A peer-reviewed version of this preprint was published in PeerJ on 14 October 2019.

<u>View the peer-reviewed version</u> (peerj.com/articles/7813), which is the preferred citable publication unless you specifically need to cite this preprint.

Smolyar I, Bromage T, Wikelski M. 2019. Layered patterns in nature, medicine, and materials: quantifying anisotropic structures and cyclicity. PeerJ 7:e7813 https://doi.org/10.7717/peerj.7813

Layered patterns in nature, medicine and materials: 1 2 Quantification of anisotropic structures and cyclisity 3 4 I. Smolyar^a, T. Bromage^b, M. Wikelski^c 5 ^aNational Centers for Environmental Information/NOAA, 151 Patton Avenue, Asheville, NC 6 28801, USA. igorsmolyar8755@gmail.com 7 ^bDepartment of Biomaterials & Biomimetics and Basic Science & Craniofacial Biology, College 8 of Dentistry, New York University, New York, NY 10003 USA. tim.bromage@nyu.edu 9 ^cMax-Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany 10 wikelski@orn.mpg.de 11 and 12 13 Dept. of Biology, Konstanz University, D-78467 Konstanz, Germany 14 Examples of layered patterns 15 Mars surface. Size in meters Human bone. Size in microns 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Credit: NASA/JPL/University of Arizona Credit: Norman Barker, Johns Hopkins University Eutectic alloy. Size in microns Fish skin. Size in centimeters 31 32 33 34 35 36 37 38 39 40 Credit: Dennis Pollack. 41 Institute Fish Wise CC 42 Credit: T. W. Cline, University of Cambridge 43 44 45 46 35 figures are in the end of the manuscript 47 Basic concepts: 48 Figure 3. Layered pattern structure as graph and logical network 49 Figure 4. Quantification structural disorder in an anisotropic layered pattern 50

52	Abstract
53	Various natural patterns—such as terrestrial sand dune ripples, lamellae in vertebrate bones,
54	growth increments in fish scales and corals, aorta and lamellar corpuscle of humans and
55	animals—comprise layers of different thicknesses and lengths. Microstructures in manmade
56	materials—such as alloys, perlite steels, polymers, ceramics, and ripples induced by laser on the
57	surface of graphen—also exhibit layered structures. These layered patterns form a record of
58	internal and external factors regulating pattern formation in their various systems, making it
59	potentially possible to recognize and identify in their incremental sequences trends, periodicities
60	and events in the formation history of these systems. The morphology of layered systems plays a
61	vital role in developing new materials and in biomimetic research. The structures and sizes of
62	these two-dimensional (2-D) patterns are characteristically anisotropic: That is, the number of
63	layers and their absolute thicknesses vary significantly in different directions.
64	
65	The present work develops a method to quantify the morphological characteristics of layered
66	patterns that accounts for anisotropy in the object of study. To reach this goal, we use Boolean
67	functions and an N-partite graph to formalize layer structure and thickness across a 2-D plane
68	and to construct charts of 1) "layer thickness vs. layer number" and 2) "layer area vs. layer
69	number." We present a parameter for structural disorder in a layered pattern (DStr) to describe
70	the deviation of a study object's anisotropic structure from an isotropic analog and illustrate that
71	charts and DStr could be used as local and global morphological characteristics describing
72	various layered systems such as images of, for example, geological, atmospheric, medical,
73	materials, forensic, plants, and animals. Suggested future experiments could lead to new insights
74	into layered pattern formation.
75	
76	Keywords : 0-gravity, anisotropy of layered systems, biomimetics, Boolean functions, image
77	processing, N-partite graph, structural anomaly, structural disorder of layered systems, world
78	ocean
79	

80	1. Introduction
81	Layered structures can be found in many natural patterns—including satellite images of the
82	surfaces of Mars, Pluto (Fig. 1A), and Titan (Fig. 1B) and terrestrial tidal sand ripples—exhibit
83	layered patterns of varying sizes, ranging from meters to hundreds of kilometers. Fish skin, fish
84	scales, coral growth increments, leaf structures and flower surface microstructures, snake and
85	spider skin (Fig. 2A, B), bird plumage patterns, three-dimensional (3-D) images of shells (Fig.
86	2C), clouds and lightning, human and animal hairs, and wild turkey wings (Fig. 2D) all exhibit
87	patterns of this type. Other examples are microstructures in manmade materials and in lamella
88	bones (Fig. 1C).
89	
90	Natural layered patterns are attractive objects of study for specialists of different disciplines for
91	several reasons. First, layer thickness and structure represent the cumulative effect of internal
92	and external factors regulating pattern formation. Thus, layered patterns serve as a record of
93	diverse events occurring in different space-time domains. This record makes it possible to link
94	the morphology of layered patterns to external factors such as variability in the Earth's rotation
95	(Pannella, 1972), climate cycles (Radebaugh et al., 2011; Ewing et al., 2014), and the state of
96	the environment (Guyette and Rabeni, 1995; Costa et al., 2002).
97	
98	Some soft tissues—including the human aorta, skeletal muscle (Fig. 2E), and Pacinian (lamellar)
99	corpuscles—exhibit layered structures. Pacinian corpuscles are nerve endings in the skin
100	responsible for detecting and locating skin deformations produced by air vibrations and skin
101	contact (Kaas, 2012). Studying their morphological parameters has implications for the
102	development of new technology for conveying speech and visual information through
103	somatosensory channels (Rothenberg et al., 1977; Bau et al., 2010; Biswas et al., 2015). The
104	human aorta has a layered (i.e., lamellar) structure (Fig. 14) that typifies the elastic lamina found
105	in human and animal blood vessels. The study of aortic microstructure and age-related changes is
106	an urgent area of medical research (Novotny et al., 2017; Tonar et al., 2015; Akhtar et al., 2011;
107	Selçuk et al., 2015).
108	
109	Additionally, analyzing layer morphology is an essential element of solving many problems in
110	materials science, biomimetic, and forensic research. For instance, biometric research has

111	explored the structural properties of butterfly photonic systems (Vukusic and Sambles, 2003),
112	flower surfaces (Barthlott et al., 2016; Huang et al., 2017), and snakeskin (Abdel-Aal and
113	Mansori, 2011; Klein and Gorb, 2012). In materials science, a material's mechanical and
114	physical characteristics are determined by its microstructure, which in many instances is layered
115	(Moya, 1995; Mayer, 2005). Understanding the relationship between microstructure and these
116	properties is vital for developing porous materials with new mechanical characteristics (Deville,
117	2018). In forensic research, morphological features of layered systems in hair and fingerprints
118	can be used for identification purposes (Champod, 2015; Lee et al., 2014; De Marinis and
119	Asprea, 2006).
120	
121	The study and commercial applications of various categories of layered systems requires
122	formalizing aspects of their analysis. One of the first steps toward this goal is quantitatively
123	describing the morphology of a layered pattern. Formalizing this morphology is problematic
124	because of the numerous breaks and confluences (i.e., bifurcations) in the layers of 2-D and 3-D
125	objects (Blumberg, 2006). The number and thickness of these layers is a function of the direction
126	in which they are measured; that is, they are anisotropic in both size (including thickness and
127	area) and structure, thereby making it difficult to develop a formal procedure for their analysis.
128	
129	Layered systems—irrespective of their nature or size—share several key elements, including the
130	idea of layers, number of layers, and their thicknesses. If layers have no breaks or confluences
131	(i.e., layers are structurally isotropic), then calculating the thickness, area, and number of these
132	layers across a 2-D plane is a straightforward task. But if layers have breaks and confluences,
133	quantifying a pattern's characteristics becomes problematic.
134	
135	To address this problem, we have proposed an empirical model $M = \{BF, G(N), T_{M,N}\}$ of 2-D
136	layered patterns, with the aim of providing tools to quantify the morphological features of
137	anisotropic layered objects (Smolyar et al., 1987; Smolyar and Bromage, 2004; Smolyar, 2014;
138	Smolyar et al., 2016). This model has three components: a Boolean function (BF) (Fig. 3B–D),
139	an N-partite graph $(G(N))$ (Fig. 3A) to describe the 2-D structure of layers, and Table $T_{M,N}$,
140	which comprises the thickness of layers along transects $R_1,,R_j,,R_N,$ plotted from a
141	pattern's lower margin to its upper margin. Transects $R_1,,R_j,,R_N$ are straight lines always

142 distributed evenly across a 2-D layered pattern. The concept of open/closed gates (Fig. 3B,C) makes it possible to describe all possible versions of layer structure using Boolean functions. 143 144 145 The second set of key elements shared by 2-D anisotropic layered systems are the concepts of 146 layer structure across a 2-D plane and layer length, which are defined in terms of transects that 147 cross a pattern from its lower to its upper margins (Fig. 4A). We introduce the concept of 148 synchronizing layer formation across a 2-D plane in order to quantify the structure of layers and 149 develop a procedure for plotting 1) "layer thickness vs. layer number" and 2) "layer area vs. 150 layer number" (Smolyar et al., 2016). That is, to construct the structure of each layer across a 2-151 D plane, it is necessary to synchronize layer formation in the space–time domain. Because layers 152 are anisotropic, more than one version of the layered structure could be used for synchronization, 153 resulting in fuzziness in the charts for "layer thickness vs. layer number" and "layer area vs. 154 layer number." Fuzziness is an unavoidable attribute when parameterizing anisotropic layered 155 patterns. When describing the variability of layer size in anisotropic patterns across a 2-D plane, 156 high accuracy and high confidence are mutually exclusive. 157 158 Smolyar et al. (2016) introduced the idea of an "index of confidence," which allows a 159 compromise between detail and signal-to-noise ratio—either more detail and a lower signal-to-160 noise ratio or less detail and a higher signal-to-noise ratio—when describing the variability of 161 layer thickness and area across N transects. It is therefore possible to plot robust charts for "layer 162 thickness vs. layer number" and "layer area vs. layer number." These charts describe the global 163 morphological characteristics of an entire 2-D layered pattern. For instance, if each layer (e.g., of 164 tree rings, fish scales, lamellar bones, corals) is associated with the instant of time t_i in which it 165 was formed, then a layer's thickness and area are measures of the growth rate of the layered 166 system at that time. In this case, "layer thickness vs. layer number" and "layer area vs. layer 167 number" are interpreted as growth-rate variability across the entire system of 2-D anisotropic 168 layers. 169 170 Using model $M = \{BF, G(N), T_{M,N}\}\$ to analyze the growth-rate variability of lamella bones 171 allows us to reveal cyclicity in bone formation not previously observed (Bromage et al., 2009). 172 These results—as well as evidence that many factors controlling pattern formation are cyclic in

173 nature—motivate us to use $M = \{BF, G(N), T_{M,N}\}\$ to reveal and quantify cyclicity for layered 174 objects when layer formation is not associated with a moment of time, t_i . 175 176 The present paper continues our previous work (Smolyar et al., 2016). The goals of the paper are 177 two-fold: 1) develop a method for quantifying the structural characteristics of layered patterns 178 and 2) examine the applicability of DStr and the empirical model $M = \{BF, G(N), T_{M,N}\}$ for 179 analyzing layered patterns of various categories. To reach these goals, we 180 review layered patterns appearing in the realms of medicine, forensics, geology, botany, 181 zoology, atmospheric science, and materials science in order to justify that similarities in the 182 structural anisotropy of layers can be described by $M = \{BF, G(N), T_{MN}\}$; introduce a structural characteristic of layered patterns called "layers structural disorder" 183 184 (DStr) and propose a fully automated method for its calculation. DStr serves as a measure of 185 deviation from an isotropic prototype in patterns with anisotropic layered structure; 186 illustrate that DStr is a universal characteristic applicable to any 2-D layered pattern, 187 irrespective of nature and size, and could be used as a local and global defining 188 characteristic of a layered pattern; 189 illustrate the possibility of using an empirical model of layered patterns, $M = \{BF, G(N), \}$ 190 T_{M.N}}, to quantify the variability of layer thickness across 2-D planes of images of objects of 191 various categories. 192 Various examples underline the applicability of DStr and $M = \{BF, G(N), T_{MN}\}\$ for quantifying 193 the structural characteristics of various categories of living and non-living layered systems. We 194 also give suggestions for further experiments that have the potential to help us better understand 195 environmental influences on pattern formation. It is necessary to point out that using DStr and M 196 = $\{BF, G(N), T_{M,N}\}\$ to gain insight into any particular layered system is outside of the scope of 197 the present work. 198 199 In different publications, layers may be called growth lines, growth layers, circuli, bands, growth 200 increments, lamellae, ripples, or ridges, depending on the object of study. The present work uses 201 these terms synonymously.

