system implies different properties in the directions of layers formation 220 

only. 221 

 222 

2-D layered patterns consist of both isotropic (IC) and anisotropic (AC) components. We 223 

therefore define the DStr of a 2-D layered pattern as the measure of a pattern9s deviation from 224 

isotropy. Because the N-partite graph, G(N), represents the structure of a layered pattern, AC and 225 

IC could be understood in terms of edges and vertices in G(N).  226 

 227 

G(N) consists of a sequence of bi-partite graphs, G(R1,R2), … G(Rj,Rj+1), … G(RN-1,RN), where 228 

G(Rj,Rj+1) is a bi-partite graph that describes the structure of a layered pattern situated between 229 

transects Rj and Rj+1 (Fig. 3A). An isotropic layer here would imply that vertex a∈Rj connects 230 

only with vertex b∈Rj+1 and b∈Rj+1 connects only with a∈Rj. Edge ab in G(Rj,Rj+1) is therefore 231 

an isotropic edge. TotalEdges denotes the total number of edges in G(Rj,Rj+1). The number of 232 

anisotropic edges in G(Rj,Rj+1) is equal to TotalEdges minus the number of isotropic edges.  233 
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 234 

Disorder (DGrp (Rj,Rj+1)) of bi-partite graph G(Rj,Rj+1): 235 

DGrp(Rj,Rj+1) = anisotropic edges/ TotalEdges. 236 

Disorder of N-partite graph G(N): 237 

(1) DGrp(R1,RN) = 1/(N−1)*Σ DGrp(Rj,Rj+1), j = 1, N. 238 

Two questions follow from equation (1). 239 

 240 

Question #1. From equation (1), it transpires that DGrp(R1,RN) depends on sampling density 241 

(i.e., the number of transects used to calculate DGrp(R1,RN)). How many transects should be 242 

used to quantify DGrp(R1,RN), which has not yet been technically defined? Section 2.2 answers 243 

this question. 244 

 245 

Question #2. Following equation (1), DGrp(R1,RN) varies from 0 to 1. If DGrp(R1,RN) = 0, then 246 

the layered pattern is entirely isotropic; such layered images are easily visualized (Fig. 24). But 247 

what do entirely anisotropic patterns (that is, DGgr(R1,RN) = 1) look like? Section 2.3 tackles 248 

this issue.  249 

 250 

2.2. Sampling density  251 

Because the AC of a layered pattern are unevenly distributed in 2-D space, we examine multiple 252 

versions of sampling density to determine how many transects are necessary to quantify DStr. 253 

We plot the function y = f(x) (i.e., DStr = f(number of transects)), which describes dynamic 254 

changes in DStr when the number of transects tends to the maximum possible number. The area 255 

bounded by y = f(x) and the y-axis is the measure of DStr.  256 

 257 

The choice of how many transects, R1, …, Rj, …, RN, to use to develop the empirical model M = 258 

(BF, G(N), TM,N) plays an essential role in analyzing the structure of anisotropic layered patterns. 259 

Consider the proposed approach for constructing sets of transects used to describe model 260 

components BF, G(N), and TM,N and calculate DStr. 261 

 262 

The general principle in choosing the number of transects is based on the fact that we do not 263 

know a priori how many transects will best describe the particular layered pattern within the 264 
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frame of finding a solution to the specific problem. In these circumstances, our choice is to 265 

examine as many different versions of transect sets. In the present work, all transects are straight 266 

lines, and the distance between two adjacent transects remains constant across all transects.  267 

 268 

Figure 4 illustrates the procedure for constructing y = f(x) and calculating DStr. Fig. 4A depicts a 269 

layered pattern with structural anisotropy and a graph constructed for transects A, B, and C; 270 

Figure 4B depicts a graph for four transects. The initial layered pattern is presented as a raster 271 

graphic; thus, the size of the layered pattern is measured in terms of pixels. The minimum 272 

distance between two adjacent transects is 1 pixel. If the thickness of a transect is equal to 1 273 

pixel, then the maximal number of transects is Nmax = pattern width/2 (if the pattern width is 274 

divisible by 2), and Nmax = (pattern width+1)/2 otherwise. The layered pattern in Fig. 4 has a 275 

maximum of 103 transects. We calculate DGrp for N = 3, 4, 5, … , 103, or 100 versions of 276 

transect sets (Fig. 4C) to plot y = f(x) and normalize the number of transects in order to present 277 

the results of the calculation in scale [0,1]; Ni(normalized) = Ni/Nmax (Fig. 4D). By calculating 278 

DGrp for transect Set #1 = (R1, R2, R3), Set #2 = (R1, R2, R3, R4), …, Set #100 = (R1, R2, … , 279 

R103), we describe the variability of DStr across all possible transect versions. In this case, y = 280 

f(x) contains as much structural detail as possible for the layered pattern under study.  281 

 282 

We refer to the number of transect sets used to plot y = f(x) and calculate DStr as <sampling 283 

density.= Sampling density is <highest= if all possible versions of transect sets are used to 284 

construct y = f(x) and calculate DStr (Fig. 4D). Sampling density could be described as 285 

<medium= or <low= depending on the number of transect sets used to construct y = f(x). Fig. 22B 286 

illustrates how high, medium, and low sampling density affect the shape of y = f(x). 287 

 288 

The coefficient of determination, R2 (Draper and Smith, 1998), ranges from 0 to 1 and is used to 289 

estimate how well the partial-rational function y = mxk replicates y = f(x). If R2 = 1, then y = 290 

mx−k is the approximation of y = f(x) with 0 error. We choose function y = mx-k to replicate y = 291 

f(x) for two reasons. First, it contains two numeric coefficients, m and k, so only two numeric 292 

values serve as global structural characteristics of the entire 2-D layered pattern. Second, for 293 

many-layered patterns, R2 g 0.93 for y = mx-k. 294 

 295 
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We use Microsoft Excel 2007 to calculate parameters m and k for y = mx-k and R2 for y = mx−k. 296 

Because R2 = 0.9962, y = 0.0228x−0.969 (Fig. 4D), thus equation (2) can be used to calculate DStr:  297 

(2) DStr =  ∫ f(x)dx10 . 298 

For the pattern in Fig. 4D, DStr = 0.08346.  299 

 300 

2.3. Maximal structural disorder of layered patterns (DStr = 1) 301 

Consider the appearance of a layered pattern with DStr = 1 (i.e., the layered pattern9s has no IC): 302 

Each vertex situated along transect Rj connects with all vertices situated along Rj+1; thus, the bi-303 

partite graph G(Rj, Rj+1) is complete. If the layered image consists of complete bi-partite graph 304 

sequences for all possible numbers of transects, then DStr = 1. It should be stressed that we do 305 

not use isolated vertices (i.e., those that are not connected to other vertices) in calculating DStr, 306 

because they do not form isotropic or anisotropic edges. One possible example of a pattern in 307 

which DStr approaches maximal structural disorder is stars in the night sky (Fig. 11A, B). 308 

 309 

3. Results 310 

We use images of living and non-living systems to justify applying the proposed method to 311 

quantify structural characteristics of a broad range of patterns. Section 3.1 presents results of 312 

calculating DStr, Section 3.2 presents the variability of layer size across a 2-D plane, and Section 313 

3.3 presents experiments illustrating the sensitivity of these methods to detecting minor changes 314 

in layered structures. 315 

 316 

3.1. Structural disorder of layered patterns 317 

The algorithm for calculating DStr consists of the following steps: 318 

1. The original layered image (in grayscale raster format) is converted into M = (BF, G(N), 319 

TM,N) using the technology described in Smolyar, 2014 and Smolyar et al. (2016). 320 

2. Transects R1, …, Rj, …, RN are plotted and DGrp(Rj,Rj+1) is calculated (equation 1). 321 

3. Step 2 is repeated P times, resulting in DGrp(1,N1), DGrp(1,N2), …, DGrp(1,NP). 322 

4. The function y = f(x) is constructed and R2 is calculated. 323 

5. DStr for the entire sampling area is calculated (equation 2). 324 

We consider DStr for layered images in seven categories: geology, atmosphere, materials, 325 

medicine, plants, animals, and forensics. 326 
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Geology (Figures 538). Sand dunes on the Martian surface form a record of the role of wind in 327 

climatic regime (Gardin et al., 2011; Diniega et al., 2017; Lapotre et al., 2016). Studying the 328 

structural characteristics of dunes and their changes over time is necessary to better understand 329 

Martian climatic systems and how they impact robotic and human activity on Mars. Figure 5 330 

shows the structural similarities and differences among four parts of the sampling area. 331 

Parameter DStr for parts A 3 D indicates that part D has the most complicated layered structure, 332 

i.e deviation from isotropic layered object, since DStr(D)> DStr(B)> DStr(A)> DStr(C). 333 

 334 

Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of 335 

the sampling area a is 10 times less than that of nearby area b, which exhibits structural anomaly 336 

with respect to area a. Figure 6B depicts the structural anomaly of sand ripples. The red sampling 337 

area exhibits structural anomaly with respect to nearby orange and blue areas. The DStr of the 338 

orange and blue areas is 2.3 times less than that of the red area. 339 

 340 

Figure 7 shows a vertical section of underground soil structure, obtained by Ground Penetrating 341 