203	2. Method
204	This section explains DStr and describes two structural extremes of anisotropic 2-D layered
205	systems: minimal disorder (DStr = 0) and maximal disorder (DStr = 1).
206	
207	2.1. Basic concept
208	A precise definition of anisotropy/isotropy depends on the object of study. Our definition of
209	isotropic and anisotropic layered patterns comes from the study of growth increments in fish
210	scales. Growth rates of fish scales vary in different directions, resulting in numerous breaks and
211	confluences in growth layers, which are the source of anisotropy in fish scale growth layers
212	because more than one possibility exists for describing layer structure across a 2-D plane (i.e.,
213	across N transects). In other words, the structure of layers is a function of the state of gates (Fig.
214	3B-D). Therefore, characteristics of anisotropy in a layered pattern are i) the possibility of more
215	than one version of layer structure and ii) different lengths of layers, where length is defined as
216	the number of transects crossing the layer. In an isotropic image, each layer is crossed all N
217	transects (i.e., layers have no breaks and confluences), and only one possibility exists to describe
218	the structure of each layer. Objects with isotropic layered structure are relatively rare. Hence, a
219	general definition of anisotropy implies different properties in various different directions, and
220	anisotropy in a layered system implies different properties in the directions of layers formation
221	only.
222	
223	2-D layered patterns consist of both isotropic (IC) and anisotropic (AC) components. We
224	therefore define the DStr of a 2-D layered pattern as the measure of a pattern's deviation from
225	isotropy. Because the N-partite graph, $G(N)$, represents the structure of a layered pattern, AC and
226	IC could be understood in terms of edges and vertices in G(N).
227	
228	$G(N)$ consists of a sequence of bi-partite graphs, $G(R_1,R_2),\ldotsG(R_j,R_{j+1}),\ldotsG(R_{N^{-1}},R_N),$ where
229	$G(R_j, R_{j+1})$ is a bi-partite graph that describes the structure of a layered pattern situated between
230	transects R_j and R_{j+1} (Fig. 3A). An isotropic layer here would imply that vertex $\mathbf{a} \in R_j$ connects
231	only with vertex $\mathbf{b} \in R_{j+1}$ and $\mathbf{b} \in R_{j+1}$ connects only with $\mathbf{a} \in R_j$. Edge \mathbf{ab} in $G(R_j, R_{j+1})$ is therefore
232	an isotropic edge. Total Edges denotes the total number of edges in $G(R_{j},\!R_{j+1}).$ The number of
233	anisotropic edges in $G(R_j, R_{j+1})$ is equal to TotalEdges minus the number of isotropic edges.

234				
235	Disorder (DGrp (R_j,R_{j+1})) of bi-partite graph $G(R_j,R_{j+1})$:			
236	$DGrp(R_j,R_{j+1}) = anisotropic edges/ TotalEdges.$			
237	Disorder of N-partite graph G(N):			
238	(1) $DGrp(R_1,R_N) = 1/(N-1)^* \Sigma \ DGrp(R_j,R_{j+1}), \ j=1, \ N.$			
239	Two questions follow from equation (1).			
240				
241	$\underline{Question~\#1}.~From~equation~(1),~it~transpires~that~DGrp(R_1,R_N)~depends~on~sampling~density$			
242	(i.e., the number of transects used to calculate $DGrp(R_1,R_N)$). How many transects should be			
243	used to quantify $DGrp(R_1,R_N)$, which has not yet been technically defined? Section 2.2 answers			
244	this question.			
245				
246	Question #2. Following equation (1), $DGrp(R_1,R_N)$ varies from 0 to 1. If $DGrp(R_1,R_N) = 0$, then			
247	the layered pattern is entirely isotropic; such layered images are easily visualized (Fig. 24). But			
248	what do entirely anisotropic patterns (that is, $DGgr(R_1,R_N) = 1$) look like? Section 2.3 tackles			
249	this issue.			
250				
251	2.2. Sampling density			
252	Because the AC of a layered pattern are unevenly distributed in 2-D space, we examine multiple			
253	versions of sampling density to determine how many transects are necessary to quantify DStr.			
254	We plot the function $y = f(x)$ (i.e., $DStr = f(number of transects)$), which describes dynamic			
255	changes in DStr when the number of transects tends to the maximum possible number. The area			
256	bounded by $y = f(x)$ and the y-axis is the measure of DStr.			
257				
258	The choice of how many transects, $R_1,,R_j,,R_N$, to use to develop the empirical model $M=$			
259	$(BF,G(N),T_{M,N})$ plays an essential role in analyzing the structure of anisotropic layered patterns.			
260	Consider the proposed approach for constructing sets of transects used to describe model			
261	components BF, $G(N)$, and $T_{M,N}$ and calculate DStr.			
262				
263	The general principle in choosing the number of transects is based on the fact that we do not			
264	know a priori how many transects will best describe the particular layered pattern within the			

265	frame of finding a solution to the specific problem. In these circumstances, our choice is to
266	examine as many different versions of transect sets. In the present work, all transects are straight
267	lines, and the distance between two adjacent transects remains constant across all transects.
268	
269	Figure 4 illustrates the procedure for constructing $y = f(x)$ and calculating DStr. Fig. 4A depicts a
270	layered pattern with structural anisotropy and a graph constructed for transects A, B, and C;
271	Figure 4B depicts a graph for four transects. The initial layered pattern is presented as a raster
272	graphic; thus, the size of the layered pattern is measured in terms of pixels. The minimum
273	distance between two adjacent transects is 1 pixel. If the thickness of a transect is equal to 1
274	pixel, then the maximal number of transects is N_{max} = pattern width/2 (if the pattern width is
275	divisible by 2), and N_{max} = (pattern width+1)/2 otherwise. The layered pattern in Fig. 4 has a
276	maximum of 103 transects. We calculate DGrp for $N = 3, 4, 5,, 103$, or 100 versions of
277	transect sets (Fig. 4C) to plot $y = f(x)$ and normalize the number of transects in order to present
278	the results of the calculation in scale [0,1]; $N_i(\text{normalized}) = N_i/N_{\text{max}}$ (Fig. 4D). By calculating
279	DGrp for transect Set $\#1 = (R_1, R_2, R_3)$, Set $\#2 = (R_1, R_2, R_3, R_4)$,, Set $\#100 = (R_1, R_2,, R_4)$
280	R_{103}), we describe the variability of DStr across all possible transect versions. In this case, $y =$
281	f(x) contains as much structural detail as possible for the layered pattern under study.
282	
283	We refer to the number of transect sets used to plot $y = f(x)$ and calculate DStr as "sampling
284	density." Sampling density is "highest" if all possible versions of transect sets are used to
285	construct $y = f(x)$ and calculate DStr (Fig. 4D). Sampling density could be described as
286	"medium" or "low" depending on the number of transect sets used to construct $y = f(x)$. Fig. 22B
287	illustrates how high, medium, and low sampling density affect the shape of $y = f(x)$.
288	
289	The coefficient of determination, R ² (Draper and Smith, 1998), ranges from 0 to 1 and is used to
290	estimate how well the partial-rational function $y = mx^k$ replicates $y = f(x)$. If $R^2 = 1$, then $y =$
291	mx^{-k} is the approximation of $y = f(x)$ with 0 error. We choose function $y = mx^{-k}$ to replicate $y =$
292	$f(x)$ for two reasons. First, it contains two numeric coefficients, ${\bf m}$ and ${\bf k}$, so only two numeric
293	values serve as global structural characteristics of the entire 2-D layered pattern. Second, for
294	many-layered patterns, $R^2 \ge 0.93$ for $y = mx^{-k}$.
95	

- We use Microsoft Excel 2007 to calculate parameters m and k for $y = mx^{-k}$ and R^2 for $y = mx^{-k}$.
- Because $R^2 = 0.9962$, $y = 0.0228x^{-0.969}$ (Fig. 4D), thus equation (2) can be used to calculate DStr:
- 298 (2) DStr = $\int_0^1 f(x) dx$.
- For the pattern in Fig. 4D, DStr = 0.08346.

- 301 **2.3.** Maximal structural disorder of layered patterns (DStr = 1)
- Consider the appearance of a layered pattern with DStr = 1 (i.e., the layered pattern's has no IC):
- Each vertex situated along transect R_j connects with all vertices situated along R_{j+1} ; thus, the bi-
- partite graph $G(R_i, R_{i+1})$ is complete. If the layered image consists of complete bi-partite graph
- sequences for all possible numbers of transects, then DStr = 1. It should be stressed that we do
- not use isolated vertices (i.e., those that are not connected to other vertices) in calculating DStr,
- 307 because they do not form isotropic or anisotropic edges. One possible example of a pattern in
- 308 which DStr approaches maximal structural disorder is stars in the night sky (Fig. 11A, B).

309

310 **3. Results**

- We use images of living and non-living systems to justify applying the proposed method to
- 312 quantify structural characteristics of a broad range of patterns. Section 3.1 presents results of
- 313 calculating DStr, Section 3.2 presents the variability of layer size across a 2-D plane, and Section
- 3.3 presents experiments illustrating the sensitivity of these methods to detecting minor changes
- in layered structures.

- 3.1. Structural disorder of layered patterns
- The algorithm for calculating DStr consists of the following steps:
- The original layered image (in grayscale raster format) is converted into M = (BF, G(N), G(N), G(N))
- $T_{M,N}$ using the technology described in Smolyar, 2014 and Smolyar et al. (2016).
- 321 2. Transects $R_1, ..., R_j, ..., R_N$ are plotted and $DGrp(R_j, R_{j+1})$ is calculated (equation 1).
- 322 3. Step 2 is repeated P times, resulting in $DGrp(1,N_1)$, $DGrp(1,N_2)$, ..., $DGrp(1,N_P)$.
- 323 4. The function y = f(x) is constructed and R^2 is calculated.
- 5. DStr for the entire sampling area is calculated (equation 2).
- We consider DStr for layered images in seven categories: geology, atmosphere, materials,
- medicine, plants, animals, and forensics.