Radar, that demonstrates anisotropic layers that can be used to identify pipes, archeological 342 

artifacts, or soil composition in the study area (Robinson et al., 2013). The sampling area of 343 

Figure 7 is divided into four parts, and DStr is calculated for each part. Part D has the most 344 

complicated structure since DStr(D)> DStr(B)> DStr(A)> DStr(C). 345 

 346 

Figure 8 shows significant differences between structures of sand ripples formed in the tidal zone 347 

at Inch on the Dingle Peninsula in Ireland. Knowledge of the dynamics and morphology of dunes 348 

and ripples is useful for managing beach ecosystems (Sloss et al., 2012; Passchier and Kleinhans, 349 

2005).  350 

 351 

Atmosphere (Figures 9311). Altocumulus clouds (Fig. 9) and cloud-to-ground lightning (Fig. 10) 352 

are examples of atmospheric layered patterns. The morphology of these phenomena can be 353 

described in the same quantitative terms used for geologic and biological systems, namely, as a 354 

deviation from a layered object with isotropic structure. The structure of lightning could be 355 

described with different levels of detail. A satellite image of the United States at night and 356 
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another from the Hubble Space telescope (Fig. 11) illustrate what the chart for <DStr vs. number 357 

of transects= looks like in images tending toward complete disorder. 358 

 359 

Materials (Figure 12). Materials science is an attractive area for the application of M = {BF, 360 

G(N), TM,N} because the macro- and nanostructures of various materials exhibit layered 361 

anisotropic patterns (Fig. 12) that define their properties. Thus, DStr could serve as a local and 362 

global morphological parameter for describing material microstructures. DStr could also be used 363 

to link structures and properties, an essential step in developing materials with desired 364 

combinations of characteristics. Figure 12A exhibits images of a eutectic alloy, ion-induced 365 

ripples (Lian et al., 2006), and perlite and their corresponding DStr parameters.  366 

 367 

The morphology of the surface of black diamonds is an essential element in developing solar 368 

energy conversion systems (Calvani et al., 2016). Figure 12B shows the dynamic of DStr as a 369 

function of different treatments of the black diamond surface.  370 

 371 

Medicine (Figures 13315). Lamella bones (Fig. 13), the human aorta (Fig. 14), and an eye 372 

angiogram (Fig. 15) are medical examples of layered patterns with structural anisotropy. Because 373 

medical treatments affect their structures, estimating the influence of treatment necessitates 374 

comparing the morphology of layered patterns before and after treatment (Novotny et al., 2017). 375 

Structural disorder in the sampling area of bone B is much simpler than that in bone A (Fig. 13). 376 

Sampling area B is uniform, whereas sampling area A includes a combination of bone and osteon 377 

lamellar systems.  378 

 379 

The aorta lamellar pattern in Figure 14 has uniform anisotropic structure since parts A, B, C, and 380 

D have similar values of DStr. It is possible to consider an eye angiogram as a layered pattern 381 

with structural anisotropy (Fig. 15). The structure of an eye angiogram with medium detail is 382 

more complicated than that with low detail. DStr allows us to quantitatively describe this 383 

difference. 384 

 385 

Plants (Figures 16317). Flower surfaces can be super hydrophobic and self-cleaning, features 386 

that make their morphology an important object of biomimetic study (Barthlott et al., 2017). 387 
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Figure 16 shows the layered microstructure of the surface of a Rose petal divided into four 388 

sampling areas. Visual inspection of the sampling areas allows us to note that area B has the 389 

most complicated layer structure. Values of DStr for A, B, C, and D verify this observation.  390 

 391 

Figure 17 depicts juvenile and adult leaves of an aquatic Madagascar Lace plant, which is an 392 

excellent model for studying programmed cell death in plants (Gunawardena et al., 2004; 393 

Dauphinee et al., 2017). We use the juvenile and adult vein systems in Madagascar Lace leaves 394 

to compare their morphology. The sampling area of the juvenile leaf is completely isotropic, 395 

DStr(lace juvenile leaf) = 0 (Fig. 17), whereas the sampling area of the adult leaf has a high 396 

degree of disorder, which is obvious from its pattern; DStr(lace adult leaf) = 0.7116 (Fig. 17).  397 

 398 

Animals (Figures 18321). The configuration of stripes on fish skin (Fig. 18) is a typical example 399 

of an anisotropic layered pattern. The formation of patterns on the surfaces of fish, shells, and 400 

mammals has been explained by a reaction3diffusion system (Turing, 1952; Meinhardt, 1989; 401 

Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D imply that 402 

DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure 403 

and area D has the simplest structure among four sampling areas. This result inspires two 404 

questions: 1) Is the DStr of the right side of the fish similar to the DStr of the left side? 2) Could 405 

the morphology of stripes serve as a record of internal and external events in the life history of a 406 

fish? Model M = {BF, G(N), TM,N} could be one tool to help to answer these questions. 407 

 408 

The micro-ornamentation of snakes is broadly studied in biomimetic research due to unique 409 

combinations of surface features (Arnold, 2002; Gower, 2003; Filippov and Gorb, 2016). Figure 410 

19 shows hierarchical layered microstructures in snake skin. Although the entire area of snake 411 

skin shown in Figure 19 has complicated morphology, sampling areas A and B have DStr close 412 

to isotropy because the DStr of A and B are very low: DStr(A) = 0.042 and DStr(B) = 0.063. 413 

 414 

Plumage patterns in banded pitta, kingfisher, and owl (Fig. 20) offer examples of layered 415 

systems in bird plumage. DStr shows significant diversity in the structure of these layered 416 

systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires 417 

us to ask whether parameters of layered structures might serve as phenotypic characteristics 418 
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(Gluckman and Mundy, 2016). Model M = {BF, G(N), TM,N} could be used to test this 419 

hypothesis (i.e., examine the structural characteristics of birds9 plumage patterns with respect to 420 

state of the environment).  421 

 422 

Photonic systems of biological objects generate interest among scientists and engineers across 423 

various disciplines due to their unique ability to manipulate color using micro-structured surfaces 424 

(Starkey and Vukusic, 2013; Parker, 2000). Many photonic surfaces in flowers and animals 425 

exhibit lamellar structures (Vukusic and Sambles, 2003), such as the scales arranged in 426 

anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We use DStr 427 

to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results 428 

of DStr calculations for six sampling areas. The left and right wings of Morpho butterfly have 429 

similar structural characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a 430 

characteristic of blue color nuances in Morpho butterflies? Do male and female Morpho 431 

butterflies have similar structural characteristic DStr? How do local/global structural anomalies 432 

in butterfly wings with respect to DStr affect butterfly color? Model M = {BF, G(N), TM,N} 433 

could be used to answer these questions.  434 

 435 

Forensic (Figures 22323). The layered microstructures of human hair are much more 436 

complicated than those of some animals (Fig. 22A), which is confirmed by DStr(human), 437 

DStr(deer), DStr(mouse), and the corresponding charts for <structural disorder of hair = 438 

f(number of transects).= Figure 22B shows that high sampling density accounts for more 439 

structural details than low sampling density.  440 

 441 

As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive 442 

structural characteristics that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) = 443 

0.1978. Distinctions between DStr among different categories of fingerprints substantially 444 

depend on the number of transects used to calculate DStr (Section 2.2). To define the number of 445 

transects that allow maximal differences among DStr in the four categories of fingerprints, we 446 

plot the chart (Fig. 23B) as DStr(central pocket loop) − DStr(plain arch) = f(number of 447 

transects). Nine transects allow the maximal possible differences between two categories of 448 

fingerprints; that is, DStr(central pocket loop) − DStr(plain arch) = 0.253, which is 2.6 times 449 
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more than the DStr(central pocket loop) and DStr(plain arch) comparison if equation (2) is used 450 

to calculate DStr. Sampling density and number of transects could complement DStr in forensic 451 

identification. 452 

 453 

Excel file (Supplemental) presented raw data for calculation DStr and DStr = f(transect number). 454 

 455 

3.2. Cyclic variability of layer size across 2-D plane 456 

The algorithm for constructing chart for <layer thickness vs. layer number is identical to that 457 

used in Smolyar et al. (2016). The signal-to-noise ratio for charts (Figures 24-29) is equal to 6. 458 

The experiments described in this section examine the distribution of layer thickness across a 459 

sampling area in order to estimate whether average layer thickness accurately describes the 460 

morphological characteristics of 2-D layered systems.  461 

 462 

Geology (Figures 24325). Dune fields are an example of the layered patterns that exist 463 

throughout nature. Dune spacing (i.e., layer thickness) is a basic morphological characteristic of 464 

dune systems (Lancaster, 2009). Figures 24 and 25 show layered fragments of the surface of 465 

Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to describe 466 

the variability of layer thickness across the 2-D sampling area with high accuracy. Several 467 

transects are used to calculate average thickness of each layer. Charts of <layer thickness vs. 468 

layer number= show cyclic trends in the variability of layer thickness across the sampling area 469 

(Fig. 24 and 25). Similar cyclic trends in anisotropic structures are also observed on Mars and 470 