327	Geology (Figures 5–8). Sand dunes on the Martian surface form a record of the role of wind in
328	climatic regime (Gardin et al., 2011; Diniega et al., 2017; Lapotre et al., 2016). Studying the
329	structural characteristics of dunes and their changes over time is necessary to better understand
330	Martian climatic systems and how they impact robotic and human activity on Mars. Figure 5
331	shows the structural similarities and differences among four parts of the sampling area.
332	Parameter DStr for parts $\boldsymbol{A} - \boldsymbol{D}$ indicates that part D has the most complicated layered structure,
333	i.e deviation from isotropic layered object, since DStr(D)> DStr(B)> DStr(A)> DStr(C).
334	
335	Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of
336	the sampling area \mathbf{a} is 10 times less than that of nearby area \mathbf{b} , which exhibits structural anomaly
337	with respect to area a. Figure 6B depicts the structural anomaly of sand ripples. The red sampling
338	area exhibits structural anomaly with respect to nearby orange and blue areas. The DStr of the
339	orange and blue areas is 2.3 times less than that of the red area.
340	
341	Figure 7 shows a vertical section of underground soil structure, obtained by Ground Penetrating
342	Radar, that demonstrates anisotropic layers that can be used to identify pipes, archeological
343	artifacts, or soil composition in the study area (Robinson et al., 2013). The sampling area of
344	Figure 7 is divided into four parts, and DStr is calculated for each part. Part D has the most
345	complicated structure since $DStr(D) > DStr(B) > DStr(A) > DStr(C)$.
346	
347	Figure 8 shows significant differences between structures of sand ripples formed in the tidal zone
348	at Inch on the Dingle Peninsula in Ireland. Knowledge of the dynamics and morphology of dunes
349	and ripples is useful for managing beach ecosystems (Sloss et al., 2012; Passchier and Kleinhans,
350	2005).
351	
352	Atmosphere (Figures 9–11). Altocumulus clouds (Fig. 9) and cloud-to-ground lightning (Fig. 10)
353	are examples of atmospheric layered patterns. The morphology of these phenomena can be
354	described in the same quantitative terms used for geologic and biological systems, namely, as a
355	deviation from a layered object with isotropic structure. The structure of lightning could be
356	described with different levels of detail. A satellite image of the United States at night and

357	another from the Hubble Space telescope (Fig. 11) illustrate what the chart for "DStr vs. number
358	of transects" looks like in images tending toward complete disorder.
359	
360	Materials (Figure 12). Materials science is an attractive area for the application of $M = \{BF,$
361	$G(N)$, $T_{M,N}$ because the macro- and nanostructures of various materials exhibit layered
362	anisotropic patterns (Fig. 12) that define their properties. Thus, DStr could serve as a local and
363	global morphological parameter for describing material microstructures. DStr could also be used
364	to link structures and properties, an essential step in developing materials with desired
365	combinations of characteristics. Figure 12A exhibits images of a eutectic alloy, ion-induced
366	ripples (Lian et al., 2006), and perlite and their corresponding DStr parameters.
367	
368	The morphology of the surface of black diamonds is an essential element in developing solar
369	energy conversion systems (Calvani et al., 2016). Figure 12B shows the dynamic of DStr as a
370	function of different treatments of the black diamond surface.
371	
372	Medicine (Figures 13-15). Lamella bones (Fig. 13), the human aorta (Fig. 14), and an eye
373	angiogram (Fig. 15) are medical examples of layered patterns with structural anisotropy. Because
374	medical treatments affect their structures, estimating the influence of treatment necessitates
375	comparing the morphology of layered patterns before and after treatment (Novotny et al., 2017).
376	Structural disorder in the sampling area of bone B is much simpler than that in bone A (Fig. 13).
377	Sampling area B is uniform, whereas sampling area A includes a combination of bone and osteor
378	lamellar systems.
379	
380	The aorta lamellar pattern in Figure 14 has uniform anisotropic structure since parts A, B, C, and
381	D have similar values of DStr. It is possible to consider an eye angiogram as a layered pattern
382	with structural anisotropy (Fig. 15). The structure of an eye angiogram with medium detail is
383	more complicated than that with low detail. DStr allows us to quantitatively describe this
384	difference.
385	
386	Plants (Figures 16–17). Flower surfaces can be super hydrophobic and self-cleaning, features
387	that make their morphology an important object of biomimetic study (Barthlott et al., 2017).

388	Figure 16 shows the layered microstructure of the surface of a Rose petal divided into four
389	sampling areas. Visual inspection of the sampling areas allows us to note that area B has the
390	most complicated layer structure. Values of DStr for A, B, C, and D verify this observation.
391	
392	Figure 17 depicts juvenile and adult leaves of an aquatic Madagascar Lace plant, which is an
393	excellent model for studying programmed cell death in plants (Gunawardena et al., 2004;
394	Dauphinee et al., 2017). We use the juvenile and adult vein systems in Madagascar Lace leaves
395	to compare their morphology. The sampling area of the juvenile leaf is completely isotropic,
396	DStr(lace juvenile leaf) = 0 (Fig. 17), whereas the sampling area of the adult leaf has a high
397	degree of disorder, which is obvious from its pattern; DStr(lace adult leaf) = 0.7116 (Fig. 17).
398	
399	Animals (Figures 18–21). The configuration of stripes on fish skin (Fig. 18) is a typical example
100	of an anisotropic layered pattern. The formation of patterns on the surfaces of fish, shells, and
101	mammals has been explained by a reaction-diffusion system (Turing, 1952; Meinhardt, 1989;
102	Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D imply that
103	DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure
104	and area D has the simplest structure among four sampling areas. This result inspires two
105	questions: 1) Is the DStr of the right side of the fish similar to the DStr of the left side? 2) Could
106	the morphology of stripes serve as a record of internal and external events in the life history of a
107	fish? Model $M = \{BF, G(N), T_{M,N}\}$ could be one tool to help to answer these questions.
804	
109	The micro-ornamentation of snakes is broadly studied in biomimetic research due to unique
110	combinations of surface features (Arnold, 2002; Gower, 2003; Filippov and Gorb, 2016). Figure
11	19 shows hierarchical layered microstructures in snake skin. Although the entire area of snake
112	skin shown in Figure 19 has complicated morphology, sampling areas A and B have DStr close
113	to isotropy because the DStr of A and B are very low: $DStr(A) = 0.042$ and $DStr(B) = 0.063$.
114	
115	Plumage patterns in banded pitta, kingfisher, and owl (Fig. 20) offer examples of layered
116	systems in bird plumage. DStr shows significant diversity in the structure of these layered
117	systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires
118	us to ask whether parameters of layered structures might serve as phenotypic characteristics

419	(Gluckman and Mundy, 2016). Model $M = \{BF, G(N), I_{M,N}\}$ could be used to test this		
420	hypothesis (i.e., examine the structural characteristics of birds' plumage patterns with respect to		
421	state of the environment).		
422			
423	Photonic systems of biological objects generate interest among scientists and engineers across		
424	various disciplines due to their unique ability to manipulate color using micro-structured surfaces		
425	(Starkey and Vukusic, 2013; Parker, 2000). Many photonic surfaces in flowers and animals		
426	exhibit lamellar structures (Vukusic and Sambles, 2003), such as the scales arranged in		
427	anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We use DStr		
428	to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results		
429	of DStr calculations for six sampling areas. The left and right wings of Morpho butterfly have		
430	similar structural characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a		
431	characteristic of blue color nuances in Morpho butterflies? Do male and female Morpho		
432	butterflies have similar structural characteristic DStr? How do local/global structural anomalies		
433	in butterfly wings with respect to DStr affect butterfly color? Model $M = \{BF, G(N), T_{M,N}\}$		
434	could be used to answer these questions.		
435			
436	Forensic (Figures 22–23). The layered microstructures of human hair are much more		
437	complicated than those of some animals (Fig. 22A), which is confirmed by DStr(human),		
438	DStr(deer), DStr(mouse), and the corresponding charts for "structural disorder of hair =		
439	f(number of transects)." Figure 22B shows that high sampling density accounts for more		
440	structural details than low sampling density.		
441			
442	As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive		
443	structural characteristics that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) =		
444	0.1978. Distinctions between DStr among different categories of fingerprints substantially		
445	depend on the number of transects used to calculate DStr (Section 2.2). To define the number of		
446	transects that allow maximal differences among DStr in the four categories of fingerprints, we		
447	plot the chart (Fig. 23B) as DStr(central pocket loop) – DStr(plain arch) = f(number of		
448	transects). Nine transects allow the maximal possible differences between two categories of		
449	fingerprints; that is, $DStr(central pocket loop) - DStr(plain arch) = 0.253$, which is 2.6 times		

150	more than the DStr(central pocket loop) and DStr(plain arch) comparison if equation (2) is used
151	to calculate DStr. Sampling density and number of transects could complement DStr in forensic
152	identification.
153	
154	Excel file (Supplemental) presented raw data for calculation DStr and DStr = $f(transect number)$.
155	
156	3.2. Cyclic variability of layer size across 2-D plane
157	The algorithm for constructing chart for "layer thickness vs. layer number is identical to that
158	used in Smolyar et al. (2016). The signal-to-noise ratio for charts (Figures 24-29) is equal to 6.
159	The experiments described in this section examine the distribution of layer thickness across a
160	sampling area in order to estimate whether average layer thickness accurately describes the
161	morphological characteristics of 2-D layered systems.
162	
163	Geology (Figures 24–25). Dune fields are an example of the layered patterns that exist
164	throughout nature. Dune spacing (i.e., layer thickness) is a basic morphological characteristic of
165	dune systems (Lancaster, 2009). Figures 24 and 25 show layered fragments of the surface of
166	Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to describe
167	the variability of layer thickness across the 2-D sampling area with high accuracy. Several
168	transects are used to calculate average thickness of each layer. Charts of "layer thickness vs.
169	layer number" show cyclic trends in the variability of layer thickness across the sampling area
170	(Fig. 24 and 25). Similar cyclic trends in anisotropic structures are also observed on Mars and
171	Earth (Smolyar et al., 2016).
172	
173	Materials (Figure 26). Lamellar/rippled/layered patterns have been found in metals, alloys,
174	insulators, semiconductors, and many others materials (Deville, 2018; Zuo et al., 2016; Moya,
175	1995). Lamellar thickness is a micromorphological characteristic that plays a central role in the
176	relationship between a material's microstructure and its macro properties because "the unique
177	properties of natural layered materials and nanocomposites are achieved through a fine control of
178	the layer thickness" (Deville et al., 2007, p. 970). Figure 26A depicts an image of layered Al-Si
179	composite with anisotropic structure. The chart of "layer thickness vs. layer number" shows
180	cyclicity in the variability of layer thickness across the sampling area (Fig. 26B), which is

481 divided into parts A, B, C, and D (Fig. 26C) according to the uniform distribution of layer 482 thickness in each part (Fig. 26D). It follows that the chart of "layer thickness vs. layer number" 483 provides a more detailed description of a layered pattern's morphological characteristic than 484 average layer thickness. 485 486 Medicine (Figures 27). Figure 27 shows a Pacinian (lamellar) corpuscle (PC), a sensory receptor 487 in skin that is sensitive to contact and vibration. The anisotropic lamellar structure of PCs plays an essential role in the function of the PC system; lamellar thickness and number of lamellae are 488 489 used to examine the link between the PC's material and morphological characteristics and its 490 response to vibration (Quindlen et al., 2017). We use 42 transects to plot the chart of "layer 491 thickness vs. layer number" (Fig. 27), which clearly demonstrates the cyclic nature of variability 492 in lamellar thickness across the sampling area. 493 494 Animals (Figures 28–29). The chart of "layer thickness vs. layer number" exhibits non-random 495 trends in the variability of layer thickness across bird feathers (Fig. 28). The chart and DStr could 496 potentially serve as morphological characteristics of birds with application to the study of their 497 life cycles. Striped patterns are often used to distinguish bird species from one another. In 498 particular, shrikes and their relatives are recognizable to birders by the peculiar differences in the 499 thickness and layering of their striped patterns, many of which are simply black and white. 500 Furthermore, there are often marked differences in the morphological features of feathers 501 between males and females of the same species, a dimorphism that is recognized both by the 502 animals themselves and by human observers (Gluckman 2014). 503 504 The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of 505 their superior mechanical properties but also as a source of information about spiders' 506 construction behaviors (Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb 507 web represents a layered system with structural anisotropy: "One of the most relevant structural 508 traits of orb webs is their mesh width" (Zschokke and Nakata, 2015, p. 661). Mesh width (i.e., 509 layer thickness) is used to understand the construction features of web systems and relate them to 510 spiders' behavior. For instance, Zschokke and Nakata (2015, p. 661) point out that "a closer look 511 at the orb webs reveals that mesh widths are not the same throughout the entire web." Charts

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

538

539

540

541

542

describing the variability of mesh width across the sampling area (Fig. 29) confirm this statement and indicate cyclicity in the variability of mesh width across the sampling area. Thus, $M = \{BF, AB\}$ G(N), T_{M,N}} could be used to generate a new set of structural characteristics describing the anisotropy of an orb web and its segments. 3.3. Sensitivity of DStr to minor structural changes Next, we examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A), fish scale (Fig. 30B), and an eye angiogram (Fig. 30C) as test objects. Let us denote characteristics of images before and after structural changes by DStr(before changes) and DStr(after changes). We describe the link between DStr(before changes) and DStr(after changes) and structural changes in images in quantitative terms using the following procedure: First, we describe the difference between DStr(before changes) and DStr(after changes) on a relative scale (%). All changes in layer structure are marked in red. We denote the difference as Parameter-1. Second, we describe (in %) the difference (in pixels) between the images before and after changes. To do so, we calculate the number of black pixels in an image before changes (total pixels before changes) and the total number of pixels that change color (white to black or vice versa) as a result of structural changes (total pixel change). The ratio (%) of "total pixel change/total pixels before changes" allows us to calculate the magnitude of structural changes in an image. This ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2 allows us to estimate the sensitivity of DStr to structural changes in the image. Results of calculating Parameter-1 and Parameter-2 are 2

533		Parameter-1	Parameter-2
534	Fingerprint	0.55%	0.072%
535	Fish scale	3.80%	0.150%
536	Eye angiogram	0.32%	0.077%
537	Average	1.56%	0.10%

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1% structural change in layers results in a 15.6% change in DStr. This result provides evidence that minor changes in layer structure are accompanied by substantially greater changes in DStr values. This feature of $M = \{BF, G(N), T_{M,N}\}$ could be positive or negative, as required by application. For instance, if it is necessary to identify a fingerprint image of poor quality with

543	many gaps, then the sensitivity of DStr and $y = f(x)$ to structural changes is a barrier. If the image
544	is of a good quality and it is necessary to track minor changes in structure over time (Silvestro et
545	al., 2010) or find structural differences between patterns of spider webs (Eberhard, 2014;
546	Hesselberg, 2013; Blackledge and Zevenbergen, 2006) or aorta (Avolio et al., 1998; Zou and
547	Zhang, 2009; Taghizadeh and Tafazzoli-Shadpour, 2017; Mattson and Zhang, 2017), for
548	instance, then the sensitivity of $M = \{BF, G(N), T_{MN}\}\$ to structural changes is an advantage.
549	
550	4. Discussion
551	4.1. Method summary
552	Model $M = \{BF, G(N), T_{M,N}\}$ is an example of an empirical approach to studying anisotropic
553	layered systems. Analyzing large datasets requires this procedure to be formalized. The
554	developed method allows us to fully automate the conversion of a layered image into $M = \{BF,$
555	$G(N)$, $T_{M,N}$ and to calculate the morphological characteristics of layered patterns (Smolyar,
556	2014; Smolyar et.al., 2016). The present work introduces the idea of structural disorder in
557	layered systems. The fundamental difference between DStr and other approaches to quantifying
558	structures (Adams et al., 2004) is that DStr measures the deviation of anisotropic layer structures
559	from isotropy. Also, it is usual practice to choose parameters for describing patterns based on the
560	specific characteristics of an object of study. DStr and charts of "layer thickness vs. layer
561	number" and "layer area vs. layer number" can be used globally as well as locally to describe the
562	morphological characteristics of any anisotropic layered pattern. This property of DStr and the
563	charts allows us to formulate new questions, suggest new testable hypotheses about pattern
564	formation, and identify links between properties and structures of study objects, extending areas
565	of applications for analyzing various anisotropic layered systems.
566	
567	It is transparent that the transition from layered to non-layered patterns occurs continuously and
568	monotonously, which raises the question of whether it is possible to distinguish between layered
569	and non-layered images. Let us consider how we can use DStr to answer this question. DStr
570	could be defined in either of two ways: First, DStr is the area between $y = 0$ and the function $y = 0$
571	f(x) (Fig. 4D). In this case, DStr is the measure of deviation of an anisotropic pattern from
572	isotropy, denoted by DStr(deviation from isotropy). Second, DStr could be interpreted as the
573	deviation of an anisotropic pattern from a system with maximal disorder (i.e., a chaotic system),

- which is defined as the area between y = f(x) and y = 1, denoted DStr(deviation from chaos).
- Thus, y = f(x) divides a 1x1 square into two areas (Fig. 4D): DStr(deviation from isotropy) and
- 576 DStr(deviation from chaos). Because the area of the square is equal to 1, thus
- 577 (3) Deviation of anisotropic layer structure from maximal order +
- 578 Deviation of anisotropic layered structure from maximal disorder = 1,
- 579 where
- 580 maximal order = isotropy in layers structure,
- maximal disorder = chaos in layers structure.
- Using equation (3), it is possible to quantitatively describe a layered pattern in the following
- manner: If DStr \leq 0.5, then the structure of a pattern is more layered then chaotic; if DStr > 0.5,
- 584 then the structure is more chaotic than layered. Therefore, DStr \leq 0.5 is the maximal possible
- value for the characteristic of disorder in the structure of layered patterns. This is why a
- threshold of 0.5 is used to describe the difference between the structures of layered patterns in
- percentages (Section 4.2).
- 588
- Let us consider some of the limitations of the proposed method. Many limitations are as yet
- unknown because the morphology of anisotropic layered patterns is a relatively new object of
- study. Thus, we list the most obvious limitations that follow from the image analyses presented
- in Section 3:
- Images of the Martian surface (Fig. 24) exhibit layered patterns as a result of processes
- occurring in different space–time domains. The proposed method does not provide tools to
- describe global structural parameters of this category of images.
- Many images presented in Section 3 consist of lines with simple shapes, but the images of
- the human agrta (Fig. 14) and Pacinian corpuscle (Fig. 27) have more complicated
- configurations. The proposed method ignores the shape of layers.
- It is necessary to quantify the spatial orientation of layers when developing new materials
- (Deville, 2018) and setting up correspondence between the morphology of layered systems
- and water temperature (Olson et al., 2012; Gilbert et al., 2017). The proposed method does
- not provide tools to quantify the preferential orientation of layers.
- Model M = {BF, G(N), $T_{M,N}$ } does not account for the material properties of layers.

- All the transect versions used to calculate DStr are plotted in one direction, which is
 perpendicular (or quasi-perpendicular) to the layers.
- The problem of layered pattern normalization is outside the scope of this work.

608

4.2. Experimental results

- We calculate DStr for images in seven categories: geology, atmosphere, materials, medicine,
- forensic, plants, and animals (Fig. 31). The leaves of Madagascar Lace plants demonstrate the
- 611 highest level of structural diversion from fully isotropic layered pattern, with DStr = 0 to DStr =
- 612 0.7116. Landforms on Mars also demonstrate relatively high levels of structural diversion, from
- 613 isotropic (DStr = 0) to anisotropic (DStr = 0.303). Experiments with tidal ripples, alloys, hairs,
- 614 lightning, bones, eye angiograms, fingerprints, and bird plumage patterns illustrate the potential
- for DStr to be used as a global structural characteristic of the entire sampling area of layered
- patterns. Thus, it is reasonably safe to suggest that DStr is a universal characteristic that allows
- us to compare the structure of various categories of 2-D layered patterns, irrespective of size and
- 618 origin.

619

- If a sampling area can be divided into subareas, then DStr and the chart of "layer thickness vs.
- layer number" could serve as local structural characteristics of layered patterns. Experiments
- with Martian landforms (Fig. 5 and 6A), ground-penetrating radar sections (Fig. 7), fish skin
- 623 (Fig. 18), and the human agrta (Fig. 14) demonstrate that DStr is distributed unevenly across
- sampling areas. Since DStr varies from 0 to \leq 0.5 for layered patterns, it is possible to describe
- changes in DStr as percentages, which is more convenient for interpreting and estimating the
- degree of distinction between objects. For instance, segments C and D of the Martian landform
- in Figure 5 have DStr(C) = 0.193 and DStr(D) = 0.303, respectively. The percentage difference
- between DStr(C) and DStr(D) is
- 629 DStr(C) DStr(D) = abs [(0.193 0.303)/0.5] * 100% = 22%.
- The 22% difference between DStr(C) and DStr(D) could be interpreted as low, medium, or high
- depending on the type of object under study and the problem statement.

- Figure 6 shows an interesting example of uneven distribution of DStr across a Martian landform
- 634 (Fig. 6A) and sand ripples (Fig. 6B). There is a 33% difference in DStr between sampling areas

635	A and B (Fig. 6A), which is characterized by substation disruption in layer structure. There is a
636	55% difference in DStr between the red and blue/orange sampling areas (Fig. 6B). The
637	distinguishing features are obvious, and the differences in structure between areas A and B (Fig.
638	6A) and the red and blue/orange areas (Fig. 6B) are detectable with the naked eye. From a
639	general point of view, Figure 6 is an example of structural anomalies in an anisotropic layered
640	system. Such anomalies could exist in any category of object of study. For instance, structural
641	anomalies in metal microstructure could be interpreted as cracks. Procedures for detecting
642	structural anomalies in layered patterns could find applications in solving broad problems,
643	especially in medicine and materials science.
644	
645	The pattern of the human aorta (Fig. 14) is an example of a layered pattern with very
646	complicated structural anisotropy that cannot be manually processed. Four segments—A, B, C,
647	and D—show similar but not identical DStr (Fig. 14). There is a 4% difference between DStr(A)
648	and DStr(D), which is probably close to the noise due to converting the initial color image to
649	black and white.
650	
651	Another application of DStr is describing local structures in Morpho butterfly wings (Fig. 21A).
652	We assume that the left and right wings of flying objects have identical structures. In order to test
653	whether DStr is suitable to test this assumption, we divide the left and right wings into
654	symmetric segments (Fig. 21A). DStr are calculated and the symmetric segments are presented
655	in charts for "DStr vs. number of transects" (Fig. 21B). The DStr differences between the
656	symmetric segments do not exceed 2.8%, justifying our original assumption.
657	
658	Fingerprints are another example of layered patterns. The structural characteristics of fingerprint
659	ridges—such as bifurcation, trifurcation, and ridge ending and crossing—as well as peculiarities
660	of their distribution across the 2-D plane are used for individual identification. Model $M = \{BF,$
661	$G(N)$, $T_{M,N}$ allows us to account for tiny characteristics of the fingerprint image. Figure 23
662	illustrates the potential for using DStr to distinguish the structure of four basic categories of
663	fingerprint patterns. Also, via open/closed gates (Fig. 3B and C), it is possible to reveal
664	morphological characteristics of ridges that are most sensitive or robust to fingerprint
665	identification. In this way, it may be possible to decrease uncertainty in fingerprint recognition.

666 Parameter DStr is the result of generalizing the sequence $DGrp(N_1), ..., DGrp(N_k), ...,$ 667 $DGrp(N_{MAX})$, where N_k is the number of transects used to calculate $DGrp(N_k)$ (equation 2). 668 Generalizing the sequence of $DGrp(N_1)$, ..., $DGrp(N_k)$, ..., $DGrp(N_{MAX})$ makes the result of the 669 DStr calculation independent of the number of transects. In individual cases, DGrp(N_k) could 670 also be used to quantify the structural disorder of 2-D anisotropic layered patterns. We illustrate 671 this use of DGrp(Nk) with an example using the four categories of fingerprints depicted in Figure 672 23. The chart of "DStr vs. number of transects" (Fig. 23) makes it clear that structural differences 673 among the four categories of fingerprints are distributed unevenly along the axis "number of 674 transects." This raises a question about how many transects, N_k, are necessary to maximize the structural differences among fingerprints of different categories. The chart for "{DStr(Central 675 676 pocket loop) – DStr(Plain arch) vs. number of transects" (Fig. 23B) demonstrates that using 677 nine transects maximizes the structural differences between central pocket loop and plain arch 678 fingerprint patterns. If a different number of transects is used to calculate DStr (equation 2), then 679 the structural distinction between these categories of fingerprints is 680 (0.198 - 0.102)/0.5*100% = 19.2%. 681 If nine transects (i.e., a fixed number of transects) are used to calculate the structural distinction 682 between central pocket loop and plain arch patterns, the result is 683 0.25/0.5*100% = 50%. 684 Thus, applying nine transects increases the structural differences between central pocket loop 685 and plain arch more than 2.6 times. 686 687 Experiments with fingerprints (Fig. 23A) illustrate that the chart for "DStr vs. number of transects," which is highly accurate ($R^2 > 0.9$), could be interpolated to a power function, y= mx^{-k} . 688 689 Because DStr is sensitive to minor structural changes (Fig. 30A) and the four basic categories of fingerprints have substantially different \mathbf{m} and \mathbf{k} parameters, $y=\mathbf{m}x^{-\mathbf{k}}$ could serve as a unique 690 691 fingerprint identification number. Using m and k would be sufficient to find in a database those 692 fingerprints with identical m and k parameters or identify a relatively small set of fingerprints 693 with similar m and k values. Images in a large database could be sorted according to m and k 694 values in order to speed up fingerprint identification. 695