Earth (Smolyar et al., 2016).  471 

 472 

Materials (Figure 26). Lamellar/rippled/layered patterns have been found in metals, alloys, 473 

insulators, semiconductors, and many others materials (Deville, 2018; Zuo et al., 2016; Moya, 474 

1995). Lamellar thickness is a micromorphological characteristic that plays a central role in the 475 

relationship between a material9s microstructure and its macro properties because <the unique 476 

properties of natural layered materials and nanocomposites are achieved through a fine control of 477 

the layer thickness= (Deville et al., 2007, p. 970). Figure 26A depicts an image of layered Al3Si 478 

composite with anisotropic structure. The chart of <layer thickness vs. layer number= shows 479 

cyclicity in the variability of layer thickness across the sampling area (Fig. 26B), which is 480 
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divided into parts A, B, C, and D (Fig. 26C) according to the uniform distribution of layer 481 

thickness in each part (Fig. 26D). It follows that the chart of <layer thickness vs. layer number= 482 

provides a more detailed description of a layered pattern9s morphological characteristic than 483 

average layer thickness.  484 

 485 

Medicine (Figures 27). Figure 27 shows a Pacinian (lamellar) corpuscle (PC), a sensory receptor 486 

in skin that is sensitive to contact and vibration. The anisotropic lamellar structure of PCs plays 487 

an essential role in the function of the PC system; lamellar thickness and number of lamellae are 488 

used to examine the link between the PC9s material and morphological characteristics and its 489 

response to vibration (Quindlen et al., 2017). We use 42 transects to plot the chart of <layer 490 

thickness vs. layer number= (Fig. 27), which clearly demonstrates the cyclic nature of variability 491 

in lamellar thickness across the sampling area.  492 

 493 

Animals (Figures 28329). The chart of <layer thickness vs. layer number= exhibits non-random 494 

trends in the variability of layer thickness across bird feathers (Fig. 28). The chart and DStr could 495 

potentially serve as morphological characteristics of birds with application to the study of their 496 

life cycles. Striped patterns are often used to distinguish bird species from one another. In 497 

particular, shrikes and their relatives are recognizable to birders by the peculiar differences in the 498 

thickness and layering of their striped patterns, many of which are simply black and white. 499 

Furthermore, there are often marked differences in the morphological features of feathers 500 

between males and females of the same species, a dimorphism that is recognized both by the 501 

animals themselves and by human observers (Gluckman 2014). 502 

 503 

The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of 504 

their superior mechanical properties but also as a source of information about spiders9 505 

construction behaviors (Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb 506 

web represents a layered system with structural anisotropy: <One of the most relevant structural 507 

traits of orb webs is their mesh width= (Zschokke and Nakata, 2015, p. 661). Mesh width (i.e., 508 

layer thickness) is used to understand the construction features of web systems and relate them to 509 

spiders9 behavior. For instance, Zschokke and Nakata (2015, p. 661) point out that <a closer look 510 

at the orb webs reveals that mesh widths are not the same throughout the entire web.= Charts 511 
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describing the variability of mesh width across the sampling area (Fig. 29) confirm this statement 512 

and indicate cyclicity in the variability of mesh width across the sampling area. Thus, M = {BF, 513 

G(N), TM,N} could be used to generate a new set of structural characteristics describing the 514 

anisotropy of an orb web and its segments.  515 

 516 

3.3. Sensitivity of DStr to minor structural changes  517 

Next, we examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A), 518 

fish scale (Fig. 30B), and an eye angiogram (Fig. 30C) as test objects. Let us denote 519 

characteristics of images before and after structural changes by DStr(before changes) and 520 

DStr(after changes). We describe the link between DStr(before changes) and DStr(after changes) 521 

and structural changes in images in quantitative terms using the following procedure: First, we 522 

describe the difference between DStr(before changes) and DStr(after changes) on a relative scale 523 

(%). All changes in layer structure are marked in red. We denote the difference as Parameter-1. 524 

Second, we describe (in %) the difference (in pixels) between the images before and after 525 

changes. To do so, we calculate the number of black pixels in an image before changes (total 526 

pixels before changes) and the total number of pixels that change color (white to black or vice 527 

versa) as a result of structural changes (total pixel change). The ratio (%) of <total pixel 528 

change/total pixels before changes= allows us to calculate the magnitude of structural changes in 529 

an image. This ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2 530 

allows us to estimate the sensitivity of DStr to structural changes in the image. Results of 531 

calculating Parameter-1 and Parameter-2 are 532 

                                 Parameter-1      Parameter-2 533 

             Fingerprint      0.55%              0.072% 534 

               Fish scale      3.80%              0.150% 535 

       Eye angiogram      0.32%              0.077%  536 

                  Average      1.56%              0.10%  537 

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1% 538 

structural change in layers results in a 15.6% change in DStr. This result provides evidence that 539 

minor changes in layer structure are accompanied by substantially greater changes in DStr 540 

values. This feature of M = {BF, G(N), TM,N} could be positive or negative, as required by 541 

application. For instance, if it is necessary to identify a fingerprint image of poor quality with 542 
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many gaps, then the sensitivity of DStr and y = f(x) to structural changes is a barrier. If the image 543 

is of a good quality and it is necessary to track minor changes in structure over time (Silvestro et 544 

al., 2010) or find structural differences between patterns of spider webs (Eberhard, 2014; 545 

Hesselberg, 2013; Blackledge and Zevenbergen, 2006) or aorta (Avolio et al., 1998; Zou and 546 

Zhang, 2009; Taghizadeh and Tafazzoli-Shadpour, 2017; Mattson and Zhang, 2017), for 547 

instance, then the sensitivity of M = {BF, G(N), TM N} to structural changes is an advantage. 548 

 549 

4. Discussion 550 

4.1. Method summary 551 

Model M = {BF, G(N), TM,N} is an example of an empirical approach to studying anisotropic 552 

layered systems. Analyzing large datasets requires this procedure to be formalized. The 553 

developed method allows us to fully automate the conversion of a layered image into M = {BF, 554 

G(N), TM,N} and to calculate the morphological characteristics of layered patterns (Smolyar, 555 

2014; Smolyar et.al., 2016). The present work introduces the idea of structural disorder in 556 

layered systems. The fundamental difference between DStr and other approaches to quantifying 557 

structures (Adams et al., 2004) is that DStr measures the deviation of anisotropic layer structures 558 

from isotropy. Also, it is usual practice to choose parameters for describing patterns based on the 559 

specific characteristics of an object of study. DStr and charts of <layer thickness vs. layer 560 

number= and <layer area vs. layer number= can be used globally as well as locally to describe the 561 

morphological characteristics of any anisotropic layered pattern. This property of DStr and the 562 

charts allows us to formulate new questions, suggest new testable hypotheses about pattern 563 

formation, and identify links between properties and structures of study objects, extending areas 564 

of applications for analyzing various anisotropic layered systems. 565 

 566 

It is transparent that the transition from layered to non-layered patterns occurs continuously and 567 

monotonously, which raises the question of whether it is possible to distinguish between layered 568 

and non-layered images. Let us consider how we can use DStr to answer this question. DStr 569 

could be defined in either of two ways: First, DStr is the area between y = 0 and the function y = 570 

f(x) (Fig. 4D). In this case, DStr is the measure of deviation of an anisotropic pattern from 571 

isotropy, denoted by DStr(deviation from isotropy). Second, DStr could be interpreted as the 572 

deviation of an anisotropic pattern from a system with maximal disorder (i.e., a chaotic system), 573 
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which is defined as the area between y = f(x) and y = 1, denoted DStr(deviation from chaos). 574 

Thus, y = f(x) divides a 1x1 square into two areas (Fig. 4D): DStr(deviation from isotropy) and 575 

DStr(deviation from chaos). Because the area of the square is equal to 1, thus 576 

(3)   Deviation of anisotropic layer structure from maximal order +  577 

Deviation of anisotropic layered structure from maximal disorder = 1,  578 

where 579 

maximal order = isotropy in layers structure, 580 

maximal disorder = chaos in layers structure. 581 

Using equation (3), it is possible to quantitatively describe a layered pattern in the following 582 

manner: If DStr f 0.5, then the structure of a pattern is more layered then chaotic; if DStr > 0.5, 583 

then the structure is more chaotic than layered. Therefore, DStr f 0.5 is the maximal possible 584 

value for the characteristic of disorder in the structure of layered patterns. This is why a 585 

threshold of 0.5 is used to describe the difference between the structures of layered patterns in 586 

percentages (Section 4.2). 587 

 588 

Let us consider some of the limitations of the proposed method. Many limitations are as yet 589 

unknown because the morphology of anisotropic layered patterns is a relatively new object of 590 

study. Thus, we list the most obvious limitations that follow from the image analyses presented 591 

in Section 3: 592 

• Images of the Martian surface (Fig. 24) exhibit layered patterns as a result of processes 593 

occurring in different space3time domains. The proposed method does not provide tools to 594 

describe global structural parameters of this category of images. 595 

• Many images presented in Section 3 consist of lines with simple shapes, but the images of 596 

the human aorta (Fig. 14) and Pacinian corpuscle (Fig. 27) have more complicated 597 

configurations. The proposed method ignores the shape of layers. 598 

• It is necessary to quantify the spatial orientation of layers when developing new materials 599 

(Deville, 2018) and setting up correspondence between the morphology of layered systems 600 

and water temperature (Olson et al., 2012; Gilbert et al., 2017). The proposed method does 601 

not provide tools to quantify the preferential orientation of layers.  602 

• Model M = {BF, G(N), TM,N} does not account for the material properties of layers. 603 
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• All the transect versions used to calculate DStr are plotted in one direction, which is 604 

perpendicular (or quasi-perpendicular) to the layers.  605 

• The problem of layered pattern normalization is outside the scope of this work. 606 

 607 

4.2. Experimental results 608 

We calculate DStr for images in seven categories: geology, atmosphere, materials, medicine, 609 

forensic, plants, and animals (Fig. 31). The leaves of Madagascar Lace plants demonstrate the 610 

highest level of structural diversion from fully isotropic layered pattern, with DStr = 0 to DStr = 611 

0.7116. Landforms on Mars also demonstrate relatively high levels of structural diversion, from 612 

isotropic (DStr = 0) to anisotropic (DStr = 0.303). Experiments with tidal ripples, alloys, hairs, 613 

lightning, bones, eye angiograms, fingerprints, and bird plumage patterns illustrate the potential 614 

for DStr to be used as a global structural characteristic of the entire sampling area of layered 615 

patterns. Thus, it is reasonably safe to suggest that DStr is a universal characteristic that allows 616 

us to compare the structure of various categories of 2-D layered patterns, irrespective of size and 617 

origin. 618 

 619 

If a sampling area can be divided into subareas, then DStr and the chart of <layer thickness vs. 620 

layer number= could serve as local structural characteristics of layered patterns. Experiments 621 

with Martian landforms (Fig. 5 and 6A), ground-penetrating radar sections (Fig. 7), fish skin 622 

(Fig. 18), and the human aorta (Fig. 14) demonstrate that DStr is distributed unevenly across 623 

sampling areas. Since DStr varies from 0 to f0.5 for layered patterns, it is possible to describe 624 

changes in DStr as percentages, which is more convenient for interpreting and estimating the 625 

degree of distinction between objects. For instance, segments C and D of the Martian landform 626 

in Figure 5 have DStr(C) = 0.193 and DStr(D) = 0.303, respectively. The percentage difference 627 

between DStr(C) and DStr(D) is  628 

DStr(C) − DStr(D) = abs [(0.193 3 0.303)/0.5] * 100% = 22%. 629 

The 22% difference between DStr(C) and DStr(D) could be interpreted as low, medium, or high 630 

depending on the type of object under study and the problem statement.  631 

 632 

Figure 6 shows an interesting example of uneven distribution of DStr across a Martian landform 633 

(Fig. 6A) and sand ripples (Fig. 6B). There is a 33% difference in DStr between sampling areas 634 
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A and B (Fig. 6A), which is characterized by substation disruption in layer structure. There is a 635 

55% difference in DStr between the red and blue/orange sampling areas (Fig. 6B). The 636 

distinguishing features are obvious, and the differences in structure between areas A and B (Fig. 637 

6A) and the red and blue/orange areas (Fig. 6B) are detectable with the naked eye. From a 638 

general point of view, Figure 6 is an example of structural anomalies in an anisotropic layered 639 

system. Such anomalies could exist in any category of object of study. For instance, structural 640 

anomalies in metal microstructure could be interpreted as cracks. Procedures for detecting 641 

structural anomalies in layered patterns could find applications in solving broad problems, 642 

especially in medicine and materials science.  643 

 644 

The pattern of the human aorta (Fig. 14) is an example of a layered pattern with very 645 

complicated structural anisotropy that cannot be manually processed. Four segments4A, B, C, 646 

and D4show similar but not identical DStr (Fig. 14). There is a 4% difference between DStr(A) 647 

and DStr(D), which is probably close to the noise due to converting the initial color image to 648 

black and white. 649 

 650 

Another application of DStr is describing local structures in Morpho butterfly wings (Fig. 21A). 651 

We assume that the left and right wings of flying objects have identical structures. In order to test 652 

whether DStr is suitable to test this assumption, we divide the left and right wings into 653 

symmetric segments (Fig. 21A). DStr are calculated and the symmetric segments are presented 654 

in charts for <DStr vs. number of transects= (Fig. 21B). The DStr differences between the 655 

symmetric segments do not exceed 2.8%, justifying our original assumption. 656 

 657 

Fingerprints are another example of layered patterns. The structural characteristics of fingerprint 658 

ridges4such as bifurcation, trifurcation, and ridge ending and crossing4as well as peculiarities 659 

of their distribution across the 2-D plane are used for individual identification. Model M = {BF, 660 

G(N), TM,N} allows us to account for tiny characteristics of the fingerprint image. Figure 23 661 

illustrates the potential for using DStr to distinguish the structure of four basic categories of 662 

fingerprint patterns. Also, via open/closed gates (Fig. 3B and C), it is possible to reveal 663 

morphological characteristics of ridges that are most sensitive or robust to fingerprint 664 

identification. In this way, it may be possible to decrease uncertainty in fingerprint recognition. 665 
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Parameter DStr is the result of generalizing the sequence DGrp(N1), …, DGrp(Nk), …, 666 

DGrp(NMAX), where Nk is the number of transects used to calculate DGrp(Nk) (equation 2). 667 

Generalizing the sequence of DGrp(N1), …, DGrp(Nk), …, DGrp(NMAX) makes the result of the 668 

DStr calculation independent of the number of transects. In individual cases, DGrp(Nk) could 669 

also be used to quantify the structural disorder of 2-D anisotropic layered patterns. We illustrate 670 

this use of DGrp(Nk) with an example using the four categories of fingerprints depicted in Figure 671 

23. The chart of <DStr vs. number of transects= (Fig. 23) makes it clear that structural differences 672 

among the four categories of fingerprints are distributed unevenly along the axis <number of 673 

transects.= This raises a question about how many transects, Nk, are necessary to maximize the 674 

structural differences among fingerprints of different categories. The chart for <{DStr(Central 675 

pocket loop) − DStr(Plain arch)} vs. number of transects= (Fig. 23B) demonstrates that using 676 

nine transects maximizes the structural differences between central pocket loop and plain arch 677 

fingerprint patterns. If a different number of transects is used to calculate DStr (equation 2), then 678 

the structural distinction between these categories of fingerprints is 679 

(0.198 3 0.102)/0.5*100% = 19.2%. 680 

If nine transects (i.e., a fixed number of transects) are used to calculate the structural distinction 681 

between central pocket loop and plain arch patterns, the result is 682 

0.25/0.5*100% = 50%. 683 

Thus, applying nine transects increases the structural differences between central pocket loop 684 

and plain arch more than 2.6 times.  685 

 686 

Experiments with fingerprints (Fig. 23A) illustrate that the chart for <DStr vs. number of 687 

transects,= which is highly accurate (R2>0.9), could be interpolated to a power function, y=mx-k. 688 

Because DStr is sensitive to minor structural changes (Fig. 30A) and the four basic categories of 689 

fingerprints have substantially different m and k parameters, y=mx-k could serve as a unique 690 

fingerprint identification number. Using m and k would be sufficient to find in a database those 691 

fingerprints with identical m and k parameters or identify a relatively small set of fingerprints 692 

with similar m and k values. Images in a large database could be sorted according to m and k 693 

values in order to speed up fingerprint identification.  694 

 695 
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The geometrical configuration of chart DStr = f(number of transects) could be used as a 696 

morphological characteristic of layered patterns in addition to DStr and DStr for the fixed 697 

number of transects. We demonstrate on an image of human hair (Fig. 22B) how the variability 698 

of distance between transects (i.e., sampling density) could affect the shape of DStr = f(number 699 

of transects). Figure 22B shows that shape of the chart for DStr = f(number of transects) for low 700 

sampling density is much simpler than that of the chart for high sampling density. Thus, in 701 

addition to DStr, the shape of DStr = f(number of transects) itself could serve as a morphological 702 

characteristic of a 2-D layered pattern.  703 

 704 

Complicated layered patterns in bird plumage (Fig. 20) are formed by multiple individual 705 

feathers that have, individually, relatively simple patterns. Thus, it is not quite clear whether 706 

layer thickness is distributed chaotically across the body or demonstrates trends similar to other 707 

layered systems (Fig. 24327). We calculate DStr (Fig. 20) and the chart for <layer thickness vs. 708 

layer number= (Fig. 28) in order to analyze the morphology of these layers. Because DStr(Pitta, 709 

Owl) < 0.5, we conclude that the feather patterns form layers in these species. Charts for <layer 710 

thickness vs. layer number= (Fig. 28) exhibit trends in variability of layer thickness across pitta 711 

and owl bodies. These results justify the potential applicability of DStr and the chart for <layer 712 

thickness vs. layer number= for describing morphological characteristics of bird plumage. In this 713 

context, it should be noted that the distinction between layer thickness and layer number is also 714 

used by birds themselves to distinguish among different species, even in a generalized way. 715 