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

The geometrical configuration of chart DStr = f(number of transects) could be used as a morphological characteristic of layered patterns in addition to DStr and DStr for the fixed number of transects. We demonstrate on an image of human hair (Fig. 22B) how the variability of distance between transects (i.e., sampling density) could affect the shape of DStr = f(number of transects). Figure 22B shows that shape of the chart for DStr = f(number of transects) for low sampling density is much simpler than that of the chart for high sampling density. Thus, in addition to DStr, the shape of DStr = f(number of transects) itself could serve as a morphological characteristic of a 2-D layered pattern. Complicated layered patterns in bird plumage (Fig. 20) are formed by multiple individual feathers that have, individually, relatively simple patterns. Thus, it is not quite clear whether layer thickness is distributed chaotically across the body or demonstrates trends similar to other layered systems (Fig. 24–27). We calculate DStr (Fig. 20) and the chart for "layer thickness vs. layer number" (Fig. 28) in order to analyze the morphology of these layers. Because DStr(Pitta, Owl) < 0.5, we conclude that the feather patterns form layers in these species. Charts for "layer thickness vs. layer number" (Fig. 28) exhibit trends in variability of layer thickness across pitta and owl bodies. These results justify the potential applicability of DStr and the chart for "layer thickness vs. layer number" for describing morphological characteristics of bird plumage. In this context, it should be noted that the distinction between layer thickness and layer number is also used by birds themselves to distinguish among different species, even in a generalized way. Sparrow hawks, which are among the most fearsome predators of small birds, particularly songbirds, have a particular pattern of feathers on the breast plumage. Sparrow hawks are mobbed by small birds all over the world, and the feather patterns alone suffice to entice small birds to engage in the mobbing behavior. Cuckoos, on the other hand, are not predatory birds but throw the eggs of other birds out of their nests, replacing them with their own egg, which is then raised by the host bird. Cuckoos are also generally mobbed by small birds, as well as physically attacked whenever they approach (Davies and Welbergen, 2008). Most cuckoos have evolved layered feather patterns on their breast plumage that mimic those of sparrow hawks, helping them to mislead songbirds into thinking a dangerous predator (sparrow hawk) is in front of them, not a benign (but annoying) cuckoo

727 (Welbergen and Davies, 2011). This pattern mimicry has proven somewhat effective (Trnka and 728 Prokop, 2012). However, it is important to note that some small bird species have learned to 729 distinguish the subtle differences in layered patterns between predators and their cuckoo mimics 730 and now differentially attack these two groups of enemies (Welbergen and Davies, 2008). 731 732 The structure and size of lamellar bone form a record of the state of internal and external factors 733 responsible for lamellar formation over an organism's life history. The cyclicity of lamellae 734 thickness (Bromage et.al., 2009) over the period of formation is a cumulative effect of many 735 cyclic factors. Many hard tissues form incremental patterns at varying time scales. For instance, 736 mammalian enamel and dentine develop according to a circadian rhythm, creating a pattern 737 visible as daily microanatomical growth lines. These tissues, as well as those of bone, have also 738 been observed in some mammals to contain longer-period developmental rhythms that scale with 739 body mass (Bromage et al., 2012). These hard tissue rhythms are of substantial interest in 740 mammal life history research, providing information about the duration and amplitude of 741 periodic phenomena as well as about other natural history events occurring during bone and 742 tooth formation, which for some species could not be obtained by other means. 743 744 In bone in particular, a specific tissue called lamellar bone may be found in many, if not most, 745 mammals and many other vertebrates. Lamellar bone is profoundly incremental and thus of 746 particular concern here because each layer, while representing a defined period of formation, can 747 vary in width, the layers reflecting growth rate. The significance of such layers for biological 748 research is that changes in their widths potentially reflect internal and external events in an 749 organism's life history. It is also significant that this record is often preserved after an organism's 750 death, either as resilient hard tissue or as a fossil. Incremental patterns are a primary source of 751 information about the duration and amplitude of periodic phenomena as well as about other 752 natural history events occurring during formation: Information about cyclicity, interactions 753 between environmental and/or physiological cycles, and perturbations to the responding system 754 are all inherently contained in these incremental patterns. 755 756 For instance, in a child growing during a period of drought, bone lamellae have been observed to 757 diminish from approximately 6 µm to 4 µm in width over the 8- or 9-day period over which each

758	lamella is formed (Bromage et al., 2011). Seasonal rhythms, perhaps dependent on food
759	availability, are also apparent in such studies of lamellar bone growth-rate variability.
760	
761	Substantial areas of the Martian surface are covered by dunes and ripples formed by wind-blown
762	sand (Kok, 2010). Images of Martian landforms such as Transverse Aeolian Ridges, sand dunes,
763	and ripples are examples of 2-D anisotropic layered systems. Figures 24 and 25 show examples
764	of isotropic Martian landforms. Charts of "layer thickness vs. layer number" for these landforms
765	exhibit cyclicity in the variability of layer thickness across a 2-D plane. By averaging layer
766	thickness across the entire sampling area, we lose some important morphological characteristics.
767	A similar statement can be made for materials with layered microstructures.
768	
769	Pearlite steel (Liu et al., 2016), alloy (Ivanchenko et al., 2008), ceramic (Deville, 2008), and thin
770	films (Alberius et al., 2002) exhibit lamellar microstructures with various levels of anisotropy
771	(i.e., numbers of bifurcations and breaks in the lamellar structure). The distribution of
772	bifurcations and breaks across a 2-D sampling area plays an important role in quantifying the
773	micromorphological features of lamellar systems (Ardel, 1999; Deville, 2018; Lia et al., 2017).
774	Average lamellar thickness is one of the key parameters broadly used to characterize lamellar
775	structure. Charts for "layer thickness vs. layer number" demonstrate cyclic variability of lamella
776	thickness across the 2-D plane. In this case, average lamellar thickness is not a precise
777	morphological characteristic. For instance, the chart of "layer thickness vs. layer number" (Fig.
778	26) shows that the lamellar pattern has four blocks—A, B, C, and D—with distinctive lamellar
779	thicknesses. This must be considered when searching for links between material properties and
780	microstructures.
781	
782	The variable cyclicity of layer thickness across the sampling area of an anisotropic layered
783	system is to be expected because "the whole pattern [of nature] is of cycles within cycles within
784	cycles" (Medawar and Medawar, 1983, p. 73). Model $M = \{BF, G(N), T_{M,N}\}$ provides tools to
785	reveal cyclicity in layered anisotropic environments.
786	

787	4.3. Possible experimental tests
788	Many factors that contribute to the formation of layered patterns in living systems have cyclic
789	natures. For instance, layers in growth systems are formed in direct response to cyclic
790	environmental factors such as temperature (Goodwin et al., 2001; Izzo and Zydlewski, 2017),
791	tides (Poulain et al., 2011), and light-dark rhythms (Scrutton, 1978; Smith, 2006). Cyclic
792	planetary dynamics can also affect the formation of growth increments (Clark II, 1974; Pannella
793	and MacClintock, 1968; Kahn and Pompea, 1978; Vanyo and Awramic, 1985). On the surfaces
794	of Earth and Mars, winds are mainly responsible for the formation of dunes and ripples (Lapotre
795	et al., 2016; Kok et al., 2012). It is reasonable to suggest that the cyclicity of layer thickness
796	stems from the cyclicity of factors controlling layer formation, but this explanation is not always
797	possible. Layered patterns are the cumulative result of many factors occurring in different space-
798	time domains, not all of which are cyclic, and not all factors are known.
799	
800	Notwithstanding the fact that each object of study has unique properties, the layers of various
801	systems are all formed in the gravity fields of the massive rotating bodies of Earth, Mars, and
802	other planets. Thus, it would be reasonable to explore the influence of zero-gravity (i.e., extreme
803	external factors on layer formation). Let us consider some possible additional experiments that
804	would help us better understand the mechanisms of layer formation. A promising approach
805	would be to examine the influence of extreme external factors—such as zero-gravity, extreme
806	temperature, radioactive contamination, low oxygen, and absence of light—on layer
807	morphology. Empirical model $M = \{BF, G(N), T_{M,N}\}$ is a suitable tool for such experiments
808	since it is sensitive to minor structural changes (Fig. 30) and allows us to detect anomalies in
809	layered systems.
810	
811	Experiment #1: Examine the influence of zero-gravity on the formation of layered systems.
812	Aquatic habitats for studying the lifecycle of freshwater fish are available on the International
813	Space Station and could be used to investigate the influence of zero-gravity on scale formation in
814	medaka fish (Chatani et al., 2015) and zebrafish (Aceto et al., 2015). Lamella bones of iguana
815	(Smolyar et al., 2016), Madagascar Lace leaves (Fig. 17), and flower surfaces (Fig. 16) are other
816	potential candidates for exploring the formation of anisotropic layers under zero-gravity
817	conditions.

818	Experiment #2: Examine the influence of extreme temperatures—including drought, high/low air
819	temperature, and high/low water temperature—on the formation of anisotropic growth incre-
820	ments. Extreme temperatures are a major environmental stress that affect the growth of terrestrial
821	and marine living systems. For instance, "high temperature stress is a major environmental stress
822	that limits plant growth, metabolism, and productivity worldwide. Plant growth and development
823	involve numerous biochemical reactions that are sensitive to temperature" (Hasanuzzaman et al.,
824	2013, p. 9643). Various marine and terrestrial layered living systems could be used to examine
825	the influence of extreme temperature on the formation of layered systems.
826	
827	Experiment #3: Examine the influence of radioactive contamination on layer formation. The
828	areas around Chernobyl (Ukraine) and Fukushima (Japan) are natural laboratories for studying
829	the influence of radioactive contamination on growth increments of various layered systems,
830	including flower surfaces, spider webs, and butterfly wings. For instance, there is strong
831	evidence that water contamination affects fish scale structures (Hidayati et al., 2013, Sultana et
832	al., 2017).
833	
834	Experiment #4: Examine the influence of the absence of light on the formation of fish scale
835	growth increments. Sweetwater, Tennessee, where trout live without light in a cave lake, would
836	be an ideal natural laboratory. Other candidates for experiments could be the scales of various
837	categories of salt- and freshwater fish from aquariums permanently covered with light-tight
838	material.
839	
840	Experiment #5: Examine the influence of oxygen levels on the morphology of elastic lamellae in
841	humans and animals. Since aorta distribute oxygenated blood to all parts of the body, it is
842	possible to assume that environmental oxygen levels might affect aorta morphology (Fig. 14).
843	One possible avenue for experimentation could be the aorta of human and animal populations
844	subjected for many generations to high-altitude, low-oxygen conditions, such as those in the
845	$high-altitude\ Tibetan\ highlands\ (Simonson\ et\ al.,\ 2010;\ He\ et\ al.,\ 2016).\ Model\ M=\{BF,\ G(N),\ ABARTON \ ABARTON$
846	T _{M,N} } could be used to compare the morphology of aortas formed in Tibet to those formed in
847	sea-level oxygen environments.
848	