Sparrow hawks, which are among the most fearsome predators of small birds, particularly 716 

songbirds, have a particular pattern of feathers on the breast plumage. Sparrow hawks are 717 

mobbed by small birds all over the world, and the feather patterns alone suffice to entice small 718 

birds to engage in the mobbing behavior.  719 

 720 

Cuckoos, on the other hand, are not predatory birds but throw the eggs of other birds out of their 721 

nests, replacing them with their own egg, which is then raised by the host bird. Cuckoos are also 722 

generally mobbed by small birds, as well as physically attacked whenever they approach (Davies 723 

and Welbergen, 2008). Most cuckoos have evolved layered feather patterns on their breast 724 

plumage that mimic those of sparrow hawks, helping them to mislead songbirds into thinking a 725 

dangerous predator (sparrow hawk) is in front of them, not a benign (but annoying) cuckoo 726 
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(Welbergen and Davies, 2011). This pattern mimicry has proven somewhat effective (Trnka and 727 

Prokop, 2012). However, it is important to note that some small bird species have learned to 728 

distinguish the subtle differences in layered patterns between predators and their cuckoo mimics 729 

and now differentially attack these two groups of enemies (Welbergen and Davies, 2008). 730 

 731 

The structure and size of lamellar bone form a record of the state of internal and external factors 732 

responsible for lamellar formation over an organism9s life history. The cyclicity of lamellae 733 

thickness (Bromage et.al., 2009) over the period of formation is a cumulative effect of many 734 

cyclic factors. Many hard tissues form incremental patterns at varying time scales. For instance, 735 

mammalian enamel and dentine develop according to a circadian rhythm, creating a pattern 736 

visible as daily microanatomical growth lines. These tissues, as well as those of bone, have also 737 

been observed in some mammals to contain longer-period developmental rhythms that scale with 738 

body mass (Bromage et al., 2012). These hard tissue rhythms are of substantial interest in 739 

mammal life history research, providing information about the duration and amplitude of 740 

periodic phenomena as well as about other natural history events occurring during bone and 741 

tooth formation, which for some species could not be obtained by other means. 742 

 743 

In bone in particular, a specific tissue called lamellar bone may be found in many, if not most, 744 

mammals and many other vertebrates. Lamellar bone is profoundly incremental and thus of 745 

particular concern here because each layer, while representing a defined period of formation, can 746 

vary in width, the layers reflecting growth rate. The significance of such layers for biological 747 

research is that changes in their widths potentially reflect internal and external events in an 748 

organism9s life history. It is also significant that this record is often preserved after an organism9s 749 

death, either as resilient hard tissue or as a fossil. Incremental patterns are a primary source of 750 

information about the duration and amplitude of periodic phenomena as well as about other 751 

natural history events occurring during formation: Information about cyclicity, interactions 752 

between environmental and/or physiological cycles, and perturbations to the responding system 753 

are all inherently contained in these incremental patterns. 754 

 755 

For instance, in a child growing during a period of drought, bone lamellae have been observed to 756 

diminish from approximately 6 µm to 4 µm in width over the 8- or 9-day period over which each 757 
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lamella is formed (Bromage et al., 2011). Seasonal rhythms, perhaps dependent on food 758 

availability, are also apparent in such studies of lamellar bone growth-rate variability. 759 

 760 

Substantial areas of the Martian surface are covered by dunes and ripples formed by wind-blown 761 

sand (Kok, 2010). Images of Martian landforms such as Transverse Aeolian Ridges, sand dunes, 762 

and ripples are examples of 2-D anisotropic layered systems. Figures 24 and 25 show examples 763 

of isotropic Martian landforms. Charts of <layer thickness vs. layer number= for these landforms 764 

exhibit cyclicity in the variability of layer thickness across a 2-D plane. By averaging layer 765 

thickness across the entire sampling area, we lose some important morphological characteristics. 766 

A similar statement can be made for materials with layered microstructures.  767 

 768 

Pearlite steel (Liu et al., 2016), alloy (Ivanchenko et al., 2008), ceramic (Deville, 2008), and thin 769 

films (Alberius et al., 2002) exhibit lamellar microstructures with various levels of anisotropy 770 

(i.e., numbers of bifurcations and breaks in the lamellar structure). The distribution of 771 

bifurcations and breaks across a 2-D sampling area plays an important role in quantifying the 772 

micromorphological features of lamellar systems (Ardel, 1999; Deville, 2018; Lia et al., 2017). 773 

Average lamellar thickness is one of the key parameters broadly used to characterize lamellar 774 

structure. Charts for <layer thickness vs. layer number= demonstrate cyclic variability of lamellar 775 

thickness across the 2-D plane. In this case, average lamellar thickness is not a precise 776 

morphological characteristic. For instance, the chart of <layer thickness vs. layer number= (Fig. 777 

26) shows that the lamellar pattern has four blocks4A, B, C, and D4with distinctive lamellar 778 

thicknesses. This must be considered when searching for links between material properties and 779 

microstructures.  780 

 781 

The variable cyclicity of layer thickness across the sampling area of an anisotropic layered 782 

system is to be expected because <the whole pattern [of nature] is of cycles within cycles within 783 

cycles= (Medawar and Medawar, 1983, p. 73). Model M = {BF, G(N), TM,N} provides tools to 784 

reveal cyclicity in layered anisotropic environments.  785 

  786 
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4.3. Possible experimental tests 787 

Many factors that contribute to the formation of layered patterns in living systems have cyclic 788 

natures. For instance, layers in growth systems are formed in direct response to cyclic 789 

environmental factors such as temperature (Goodwin et al., 2001; Izzo and Zydlewski, 2017), 790 

tides (Poulain et al., 2011), and light3dark rhythms (Scrutton, 1978; Smith, 2006). Cyclic 791 

planetary dynamics can also affect the formation of growth increments (Clark II, 1974; Pannella 792 

and MacClintock, 1968; Kahn and Pompea, 1978; Vanyo and Awramic, 1985). On the surfaces 793 

of Earth and Mars, winds are mainly responsible for the formation of dunes and ripples (Lapotre 794 

et al., 2016; Kok et al., 2012). It is reasonable to suggest that the cyclicity of layer thickness 795 

stems from the cyclicity of factors controlling layer formation, but this explanation is not always 796 

possible. Layered patterns are the cumulative result of many factors occurring in different space3797 

time domains, not all of which are cyclic, and not all factors are known.  798 

 799 

Notwithstanding the fact that each object of study has unique properties, the layers of various 800 

systems are all formed in the gravity fields of the massive rotating bodies of Earth, Mars, and 801 

other planets. Thus, it would be reasonable to explore the influence of zero-gravity (i.e., extreme 802 

external factors on layer formation). Let us consider some possible additional experiments that 803 

would help us better understand the mechanisms of layer formation. A promising approach 804 

would be to examine the influence of extreme external factors4such as zero-gravity, extreme 805 

temperature, radioactive contamination, low oxygen, and absence of light4on layer 806 

morphology. Empirical model M = {BF, G(N), TM,N} is a suitable tool for such experiments 807 

since it is sensitive to minor structural changes (Fig. 30) and allows us to detect anomalies in 808 

layered systems.  809 

 810 

Experiment #1: Examine the influence of zero-gravity on the formation of layered systems. 811 

Aquatic habitats for studying the lifecycle of freshwater fish are available on the International 812 

Space Station and could be used to investigate the influence of zero-gravity on scale formation in 813 

medaka fish (Chatani et al., 2015) and zebrafish (Aceto et al., 2015). Lamella bones of iguana 814 

(Smolyar et al., 2016), Madagascar Lace leaves (Fig. 17), and flower surfaces (Fig. 16) are other 815 

potential candidates for exploring the formation of anisotropic layers under zero-gravity 816 

conditions.  817 
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Experiment #2: Examine the influence of extreme temperatures4including drought, high/low air 818 

temperature, and high/low water temperature4on the formation of anisotropic growth incre-819 

ments. Extreme temperatures are a major environmental stress that affect the growth of terrestrial 820 

and marine living systems. For instance, <high temperature stress is a major environmental stress 821 

that limits plant growth, metabolism, and productivity worldwide. Plant growth and development 822 

involve numerous biochemical reactions that are sensitive to temperature= (Hasanuzzaman et al., 823 

2013, p. 9643). Various marine and terrestrial layered living systems could be used to examine 824 

the influence of extreme temperature on the formation of layered systems.  825 

 826 

Experiment #3: Examine the influence of radioactive contamination on layer formation. The 827 

areas around Chernobyl (Ukraine) and Fukushima (Japan) are natural laboratories for studying 828 

the influence of radioactive contamination on growth increments of various layered systems, 829 

including flower surfaces, spider webs, and butterfly wings. For instance, there is strong 830 

evidence that water contamination affects fish scale structures (Hidayati et al., 2013, Sultana et 831 

al., 2017).  832 

 833 

Experiment #4: Examine the influence of the absence of light on the formation of fish scale 834 

growth increments. Sweetwater, Tennessee, where trout live without light in a cave lake, would 835 

be an ideal natural laboratory. Other candidates for experiments could be the scales of various 836 

categories of salt- and freshwater fish from aquariums permanently covered with light-tight 837 

material.  838 

 839 

Experiment #5: Examine the influence of oxygen levels on the morphology of elastic lamellae in 840 

humans and animals. Since aorta distribute oxygenated blood to all parts of the body, it is 841 

possible to assume that environmental oxygen levels might affect aorta morphology (Fig. 14). 842 