4.4. Areas of application
Macro-, micro-, and nanostructures play a vital role in understanding pattern formation and
relationships between processes and structures (Aizenberg and Fratzl, 2009). Central problems in
studying layered objects—particularly in medicine (Novotny et al., 2017), materials science
(Deville, 2018), and biomimetic research (Meyers et al., 2008; Gilbert et al., 2017)—are
quantitatively describing the relationship between structure and properties, tracking structural
changes over a period of time, and revealing structural anomalies. Experiments with various
categories of layered systems justify the possibility of using $M = \{BF, G(N), T_{M,N}\}$ to help to
solve these problems.
Detecting structural anomalies in layered systems is necessary when solving a broad spectrum of
medical and engineering problems. For instance, cracks are a typical example of anomalies in the
lamellar structures of metals and alloys; anomalies in growth increments in tree rings allow us to
reconstruct extreme environmental phenomena. Experiments with animal footprints on sand
ripples and the layered surface of Mars (Fig. 6) provide evidence on the applicability of $M =$
$\{BF,G(N),T_{M,N}\}$ to reveal structural anomalies in layered systems.
Many layered objects—such as corals, fish scales and bivalve shells—are formed in the world
ocean. Morphological characteristics of growth increments in these objects are a function of
seawater parameters and changes in the space–time domain. Model $M = \{BF, G(N), T_{MN}\}$ could
be used to analyze growth increments of shells in a seawater environment. Our interest in the
link between growth increments and the marine environment is based on available marine data
products, new instrumental technology measuring the chemical composition of seawater, and
recently published discoveries of relationships between the morphology of shell growth
increments and seawater temperature (Gilbert et al., 2017).
Marine data products. The World Ocean Database (WOD) and International Comprehensive
Ocean-Atmosphere Data Sets (ICOADS) are the world's largest freely available marine
databases. WOD comprise 16+ million globally distributed profiles, beginning with instrumental
observations in 1772 through the present (Levitus, 2012; Boyer et al., 2014). A profile is the set

879 of measurements of physical, hydrochemical, and plankton characteristics of seawaters on the 880 surface and at various depths (Matishov et al., 2000). 881 882 ICOADS is an archive of global near-surface marine data, with over 456 million individual 883 records since 1662 (Slutz et al. 1985; Smith and Reynolds, 2004; Wilkinson et al., 2011; 884 Woodruff et al. 2011; Freeman et al., 2017). Each record is a set of sea-surface temperature 885 (SST) and marine meteorological parameters such as wind speed and direction, humidity, sea-886 level pressure, cloud cover, sea state, sea ice, and descriptive information such as type and 887 amount of cloud cover at different levels in the atmosphere. ICOADS and WOD are used to 888 study local (Reagan et al., 2018; Seidov et al., 2017; Matishov et al., 2014; Kaplan et al., 1997; 889 Ansell et al., 2006; Marullo et al., 2011) and global (Casey and Cornillon, 2001; Rayner et al., 890 2003; Garcia et al., 2005; Levitus et al., 2005; Ishii et al., 2005) climatic characteristics of the 891 world ocean and its dynamics. Time series of sea characteristics at various depths, SST, and 892 near-surface meteorology are used to study marine climate dynamics. Time series data are 893 essential to study how "global climate change threatens global biodiversity, ecosystem function 894 and human well-being" (Williams et al., 2008, p. 2621). WOD and ICOADS allow us to plot 895 time series of temperature over 120+ years; WOD additionally includes time series of salinity for 896 80+ years. 897 898 Seawater temperature as a function of chemical composition of growth increments. Using WOD 899 and readily available databases of layered objects, $M = \{BF, G(N), T_{M,N}\}\$ could be used to study 900 growth patterns of marine life, such as corals and mollusks, which are used as proxies for 901 environmental state (Sadler et al., 2014; Wanamaker et al., 2011; Reynolds et al., 2017, Carroll 902 et al., 2009). Specifically, the link between seawater temperatures and the morphology and 903 chemical composition of growth layers is a focus of sclerochronological and sclerochemical 904 research (Butler and Schöne, 2017; Reynolds et al., 2016). The availability of WOD as well as 905 large-scale coral and mollusk archives (Reynolds et al., 2017; Donner et al., 2017) allows us to 906 compensate for the lack of water-temperature data before instrumental observations were estab-907 lished. Model $M = \{BF, G(N), T_{M,N}\}\$ could be used to formalize a procedure for the development 908 of growth-rate variability (i.e., charts of "layer thickness vs. layer number" and "layer area vs. 909 layer number"), which is essential to accurately reconstruct historical seawater temperatures.

910	One possible result of water temperature reconstruction could be long time-series of temperature
911	variability in the Gulf Stream system from the East Coast of the United States to the Barents Sea
912	(Wanamaker et al., 2011; Reynolds et al., 2013; Carroll et al., 2011; Carroll et al., 2014).
913	
914	Seawater temperature as a function of growth increment morphology. Gilbert et al. (2017)
915	developed a novel method that allows us to reconstruct present and past seawater temperature by
916	analyzing the morphology of modern and fossil shells, which "complements the strength and
917	compensates for the weaknesses of existing geochemical method" (p. 291). Model $M = \{BF,$
918	$G(N)$, $T_{M,N}$ could be used to formalize some stages of layered image processing and account for
919	the structural anisotropy of shells' growth increments. WOD could be used to define areas of the
920	world ocean suitable to examine the influence of seawater parameters of different water masses
921	on the development of shells' growth increments. Gilbert et al. (2017) hypothesized that factors
922	such as salinity, pH, or nutrients can affect the morphology of shells' growth increments in
923	addition to water temperature. Within the frame of this hypothesis it would be reasonable to
924	examine the influence of seawater chemical composition on the development of shells' growth
925	lines. The new method for measuring the chemical composition of fresh and saltwater could be
926	used for this purpose.
927	
928	Measuring periodic table in fresh and salt waters (Bäuchle, et al., 2018). Water is an
929	accumulation of dissolved elements in the form of organic (typically carbon-hydrogen-based)
930	and inorganic (non-organic) molecules. Given the importance of water to all life, it is astonishing
931	that not a single aqueous sample has ever been measured for element concentrations across the
932	breadth of the chemical periodic table. This dearth of research is not for the lack of want for
933	knowledge but because technologies for detecting all elements in a water sample have been
934	unwieldy and expensive to operate. A recently developed "simultaneous Mass Spectrometer"
935	ICP-MS (si-ICP-MS) permits 71 inorganic elements to be detected in one evaluation from small
936	sample volumes in seconds and at relatively low consumable and personnel costs.
937	
938	To examine the potential of si-ICP-MS for evaluating environmental water, and for assessing its
939	usefulness in studies of incremental structures, we first measured tap, well, rain, freshwater lake,
940	river, seawater, and snow. Figure 32 depicts the distribution of fresh and saltwater samples.

941 Figure 33 shows that most of the periodic table is indeed represented in environmental water, 942 which includes municipally treated tap water. This is fascinating because snow is essentially the 943 same as all other fresh waters, which indicates that the atmosphere—after being scrubbed by 944 snowflakes—is fundamental to the movement of elements at high latitudes and altitudes around 945 the world. Seawater stands out as having higher abundances of elements overall. 946 947 The WOD, integrated with chemical composition of seawater, will thus allow us to examine the 948 influence of a broad spectrum of seawater characteristics on the development of growth 949 increments in marine life such as coral, fish scales, and shells. Additionally, the chemical 950 composition of soil and air allows us to use $M = \{BF, G(N), T_{M,N}\}\$ to quantify the 951 correspondence between environment and growth patterns of terrestrial plants and animals. 952 953 To appreciate the relevance of such data to the study of incremental structures, we examined the 954 lamellar bone of a subsistence fisherman who lived around a freshwater lake. We used a laser 955 ablation system attached to the si-ICP-MS to measure the same elements measured from the lake 956 water on which he made his living. We have made two interesting observations from this 957 research: First, the inorganic spectrum of elements in the local water and in a bone from the 958 fisherman were quite similar. 959 960 Second, we discovered that the lamellar increments of bone are formed on the same interval at 961 which the growth increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009). 962 Striae of Retzius may be calibrated in absolute time, and in this fisherman that period was 8 963 days. Roughly 15 years of continuously formed lamellar bone were available from years for 964 which we have meteorological data. In the example shown in Figure 34, we demonstrate, for 965 instance, that from 1981 to 1995, the concentration of Strontium (Sr) varies cyclically in its ratio 966 with Zinc (Zn). 967 968 Other examples in which marine data could relate to the structure of living organisms are birds' 969 and turtles' morphology and their migration patterns across the world ocean (Fig. 35). Although 970 the focus of the present work is the quantitative description of morphology of layered anisotropic 971 patterns, nevertheless a proposed method could be potentially extended for processing morpholo-

972	gical characteristics of arbitrary images such as birds' feathers, backs, and footprints. New instr-
973	umental methods of monitoring birds' and turtles' migration on a global scale (e.g., the ICARUS
974	project) provide us with tools to describe collective birds motion across the world ocean.
975	
976	Bird migration. ICARUS, short for "International Cooperation for Animal Research Using
977	Space," is a global collaboration of animal scientists to establish a novel satellite-based
978	infrastructure (Cook et al., 2004; Wikelski et al., 2011) for Earth observation of small objects
979	such as migratory birds, bats, or sea turtles (Pennisi, 2011). These findings will aid behavioral
980	research, species protection, and research into the paths taken in the spread of infectious
981	diseases. The information could even help predict ecological changes and natural disasters. In the
982	process, ICARUS researchers will attach miniaturized transmitters to hundreds or thousands of
983	animal species. These transmitters send measurement data via a CDMA-encoded signal (code-
984	division multiple access) to a receiver station in space that transmits data to a ground station. The
985	results will be published in a database that will be accessible to everyone at www.movebank.org
986	
987	A miniaturized, solar-powered animal tag can communicate with the ICARUS equipment at the
988	International Space Station from a distance of up to 800 kilometers, allowing it to record its
989	absolute position at regular intervals using GPS and to acquire local temperatures, 3-D
990	acceleration, and 3-D magnetometer values as well as pressure, altitude, and humidity, which
991	give indications of the animal's behavior, internal and external state, and environmental
992	conditions—all using a tag with a mass less than 5 grams and a volume of approximately 2 cm ³ .
993	
994	Integrated morphological characteristics of individual birds, their migration routes, WOD and
995	ICOADS create a basis to formulate testable hypotheses of scientific and commercial value.
996	

997	5. Conclusion
998	The anisotropic features of layered systems make them attractive objects of study from both
999	scientific and commercial points of view. The empirical model $M = \{BF, G(N), T_{M,N}\}$ is an
1000	example of the engineering approach (Reeves and Fraser, 2009) to studying pattern formation in
1001	nature and beyond.
1002	
1003	Various layered systems presented in this paper exhibit surprising levels of structural similarity,
1004	what Ball (2009, p. 177) called nature's use of "not the Law of Pattern but a palette of
1005	principles".
1006	
1007	The key element of the present work is the notion of structural disorder in 2-D layered systems
1008	(DStr), which is applicable to any layered object, irrespective of size or nature. Equation (3),
1009	which shows that layered patterns comprise anisotropic and isotropic components, provides a
1010	foundation for formalizing DStr. Equation (3) could potentially be used to extend the
1011	applicability of DStr to quantify the morphological characteristics of arbitrary 2-D binary
1012	patterns.
1013	
1014	Acknowledgment
1015	The authors thank Amy Bekkerman of Precision Edits for help in preparing the manuscript. We
1016	would like to acknowledge Galina Vovna and Boris Ravvin for their discussions. The views
1017	and opinions expressed in this article are those of I. Smolyar and do not necessarily reflect the
1018	official policy or position of NOAA.
1019	

1020	References
1021	Abdel-Aal, H.A., and M.E. Mansori. 2011. "Reptilian Skin as a Biomimetic Analogue for the
1022	Design of Deterministic Tribosurfaces." In Biomimetics Materials, Structures and
1023	Processes, edited by P. Gruber, D. Bruckner, C. Hellmich, H.B. Schmiedmayer, H.
1024	Stachelberger, and I. Gebeshuber, 51–79. Berlin: Springer. http://doi.org/10.1007/978-3-642-
1025	<u>11934-7_4</u> .
1026	Aceto, J., R. Nourizadeh-Lillabadi, R. Marée, N. Dardenne, N. Jeanray, L. Wehenkel, P.
1027	Aleström, J.J.W.A. van Loon, M. Muller. 2015. "Zebrafish Bone and General Physiology Are
1028	Differently Affected by Hormones or Changes in Gravity." PLoS One 10(6): e0126928.
1029	http://doi.org/10.1371/journal.pone.0126928.
1030	Adams, D.C., F.J. Rohlf, and D.E. Slice. 2004. "Geometric Morphometrics: Ten Years of
1031	Progress Following the 'Revolution.'" Ital. J. Zool. 71: 5-16.
1032	http://doi.org/10.1080/11250000409356545.
1033	Aizenberg, J., and P. Fratzl. 2009." Biological and Biomimetic Material." Adv. Mater. 21: 387-
1034	388. http://doi.org/10.1002/adma.200803699.
1035	Akhtar, R., M.J. Sherratt, J.K. Cruickshank, and B. Derby. 2011. "Characterizing the Elastic
1036	Properties of Tissues." <i>Mater. Today</i> 14(3): 96–105. http://doi.org/10.1016/S1369-
1037	<u>7021(11)70059-1</u> .
1038	Alberius, P.C.A., K.L. Frindell, R.C. Hayward, E.J. Kramer, G.D. Stucky, and B.F. Chmelka.
1039	2002. "General Predictive Syntheses of Cubic, Hexagonal, and Lamellar Silica and Titania
1040	Mesostructured Thin Films." Chem. Mater. 14(8): 3284-3294.
1041	http://doi.org/10.1021/cm011209u.
1042	Ansell, T.J., P.D. Jones, R.J. Allan, D. Lister, D.E. Parker, M. Brunet, A. Moberg, J. Jacobeit, P.
1043	Brohan, N.A. Rayner, E. Aguilar, H. Alexandersson, M. Barriendos, T. Brandsma, N.J. Cox,
1044	P.M. Della-Marta, A. Drebs, D. Founda, F. Gerstengarbe, K. Hickey, T. Jónsson, J. Luterbacher,
1045	Ø. Nordli, H. Oesterle, M. Petrakis, A. Philipp, M.J. Rodwell, O. Saladie, J. Sigro, V. Slonosky,
1046	L. Srnec, V. Swail, A.M. García-Suárez, H. Tuomenvirta, X. Wang, H. Wanner, P. Werner, D.
1047	Wheeler, and E. Xoplaki. 2006. "Daily Mean Sea Level Pressure Reconstructions for the
1048	European–North Atlantic Region for the Period 1850–2003." J. Clim. 19: 2717–2742.
1049	http://doi.org/10.1175/JCLI3775.1.

- 1050 Ardell, A.J. 1999. "Microstructural Stability at Elevated Temperatures." *J. Eur. Ceram. Soc.* 19:
- 1051 2217–2231. http://doi.org/10.1016/S0955-2219(99)00094-1.
- Arnold, E.N. 2002. "History and Function of Scale Microornamentation in Lacertid Lizards." J.
- 1053 *Morphol.* 252(2): 145–169. http://doi.org/10.1002/jmor.1096.
- Avolio, A., D. Jones, and M. Tafazzoli-Shadpour. 1998. "Quantification of Alterations in
- Structure and Function of Elastin in the Arterial Media." *Hypertens.* 32: 170–175.
- 1056 http://doi.org/10.1161/01.HYP.32.1.170.
- Ball, P. 2009. Branches: Nature's Patterns. A Tapestry in Three Parts. Oxford, UK: Oxford
- 1058 University Press.
- Barthlott, W., M. Mail, and C. Neinhuis, 2016. "Superhydrophobic Hierarchically Structured
- Surfaces in Biology: Evolution, Structural Principles and Biomimetic Applications." *Phil. Trans.*
- 1061 A Math. Phys. Eng. Sci. 374(2073): 20160191. http://doi.org/10.1098/rsta.2016.0191.
- Barthlott, W., M. Mail, B. Bhushan, and K. Koch. 2017. "Plant Surfaces: Structures and
- Functions for Biomimetic Innovations." *Nano-Micro Lett.* 9(23): 1–40.
- 1064 <u>http://doi.org/10.1007/s40820-016-0125-1</u>.
- Bau, O., I. Poupyrev, A. Israr, and C. Harrison. 2010. "TeslaTouch: Electrovibration for Touch
- 1066 Surfaces." In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
- 1067 Technology, New York, NY, October 3–6, 283–292. New York: ACM.
- 1068 http://doi.org/10.1145/1866029.1866074.
- Bäuchle, Melanie, Tina Lüdecke, Sasan Rabieh, Khemet Calnek, Timothy G. Bromage. (2018).
- 1070 Quantification of 71 detected elements from Li to U for aqueous samples by simultaneous-
- inductively coupled plasma-mass spectrometry. RSC Adv., 2018, 8, 37008-37020
- 1072 http://doi: 10.1039/C8RA07070A.
- Biswas, A., M. Manivannan, and M.A. Srinivasan. 2015. "Multiscale Layered Biomechanical
- 1074 Model of the Pacinian Corpuscle." *IEEE Transactions on Haptics* 8: 31–42.
- 1075 http://doi.org/10.1109/TOH.2014.2369416.
- Blackledge, T.A., and J.M. Zevenbergen. 2006. "Mesh Width Influences Prey Retention in
- 1077 Spider Orb Webs." *Ethol.* 112: 1194–1201. http://doi.org/10.1111/j.1439-0310.2006.01277.x.
- Blumberg, D.G. 2006. "Analysis of Large Aeolian (Wind-Blown) Bedforms Using the Shuttle
- 1079 Radar Topography Mission (SRTM) Digital Elevation Data." *Remote Sens. Environ.* 100(2):
- 1080 179–189. http://doi.org/10.1007/s00223-009-9221-2.

- Boyer, T.P., H.E. Garcia, R.A. Locarnini, M.M. Zweng, A.V. Mishonov, J.R. Reagan, J.I.
- Antonov, O.K. Baranova, M.M. Biddle, D.R. Johnson and C.R. Paver. 2014. "2013 World Ocean
- Atlas Aids High-Resolution Climate Studies." Eos, Trans. Am. Geophys. Union 95(41): 369–
- 1084 370, http://doi.org/10.1002/2014EO410002.
- Bromage, T.G., R.S. Lacruz, R. Hogg, H.M. Goldman, S.C. McFarlin, J. Warshaw, W. Dirk, A.
- 1086 Perez-Ochoa, I. Smolyar, D.H. Enlow, and A. Boyde. 2009. "Lamellar Bone Is an Incremental
- 1087 Tissue Reconciling Enamel Rhythms, Body Size, and Organismal Life History." Calcif. Tissue
- 1088 Int. 84(5): 388–404. http://doi.org/10.1007/s00223-009-9221-2.
- Bromage, T.G., R.T. Hogg, R.S. Lacruz, and C. Hou. 2012. "Primate Enamel Evinces Long
- 1090 Period Biological Timing and Regulation of Life History." J. Theor. Biol. 305: 131–144.
- 1091 http://doi.org/10.1016/j.jtbi.2012.04.007.
- Bromage, T.G., Y.M. Juwayeyi, I. Smolyar, B. Hu, S. Gomez, V.J. Scaringi, S. Chavis, P.
- Bondalapati, K. Kaur, and J. Chisi. 2011. "Signposts Ahead: Hard Tissue Signals on Rue
- 1094 Armand de Ricqlès." C. R. Palevol. 10: 499–507. http://doi.org/10.1016/j.crpv.2011.01.009.
- Butler, P.G., and B.R. Schöne. 2017. "New Research in the Methods and Applications of
- 1096 Sclerochronology." *Palaeogeogr. Palaeoclim. Palaeoecol.* 465(B): 295–299.
- 1097 http://doi.org/10.1016/j.palaeo.2016.11.013.
- 1098 Calvani, P., A. Bellucciab, M. Girolamia, S. Orlandoc, V. Valentinia, R. Poliniad, and D.M.
- Trucchia. 2016. "Black Diamond for Solar Energy Conversion." *Carbon.* 105: 401–407.
- 1100 http://doi.org/10.1016/j.carbon.2016.04.017.
- 1101 Carroll, M.L., B.J. Johnson, G.A. Henkes, K.W. McMahon, A. Voronkov, W.G. Ambrose, and
- 1102 S.G. Denisenko. 2009. "Bivalves as Indicators of Environmental Variation and Potential
- Anthropogenic Impacts in the Southern Barents Sea." *Mar. Pollut. Bull.* 59(4–7): 193–206.
- 1104 http://doi.org/10.1016/j.marpolbul.2009.02.022.
- 1105 Carroll, M.L., W.G. Ambrose Jr., B.S. Levin, W.L. Locke V, G.A. Henkes, H. Hop, and P.E.
- 1106 Renaud. 2011. "Pan-Svalbard Growth Rate Variability and Environmental Regulation in the
- 1107 Arctic Bivalve Serripes groenlandicus." J. Mar. Syst. 88(2): 239–251.
- 1108 <u>http://doi.org/10.1016/j.jmarsys.2011.04.010</u>.
- 1109 Carroll, M.L., W.G. Ambrose Jr., W.L. Locke, V. Stuart, K. Ryan, and B.J. Johnson. 2014.
- "Bivalve Growth Rate and Isotopic Variability across the Barents Sea Polar Front." J. Mar. Syst.
- 1111 130: 167–180. http://doi.org/10.1016/j.jmarsys.2013.10.006.

- 1112 Casey, K.S., and P. Cornillon. 2001. "Global and Regional Sea Surface Temperature Trends." J.
- 1113 Clim. 14: 3801–3818. http://doi.org/10.1175/1520-0442(2001)014<3801:GARSST>2.0.CO;2.
- 1114 Champod, C. 2015. "Fingerprint Identification: Advances since the 2009 National Research
- 1115 Council Report." *Phil. Trans. R. Soc. B* 370: 20140259. http://doi.org/10.1098/rstb.2014.0259.
- 1116 Chatani, M., A. Mantoku, K. Takeyama, D. Abduweli, Y. Sugamori, K. Aoki, K. Ohya, H.
- 1117 Suzuki, S. Uchida, T. Sakimura, Y. Kono, F. Tanigaki, M. Shirakawa, Y. Takano, and A. Kudo.
- 1118 2015. "Microgravity Promotes Osteoclast Activity in Medaka Fish Reared at the International
- 1119 Space Station." Sci. Rep. 5: 14172. http://doi.org/10.1038/srep14172.
- 1120 Cooke, S.J., S.G. Hinch, M. Wikelski, R.D. Andrews, L.J. Kuchel, T.G. Wolcott, P.J. Butler.
- 1121 2004. "Biotelemetry: A Mechanistic Approach to Ecology." Trends Ecol. Evol. 19(6): 334–343.
- 1122 <u>http://doi.org/10.1016/j.tree.2004.04.003</u>.
- 1123 Costa, A., H. Pereira, and Â. Oliveira. 2002. "Influence of Climate on the Seasonality of Radial
- Growth of Cork Oak during a Cork Production Cycle." Ann. For. Sci. 59(4): 429–437.
- 1125 http://doi.org/10.1051/forest:2002017.
- Dauphinee, A.N., J.I. Fletcher, G.L. Denbigh, C.R. Lacroix, and A.H.L.A.N. Gunawardena.
- 1127 2017. "Remodelling Of Lace Plant Leaves: Antioxidants and ROS Are Key Regulators of
- Programmed Cell Death." *Planta* 246(1): 133–147. http://doi.org/10.1007/s00425-017-2683-y.
- Davies, N.B., and J.A. Welbergen, 2008. "Cuckoo–Hawk Mimicry? An Experimental Test."
- 1130 *Proc. Royal Soc. B Biol. Sci.* 275: 1817–1822. http://doi.org/1098/rspb.2008.0331.
- De Marinis, A.M., and Asprea, A. 2006. "Hair Identification Key of Wild and Domestic
- Ungulates from Southern Europe." *Wildl. Biol.* 12: 305–320. http://doi.org/10.2981/0909-
- 1133 6396(2006)12%5B305:HIKOWA%5D2.0.CO;2.
- Deville, S. 2008. "Freeze-Casting of Porous Ceramics: A Review of Current Achievements and
- 1135 Issues." Adv. Eng. Mater. 10(3): 155–169. http://doi.org/10.1002/adem.200700270.
- Deville, S. 2018. "The Lure of Ice-Templating: Recent Trends and Opportunities for Porous
- 1137 Materials." Scr. Mater. 147: 119–124. http://doi.org/10.1016/j.scriptamat.2017.06.020.
- Deville, S., A. Tomsia, and E. Saiz. 2007. "The Materials that Came in from the Cold: Nacre-like
- Bioceramics through Freezing." In Proceedings of the 10th International Conference of the
- 1140 European Ceramic Society, Berlin, June 17–21, 969–975. Baden-Baden, Germany: Göller.