One possible avenue for experimentation could be the aorta of human and animal populations 843 

subjected for many generations to high-altitude, low-oxygen conditions, such as those in the 844 

high-altitude Tibetan highlands (Simonson et al., 2010; He et al., 2016). Model M = {BF, G(N), 845 

TM,N} could be used to compare the morphology of aortas formed in Tibet to those formed in 846 

sea-level oxygen environments. 847 

  848 
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4.4. Areas of application 849 

Macro-, micro-, and nanostructures play a vital role in understanding pattern formation and 850 

relationships between processes and structures (Aizenberg and Fratzl, 2009). Central problems in 851 

studying layered objects4particularly in medicine (Novotny et al., 2017), materials science 852 

(Deville, 2018), and biomimetic research (Meyers et al., 2008; Gilbert et al., 2017)4are 853 

quantitatively describing the relationship between structure and properties, tracking structural 854 

changes over a period of time, and revealing structural anomalies. Experiments with various 855 

categories of layered systems justify the possibility of using M = {BF, G(N), TM,N} to help to 856 

solve these problems.  857 

 858 

Detecting structural anomalies in layered systems is necessary when solving a broad spectrum of 859 

medical and engineering problems. For instance, cracks are a typical example of anomalies in the 860 

lamellar structures of metals and alloys; anomalies in growth increments in tree rings allow us to 861 

reconstruct extreme environmental phenomena. Experiments with animal footprints on sand 862 

ripples and the layered surface of Mars (Fig. 6) provide evidence on the applicability of M = 863 

{BF, G(N), TM,N} to reveal structural anomalies in layered systems.  864 

 865 

Many layered objects4such as corals, fish scales and bivalve shells4are formed in the world 866 

ocean. Morphological characteristics of growth increments in these objects are a function of 867 

seawater parameters and changes in the space3time domain. Model M = {BF, G(N), TM N} could 868 

be used to analyze growth increments of shells in a seawater environment. Our interest in the 869 

link between growth increments and the marine environment is based on available marine data 870 

products, new instrumental technology measuring the chemical composition of seawater, and 871 

recently published discoveries of relationships between the morphology of shell growth 872 

increments and seawater temperature (Gilbert et al., 2017).  873 

 874 

Marine data products. The World Ocean Database (WOD) and International Comprehensive 875 

Ocean-Atmosphere Data Sets (ICOADS) are the world9s largest freely available marine 876 

databases. WOD comprise 16+ million globally distributed profiles, beginning with instrumental 877 

observations in 1772 through the present (Levitus, 2012; Boyer et al., 2014). A profile is the set 878 
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of measurements of physical, hydrochemical, and plankton characteristics of seawaters on the 879 

surface and at various depths (Matishov et al., 2000).  880 

 881 

ICOADS is an archive of global near-surface marine data, with over 456 million individual 882 

records since 1662 (Slutz et al. 1985; Smith and Reynolds, 2004; Wilkinson et al., 2011; 883 

Woodruff et al. 2011; Freeman et al., 2017). Each record is a set of sea-surface temperature 884 

(SST) and marine meteorological parameters such as wind speed and direction, humidity, sea-885 

level pressure, cloud cover, sea state, sea ice, and descriptive information such as type and 886 

amount of cloud cover at different levels in the atmosphere. ICOADS and WOD are used to 887 

study local (Reagan et al., 2018; Seidov et al., 2017; Matishov et al., 2014: Kaplan et al., 1997; 888 

Ansell et al., 2006; Marullo et al., 2011) and global (Casey and Cornillon, 2001; Rayner et al., 889 

2003; Garcia et al., 2005; Levitus et al., 2005; Ishii et al., 2005) climatic characteristics of the 890 

world ocean and its dynamics. Time series of sea characteristics at various depths, SST, and 891 

near-surface meteorology are used to study marine climate dynamics. Time series data are 892 

essential to study how <global climate change threatens global biodiversity, ecosystem function 893 

and human well-being= (Williams et al., 2008, p. 2621). WOD and ICOADS allow us to plot 894 

time series of temperature over 120+ years; WOD additionally includes time series of salinity for 895 

80+ years.  896 

 897 

Seawater temperature as a function of chemical composition of growth increments. Using WOD 898 

and readily available databases of layered objects, M = {BF, G(N), TM,N} could be used to study 899 

growth patterns of marine life, such as corals and mollusks, which are used as proxies for 900 

environmental state (Sadler et al., 2014; Wanamaker et al., 2011; Reynolds et al., 2017, Carroll 901 

et al., 2009). Specifically, the link between seawater temperatures and the morphology and 902 

chemical composition of growth layers is a focus of sclerochronological and sclerochemical 903 

research (Butler and Schöne, 2017; Reynolds et al., 2016). The availability of WOD as well as 904 

large-scale coral and mollusk archives (Reynolds et al., 2017; Donner et al., 2017) allows us to 905 

compensate for the lack of water-temperature data before instrumental observations were estab-906 

lished. Model M = {BF, G(N), TM,N} could be used to formalize a procedure for the development 907 

of growth-rate variability (i.e., charts of <layer thickness vs. layer number= and <layer area vs. 908 

layer number=), which is essential to accurately reconstruct historical seawater temperatures. 909 
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One possible result of water temperature reconstruction could be long time-series of temperature 910 

variability in the Gulf Stream system from the East Coast of the United States to the Barents Sea 911 

(Wanamaker et al., 2011; Reynolds et al., 2013; Carroll et al., 2011; Carroll et al., 2014).  912 

 913 

Seawater temperature as a function of growth increment morphology. Gilbert et al. (2017) 914 

developed a novel method that allows us to reconstruct present and past seawater temperature by 915 

analyzing the morphology of modern and fossil shells, which <complements the strength and 916 

compensates for the weaknesses of existing geochemical method= (p. 291). Model M = {BF, 917 

G(N), TM,N} could be used to formalize some stages of layered image processing and account for 918 

the structural anisotropy of shells9 growth increments. WOD could be used to define areas of the 919 

world ocean suitable to examine the influence of seawater parameters of different water masses 920 

on the development of shells9 growth increments. Gilbert et al. (2017) hypothesized that factors 921 

such as salinity, pH, or nutrients can affect the morphology of shells9 growth increments in 922 

addition to water temperature. Within the frame of this hypothesis it would be reasonable to 923 

examine the influence of seawater chemical composition on the development of shells9 growth 924 

lines. The new method for measuring the chemical composition of fresh and saltwater could be 925 

used for this purpose.  926 

 927 

Measuring periodic table in fresh and salt waters (Bäuchle,et al., 2018). Water is an 928 

accumulation of dissolved elements in the form of organic (typically carbon-hydrogen-based) 929 

and inorganic (non-organic) molecules. Given the importance of water to all life, it is astonishing 930 

that not a single aqueous sample has ever been measured for element concentrations across the 931 

breadth of the chemical periodic table. This dearth of research is not for the lack of want for 932 

knowledge but because technologies for detecting all elements in a water sample have been 933 

unwieldy and expensive to operate. A recently developed <simultaneous Mass Spectrometer= 934 

ICP-MS (si-ICP-MS) permits 71 inorganic elements to be detected in one evaluation from small 935 

sample volumes in seconds and at relatively low consumable and personnel costs. 936 

 937 

To examine the potential of si-ICP-MS for evaluating environmental water, and for assessing its 938 

usefulness in studies of incremental structures, we first measured tap, well, rain, freshwater lake, 939 

river, seawater, and snow. Figure 32 depicts the distribution of fresh and saltwater samples. 940 
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Figure 33 shows that most of the periodic table is indeed represented in environmental water, 941 

which includes municipally treated tap water. This is fascinating because snow is essentially the 942 

same as all other fresh waters, which indicates that the atmosphere4after being scrubbed by 943 

snowflakes4is fundamental to the movement of elements at high latitudes and altitudes around 944 

the world. Seawater stands out as having higher abundances of elements overall.  945 

 946 

The WOD, integrated with chemical composition of seawater, will thus allow us to examine the 947 

influence of a broad spectrum of seawater characteristics on the development of growth 948 

increments in marine life such as coral, fish scales, and shells. Additionally, the chemical 949 

composition of soil and air allows us to use M = {BF, G(N), TM,N} to quantify the 950 

correspondence between environment and growth patterns of terrestrial plants and animals.  951 

 952 

To appreciate the relevance of such data to the study of incremental structures, we examined the 953 

lamellar bone of a subsistence fisherman who lived around a freshwater lake. We used a laser 954 

ablation system attached to the si-ICP-MS to measure the same elements measured from the lake 955 

water on which he made his living. We have made two interesting observations from this 956 

research: First, the inorganic spectrum of elements in the local water and in a bone from the 957 

fisherman were quite similar.  958 

 959 

Second, we discovered that the lamellar increments of bone are formed on the same interval at 960 

which the growth increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009). 961 

Striae of Retzius may be calibrated in absolute time, and in this fisherman that period was 8 962 

days. Roughly 15 years of continuously formed lamellar bone were available from years for 963 

which we have meteorological data. In the example shown in Figure 34, we demonstrate, for 964 

instance, that from 1981 to 1995, the concentration of Strontium (Sr) varies cyclically in its ratio 965 

with Zinc (Zn). 966 

 967 

Other examples in which marine data could relate to the structure of living organisms are birds9 968 

and turtles9 morphology and their migration patterns across the world ocean (Fig. 35). Although 969 

the focus of the present work is the quantitative description of morphology of layered anisotropic 970 

patterns, nevertheless a proposed method could be potentially extended for processing morpholo-971 
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gical characteristics of arbitrary images such as birds9 feathers, backs, and footprints. New instr-972 

umental methods of monitoring birds9 and turtles9 migration on a global scale (e.g., the ICARUS 973 

project) provide us with tools to describe collective birds motion across the world ocean.  974 

 975 

Bird migration. ICARUS, short for <International Cooperation for Animal Research Using 976 

Space,= is a global collaboration of animal scientists to establish a novel satellite-based 977 

infrastructure (Cook et al., 2004; Wikelski et al., 2011) for Earth observation of small objects 978 

such as migratory birds, bats, or sea turtles (Pennisi, 2011). These findings will aid behavioral 979 

research, species protection, and research into the paths taken in the spread of infectious 980 

diseases. The information could even help predict ecological changes and natural disasters. In the 981 

process, ICARUS researchers will attach miniaturized transmitters to hundreds or thousands of 982 

animal species. These transmitters send measurement data via a CDMA-encoded signal (code-983 

division multiple access) to a receiver station in space that transmits data to a ground station. The 984 

results will be published in a database that will be accessible to everyone at www.movebank.org  985 

 986 

A miniaturized, solar-powered animal tag can communicate with the ICARUS equipment at the 987 

International Space Station from a distance of up to 800 kilometers, allowing it to record its 988 

absolute position at regular intervals using GPS and to acquire local temperatures, 3-D 989 

acceleration, and 3-D magnetometer values as well as pressure, altitude, and humidity, which 990 

give indications of the animal9s behavior, internal and external state, and environmental 991 

conditions4all using a tag with a mass less than 5 grams and a volume of approximately 2 cm3. 992 

 993 

Integrated morphological characteristics of individual birds, their migration routes, WOD and 994 

ICOADS create a basis to formulate testable hypotheses of scientific and commercial value. 995 

  996 
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5. Conclusion 997 

The anisotropic features of layered systems make them attractive objects of study from both 998 

scientific and commercial points of view. The empirical model M = {BF, G(N), TM,N} is an 999 

example of the engineering approach (Reeves and Fraser, 2009) to studying pattern formation in 1000 

nature and beyond.  1001 

 1002 

Various layered systems presented in this paper exhibit surprising levels of structural similarity, 1003 

what Ball (2009, p. 177) called nature9s use of <not the Law of Pattern but a palette of 1004 

principles=. 1005 

 1006 

The key element of the present work is the notion of structural disorder in 2-D layered systems 1007 

(DStr), which is applicable to any layered object, irrespective of size or nature. Equation (3), 1008 

which shows that layered patterns comprise anisotropic and isotropic components, provides a 1009 

foundation for formalizing DStr. Equation (3) could potentially be used to extend the 1010 

applicability of DStr to quantify the morphological characteristics of arbitrary 2-D binary 1011 

patterns. 1012 

 1013 
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      Figure 1. Living and non-living layered systems. 1467 
      Structure of layers and variability of its thickness and chemical composition across 2D plane is the record of the 1468 

internal and external factors responsible for patterns formation. These layered patterns form a record of internal 1469 
and external factors regulating pattern formation in their various systems, making it potentially possible to 1470 
recognize and identify in their incremental sequences trends, periodicities, and events in the formation history of 1471 
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Figure 5. Structural disorder on the Martian surface 1654 
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Figure 6A. Martian surface structural anomaly 1695 
Figure 6B. Dunes sand ripples structural anomaly 1696 
 1697 
Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of the sampling area a is 1698 
10 times less than that of nearby area b, which exhibits structural anomaly with respect to area a. Figure 6B depicts 1699 
the structural anomaly of sand ripples. The red sampling area exhibits structural anomaly with respect to nearby 1700 
orange and blue areas. The DStr of the orange and blue areas is 2.3 times less than that of the red area. 1701 
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Figure 7. Ground penetrating radar section 1754 
Figure 7A. Structural disorder in round penetrating radar section 1755 
Figure 7B. Fragment of the equation DStr = f(number of transects) 1756 
Fig. 7B shows that numbers of transects more than 0.1 and less than 0.4 maximize structural differences between 1757 
segments A, B, C and D.  1758 
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Materials science is an attractive area for the application of M = {BF, G(N), TM,N} because the macro- and 2048 
nanostructures of various materials exhibit layered anisotropic patterns (Fig. 12) that define their properties. 2049 
Thus, DStr could serve as a local and global morphological parameter for describing material 2050 
microstructures. DStr could also be used to link structures and properties, an essential step in developing 2051 
materials with desired combinations of characteristics.  2052 
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Figure 18. Structural disorder in fish skin 2349 
The configuration of stripes on fish skin (Fig. 18) is a typical example of an anisotropic layered pattern. The 2350 
formation of patterns on the surfaces of fish, shells, and mammals has been explained by a reaction3diffusion system 2351 
(Turing, 1952; Meinhardt, 1989; Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D 2352 
imply that DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure and area 2353 
D has the simplest structure among four sampling areas. This result inspires two questions: 1) Is the DStr of the right 2354 
side of the fish similar to the DStr of the left side? 2) Could the morphology of stripes serve as a record of internal 2355 
and external events in the life history of a fish? Model M = {BF, G(N), TM,N} could be one tool to help to answer 2356 
these questions. 2357 
  2358 
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Figure 20. Structural disorder in bird plumage patterns. Plumage patterns in banded pitta, kingfisher, and owl (Fig. 2440 
20) offer examples of layered systems in bird plumage. DStr shows significant diversity in the structure of these 2441 
layered systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires us to ask 2442 
whether parameters of layered structures might serve as phenotypic characteristics (Gluckman and Mundy, 2016). 2443 
Model M = {BF, G(N), TM,N} could be used to test this hypothesis (i.e., examine the structural characteristics of 2444 
birds9 plumage patterns with respect to state of the environment).  2445 
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Figure 21. Morphology of butterfly wing. (A) Sampling areas in Morpho butterfly wing. (B) Structural disorder in 2503 
butterfly wing 2504 
Photonic systems of biological objects generate interest among scientists and engineers across various disciplines 2505 
due to their unique ability to manipulate color using micro-structured surfaces (Starkey and Vukusic, 2013; Parker, 2506 
2000). Many photonic surfaces in flowers and animals exhibit lamellar structures (Vukusic and Sambles, 2003), 2507 
such as the scales arranged in anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We 2508 
use DStr to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results of DStr 2509 
calculations for six sampling areas. The left and right wings of Morpho butterfly have similar structural 2510 
characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a characteristic of blue color nuances 2511 
in Morpho butterflies? Do male and female Morpho butterflies have similar structural characteristic DStr? How do 2512 
local/global structural anomalies in butterfly wings with respect to DStr affect butterfly color? Model M = {BF, 2513 
G(N), TM,N} could be used to answer these questions.  2514 
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Figure 22. Morphology of hair microstructure 2579 
Figure 22A. Structural disorder in human and animal hairs 2580 
Figure 22B. Structural disorder as a function of sampling density 2581 
 2582 
The layered microstructures of human hair are much more complicated than those of some animals  2583 
(Fig. 22A), which is confirmed by DStr(human), DStr(deer), DStr(mouse), and the corresponding charts for 2584 
<structural disorder of hair = f(number of transects).= Figure 22B (next page) shows that high sampling 2585 
density accounts for more structural details than low sampling density.  2586 
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Figure 23. Morphology of fingerprints 2671 
Figure 23A. Structural disorder in four categories of fingerprints 2672 
Figure 23B. Structural disorder as a function of number of transects 2673 
 2674 
As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive structural characteristics 2675 
that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) = 0.1978. Distinctions between DStr among 2676 
different categories of fingerprints substantially depend on the number of transects used to calculate DStr (Section 2677 
2.2). To define the number of transects that allow maximal differences among DStr in the four categories of 2678 
fingerprints, we plot the chart (Fig. 23B) as DStr(central pocket loop) − DStr(plain arch) = f(number of transects). 2679 
Nine transects allow the maximal possible differences between two categories of fingerprints; that is, DStr(central 2680 
pocket loop) − DStr(plain arch) = 0.253, which is 2.6 times more than the DStr(central pocket loop) and DStr(plain 2681 
arch) comparison if equation (2) is used to calculate DStr. Sampling density and number of transects could 2682 
complement DStr in forensic identification. 2683 
  2684 
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 Figure 24. Layer thickness variability across a 2-D plane: Martian surface 2728 
See text next page 2729 
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                Figure 25. Layer thickness variability across a 2-D plane: South Pole of Mars 2765 
 2766 
Dune fields are an example of the layered patterns that exist throughout nature. Dune spacing (i.e., layer thickness) 2767 
is a basic morphological characteristic of dune systems (Lancaster, 2009). Figures 24 and 25 show layered 2768 
fragments of the surface of Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to 2769 
describe the variability of layer thickness across the 2-D sampling area with high accuracy. Several transects are 2770 
used to calculate average thickness of each layer. Charts of <layer thickness vs. layer number= show cyclic trends in 2771 
the variability of layer thickness across the sampling area (Fig. 24 and 25). Similar cyclic trends in anisotropic 2772 
structures are also observed on Mars and Earth (Smolyar et al., 2016).  2773 
 2774 
  2775 
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Figure 26. Layer thickness variability across a 2-D plane: material. Figure 26A depicts an image of layered Al3Si 2816 
composite with anisotropic structure. The chart of <layer thickness vs. layer number= shows cyclicity in the 2817 
variability of layer thickness across the sampling area (Fig. 26B), which is divided into parts A, B, C, and D (Fig. 2818 
26C) according to the uniform distribution of layer thickness in each part (Fig. 26D). It follows that the chart of 2819 
<layer thickness vs. layer number= provides a more detailed description of a layered pattern9s morphological 2820 
characteristic than average layer thickness.  2821 
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The chart of <layer thickness vs. layer number= exhibits non-random trends in the variability 2909 
of layer thickness across bird feathers (Fig. 28). The chart and DStr could potentially serve 2910 
as morphological characteristics of birds with application to the study of their life cycles. 2911 
Striped patterns are often used to distinguish bird species from one another. In particular, 2912 
shrikes and their relatives are recognizable to birders by the peculiar differences in the 2913 
thickness and layering of their striped patterns, many of which are simply black and white. 2914 
Furthermore, there are often marked differences in the morphological features of feathers 2915 
between males and females of the same species, a dimorphism that is recognized both by the 2916 
animals themselves and by human observers (Gluckman 2014). 2917 
 2918 
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 2952 
         Figure 29. Layer thickness variability across a 2-D plane: spider web 2953 

The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of their 2954 
superior mechanical properties but also as a source of information about spiders9 construction behaviors 2955 
(Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb web represents a layered system 2956 
with structural anisotropy: <One of the most relevant structural traits of orb webs is their mesh width= 2957 
(Zschokke and Nakata, 2015, p. 661). Mesh width (i.e., layer thickness) is used to understand the 2958 
construction features of web systems and relate them to spiders9 behavior. For instance, Zschokke and 2959 
Nakata (2015, p. 661) point out that <a closer look at the orb webs reveals that mesh widths are not the 2960 
same throughout the entire web.= Charts describing the variability of mesh width across the sampling area 2961 
(Fig. 29) confirm this statement and indicate cyclicity in the variability of mesh width across the sampling 2962 
area. Thus, M = {BF, G(N), TM,N} could be used to generate a new set of structural characteristics 2963 
describing the anisotropy of an orb web and its segments.  2964 
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  Figure 30. Sensitivity of parameter DStr to changes in layer structure.  3004 
See next page. 3005 
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We examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A), fish scale (Fig. 30B), 3008 

and an eye angiogram (Fig. 30C) as test objects. Let us denote characteristics of images before and after structural 3009 

changes by DStr(before changes) and DStr(after changes). We describe the link between DStr(before changes) and 3010 

DStr(after changes) and structural changes in images in quantitative terms using the following procedure: First, we 3011 

describe the difference between DStr(before changes) and DStr(after changes) on a relative scale (%). All changes in 3012 

layer structure are marked in red. We denote the difference as Parameter-1. Second, we describe (in %) the 3013 

difference (in pixels) between the images before and after changes. To do so, we calculate the number of black 3014 

pixels in an image before changes (total pixels before changes) and the total number of pixels that change color 3015 

(white to black or vice versa) as a result of structural changes (total pixel change). The ratio (%) of <total pixel 3016 

change/total pixels before changes= allows us to calculate the magnitude of structural changes in an image. This 3017 

ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2 allows us to estimate the sensitivity 3018 

of DStr to structural changes in the image. Results of calculating Parameter-1 and Parameter-2 are 3019 

                                 Parameter-1      Parameter-2 3020 

             Fingerprint      0.55%              0.072% 3021 

               Fish scale      3.80%              0.150% 3022 

       Eye angiogram      0.32%              0.077%  3023 

                  Average      1.56%              0.10%  3024 

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1% structural change in 3025 

layers results in a 15.6% change in DStr. This result provides evidence that minor changes in layer structure are 3026 

accompanied by substantially greater changes in DStr values. 3027 
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 3101 

        * ID - identification number  3102 
 3103 
    Figure 32. Distribution of water samples 3104 

  3105 

Area 
code 

Sample 
ID* 

Water 
category 

Water 
sources 

Place Country Coordinate 

A 1  Well-2 Fresno, CA USA 36°39913"N, 
119°39'49"W 

A 2  Well-3 Fresno, CA USA 36°38957"N, 
119°37'51"W 

A 3  Snow Lassen Volcanic Nat. Park USA 40°28927.3"N, 
121°30'21.7"W 

A 4  Snow Crater Lake Nat. Park, CA USA 42°54'32"N, 
122°04'25"W 

B 5  Tap, 0-min Middletown, NY USA 42o27' N, 74o25'W 

B 6  Tap, 5-min Middletown, NY USA 42o27' N, 74o25'W 

B 7  Delaware R. Pleasant Park Hill, PA USA 40°2'27.51"N, 
4°59'31.04"W 

B 8  Shore Sea Island City, NJ USA 39°11'34.4"N, 
74°39'23.7"W 

B 9  Canandaigua 
lake 

State Marine Park, NY USA 42°52'32.40"N, 
77°16'36.50"W 

C 10  Rain Bathsheba Barbados 13°12'42.18"N, 
9°31'4.46"W 

C 11  Shore Oistins, Barbados 13°3'39.86''N, 
9°32'25.35"W 

D 12  Shore Rio de Janeiro Brazil 22.977854°S, 
43.187257°W 

E 13  Nidda river Frankfurt Germany 50°9'46.10"N, 
8°39'7.99"E 

F 14  Malawi lake Malawi Lake National Park Malawi 12°10'60.00" S 
34°21'59.99" E 

G 15  Rain Karachi Pakistan 24.8427554°N, 
67.06103329°E 

H 16  Baikal lake Khuzhir, Irkutsk Oblast Russia 53°12'11"N, 
107°20'27"E 

I 17  Rain Beijing China 39°41'21"N, 
115°55'23"E 

J 18  Shore Fukuoka, Japan 33.596823°N, 
130.359027°E 

A 
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 3162 
Figure 33. Element concentration patterns in (environmental) water. Element symbols are on right vertical 3163 
axes. Trace concentrations between not detected (black) and 1 µg/L (white) are shown in shades of blue. 3164 
Concentrations above 1 µg/L are represented by warm colors and given in a logarithmic scale and range  3165 
from >1 µg/L (yellow) to over 3600 mg/L (dark red) 3166 

 3167 

  3168 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019



86 

 3169 

 3170 
 3171 
 3172 
 3173 
 3174 
 3175 
 3176 
 3177 
 3178 
 3179 
 3180 
 3181 
 3182 
 3183 
 3184 
 3185 
 3186 
 3187 
 3188 
 3189 
 3190 
 3191 
 3192 
 3193 
 3194 
 3195 
 3196 
 3197 
 3198 
 3199 
 3200 
 3201 
 3202 
 3203 
 3204 
 3205 
      Figure 34. Zn/Sr ratio over 15 years of lamella bone 3206 

We discovered that the lamellar increments of bone are formed on the same interval at which the growth 3207 
increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009). Striae of Retzius may be 3208 
calibrated in absolute time, and in this fisherman that period was 8 days. Roughly 15 years of continuously 3209 
formed lamellar bone were available from years for which we have meteorological data. In the example 3210 
shown in Figure 34, we demonstrate, for instance, that from 1981 to 1995, the concentration of Strontium 3211 
(Sr) varies cyclically in its ratio with Zinc (Zn). 3212 
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 3250 
           Figure 35. Sooty shearwaters migration routes across Pacific Ocean 3251 

Examples in which marine data could relate to the structure of living organisms are birds9 and turtles9 3252 
morphology and their migration patterns across the world ocean (Fig. 35). Although the focus of the 3253 
present work is the quantitative description of morphology of layered anisotropic patterns, nevertheless a 3254 
proposed method could be potentially extended for processing morphological characteristics of arbitrary 3255 
images such as birds9 feathers, backs, and footprints. New instrumental methods of monitoring birds9 and 3256 
turtles9 migration on a global scale (e.g., the ICARUS project) provide us with tools to describe 3257 
collective birds motion across the world ocean.  3258 
 3259 

 3260 
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Credit: Shaffer, et al. PNAS ©, August 22, 2006, 103 
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