- Diniega, S., M. Kreslavsky, J. Radebaugh, S. Silvestro, M. Telfer, and D. Tirschg. 2017. "Our
- Evolving Understanding of Aeolian Bedforms, Based on Observation of Dunes on Different
- 1143 Worlds." *Aeolian Res.* 26: 5–27. http://doi.org/10.1016/j.aeolia.2016.10.001.
- Donner, S.D., G.J.M. Rickbeil, and S.F. Heron. 2017. "A New, High-Resolution Global Mass
- 1145 Coral Bleaching Database." *PLoS ONE* 12(4): e0175490.
- 1146 http://doi.org/10.1371/journal.pone.0175490.
- Draper, N.R., and H. Smith. 1998. *Applied Regression Analysis*, 3rd ed. New York, NY: Wiley.
- Eberhard, W.G. 2014. "A New View of Orb Webs: Multiple Trap Designs in a Single Structure."
- 1149 *Biol. J. Linn. Soc. Lond.* 111: 437–449. http://doi.org/10.1111/bij.12207.
- Ewing, R.C., A.G. Hayes, and A. Lucas. 2014. "Sand Dune Patterns on Titan Controlled by
- Long-Term Climate Cycles." *Natur. Geosci.* 8: 15–19. http://doi.org/10.1038/ngeo2323.
- Filippov, A.E., S.N. Gorb. 2016. "Modelling of the Frictional Behavior of the Snake Skin
- 1153 Covered by Anisotropic Surface Nanostructures." Sci. Rep. 6:23539.
- 1154 http://doi.org/10.1038/srep23539.
- Freeman, E., S.D. Woodruff, S.J. Worley, S.J. Lubker, E.C. Kent, W.E. Angel, D.I. Berry, P.
- Brohan, R. Eastman, L. Gates, W. Gloeden, Z. Ji, J. Lawrimore, N.A. Rayner, G. Rosenhagen,
- and S.R. Smith. 2017: "ICOADS Release 3.0: A Major Update to the Historical Marine Climate
- 1158 Record." *Int. J. Climatol.* 37: 2211–2237 http://doi.org/10.1002/joc.4775.
- Garcia, H.E., T.P. Boyer, S. Levitus, R.A. Locarnini, and J.I. Antonov. 2005. "Climatological
- Annual Cycle of Upper Ocean Oxygen Content Anomaly." *Geophys. Res. Lett*, 32: L09604.
- 1161 <u>http://doi.org/10.1029/2004GL022286</u>.
- Gardin, E., P. Allemand, C. Quantin, S. Silvestro, and C. Delacourt. 2011. "Dune Fields on
- 1163 Mars: Recorders of a Climate Change?" *Planet. Space Sci.* 60: 314–321.
- http://doi.org/10.1016/j.pss.2011.10.004.
- Gilbert, P.U.P.A., K.D. Bergmann, C.E. Myers, M.A. Marcus, R.T. DeVol, C.-Y. Sun, A.Z.
- 1166 Blonsky, E. Tamre, J. Zhao, E.A. Karan, N. Tamura, S. Lemer, A.J. Giuffre, G. Giribet, J.M.
- Eiler, and A.H. Knoll. 2017. "Nacre Tablet Thickness Records Formation Temperature in
- 1168 Modern and Fossil Shells." *Earth Planet. Sci. Letter*, 460: 281–292.
- 1169 http://doi.org/10.1016/j.epsl.2016.11.012.
- 1170 Gluckman, T.-L. 2014. "Pathways to Elaboration of Sexual Dimorphism in Bird Plumage
- 1171 Patterns." Biol. J. Linn. Soc. 111: 262–273. https://doi.org/10.1111/bij.12211.

- Gluckman, T.-L. and N.I. Mundy. 2016. "Evolutionary Pathways to Convergence in Plumage
- Patterns." *BMC Evol. Biol.* 16:172. http://doi.org/10.1186/s12862-016-0741-x.
- Goodwin, D.H., K.W. Flessa, B.R. Schone, and D.L. Dettman. 2001. "Cross-Calibration of Daily
- 1175 Growth Increments, Stable Isotope Variation, and Temperature in the Gulf of California Bivalve
- Mollusk Chione cortezi: Implications for Paleoenvironmental Analysis." PALAIOS 16(4): 387–
- 398. http://doi.org/10.1669/0883-1351(2001)016<0387:CCODGI>2.0.CO;2.
- Gower, D.J. 2003. "Scale Micro Ornamentation of Uropeltid Snakes." J. Morphol. 258:249–268.
- 1179 <u>http://doi.org/10.1002/jmor.10147.</u>
- Gunawardena, A.H.L.A.N., J.S. Greenwood, and N.G. Dengler. 2004. "Programmed Cell Death
- 1181 Remodels Lace Plant Leaf Shape during Development." *Plant Cell* 16(1): 60–73.
- 1182 http://doi.org/10.1105/tpc.016188.
- Guyette, R.P., and C.F. Rabeni. 1995. "Climate Response among Growth Increments of Fish and
- 1184 Trees." *Oecologia* 104(3): 272–279. http://doi.org/10.1007/BF00328361.
- Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury, and M. Fujita. 2013.
- "Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants."
- 1187 Int. J. Mol. Sci. 14(5): 9643–9684. http://doi.org/10.3390/ijms14059643.
- He, Y., S. Yu, J. Hu, Y. Cui, P. Liu. 2016. "Changes in the Anatomic and Microscopic Structure
- and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia." PLoS ONE
- 1190 11(2): e0149947. http://doi.org/10.1371/journal.pone.0149947.
- Hesselberg, T. 2013. "Web-Building Flexibility Differs in Two Spatially Constrained Orb
- 1192 Spiders." J. Insect Behav. 26: 283–303. http://doi.org/10.1007/s10905-012-9335-7.
- Hidayati, D., N. Sulaiman, S. Othman, and B.S. Ismail. 2013. "Fish Scale Deformation Analysis
- 1194 Using Scanning Electron Microscope: New Potential Biomarker in Aquatic Environmental
- Monitoring of Aluminum and Iron Contamination." AIP Conf. Proc. 1571(1): 563.
- 1196 http://doi.org/10.1063/1.4858714.
- Huang, X., Y. Hai, and W.-H. Xie. 2017. "Anisotropic Cell Growth-Regulated Surface
- 1198 Micropatterns in Flower Petals." *Theor. Appl. Mech. Lett.* 7(3): 169–174.
- 1199 <u>http://doi.org/10.1016/j.taml.2017.03.004</u>.
- 1200 Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto. 2005. "Objective Analyses of Sea-Surface
- 1201 Temperature and Marine Meteorological Variables for the 20th Century Using ICOADS and the
- 1202 Kobe Collection." *Int. J. Climatol.* 25: 865–879 http://doi.org/10.1002/joc.1169.

- 1203 Ivanchenko, V., T. Pryadko, V. Dekhtyarenko, and T. Kosorukova. 2008. "Hydrogen Absorbing
- 1204 Properties of a Ti–Zr–Mn Eutectic Alloy." *Chem. Met. Alloys* 1: 133–136.
- 1205 Izzo, L.K., and J. Zydlewski. 2017. "Retrospective Analysis of Seasonal Ocean Growth Rates of
- 1206 Two Sea Winter Atlantic Salmon in Eastern Maine Using Historic Scales." Mar. Coast. Fish. 9:
- 1207 357–372. http://doi.org/10.1080/19425120.2017.1334723.
- 1208 Kaas, J.H. 2012. "Somatosensory System." In *The Human Nervous System*, 3rd ed., edited by
- 1209 J.K. Mai and G. Paxinos. Amsterdam: Elsevier. http://doi.org/10.1016/B978-0-12-374236-
- 1210 0.10030-6.
- Kahn, P.G.K., and S. M. Pompea. 1978. "Nautiloid Growth Rhythms and Dynamical Evolution
- of the Earth-Moon System." *Nature* 275: 606–611. http://doi.org/10.1038/275606a0.
- Kaplan, A., Y. Kushnir, M.A. Cane, and M.B. Blumenthal. 1997. "Reduced Space Optimal
- 1214 Analysis for Historical Data Sets: 136 Years of Atlantic Sea Surface Temperatures." *J. Geophys.*
- 1215 Res. 102(C13): 27835–27860. http://doi.org/10.1029/97JC01734.
- 1216 Klein, M.-C.G., and S.N. Gorb. 2012. "Epidermis Architecture and Material Properties of the
- 1217 Skin of Four Snake Species." J. R. Soc. Interface 9: 3140–3155.
- 1218 http://doi.org/10.1098/rsif.2012.0479.
- 1219 Kok, J. 2010. "Difference in the Wind Speeds Required for Initiation versus Continuation of
- 1220 Sand Transport on Mars: Implications for Dunes and Dust Storms." Phys. Rev. Lett. 104:
- 1221 074502. http://doi.org/10.1103/PhysRevLett.104.074502.
- Kok, J.F., E.J.R. Parteli, T.I. Michaels, and D. Bou Karam. 2012. "The Physics of Wind-Blown
- 1223 Sand and Dust." Rep. Prog. Phys. 75: 106901. http://doi.org/10.1088/0034-4885/75/10/106901.
- Lancaster, N. 2009. "Dune Morphology and Dynamics." In Geomorphology of Desert
- 1225 Environments, edited by A.J. Parsons and A.D. Abrahams. Dordrecht: Springer, 557–595.
- 1226 http://doi.org/10.1007/978-1-4020-5719-9_18.
- Lapotre, M.G.A., R.C. Ewing, M.P. Lamb, W.W. Fischer, J.P. Grotzinger, D.M. Rubin, K.W.
- 1228 Lewis, M.J. Ballard, M. Day, S. Gupta, S.G. Banham, N.T. Bridges, D.J. Des Marais, A.A.
- Fraeman, J.A. Grant, K.E. Herkenhoff, D.W. Ming, M.A. Mischna, M.S. Rice, D.Y. Sumner,
- 1230 A.R. Vasavada, and R.A. Yingst. 2016. "Large Wind Ripples on Mars: A Record of
- 1231 Atmospheric Evolution." *Science* 353(6294): 55–58. http://doi.org/10.1126/science.aaf3206.

- Lee, E., T.-Y. Choi, D. Woo, M.-S. Min, S. Sugita, and H. Lee. 2014. "Species Identification
- 1233 Key of Korean Mammal Hair." J. Vet. Med. Sci. 76(5): 667–675. http://doi.org/10.1292/jvms.13-
- 1234 **0569**.
- Levitus, S., 2012. "The UNESCO/IOC/IODE Global Oceanographic Data Archaeology and
- 1236 Rescue (GODAR) Project CODATA." Data Sci. J. 11: 46–71. http://doi.org/10.2481/dsj.012-
- 1237 **014**.
- Levitus, S., J.I. Antonov, and T.P. Boyer. 2005. "Warming of the World Ocean, 1955–2003."
- 1239 Geophys. Res. Lett. 32: L02604. http://doi.org/10.1029GL021592.
- 1240 Li, X., F. Bottler, R. Spatschek, B, A. Schmitt, M. Heilmaier, and F. Stein. 2017. "Coarsening
- 1241 Kinetics of Lamellar Microstructures: Experiments and Simulations on a Fully-Lamellar Fe-Al
- in situ Composite." *Acta Mater.* 127(1): 230–243. http://doi.org/10.1016/j.actamat.2017.01.041.
- Lian, J., W. Zhou, Q.M. Wei, L.M. Wang, L.A. Boatner, R.C. Ewing. Simultaneous formation of
- surface ripples and metallic nanodots induced by phase decomposition and focused ion beam
- patterning. *Appl. Phys. Lett.*, 88 (9) (2006) 93112. https://doi.org/10.1063/1.2181203
- Liu, H., ,Z. Dai, J. Xu, B. Guo, X. He. 2014. "Effect Of Silica Nanoparticles/Poly(Vinylidene
- Fluoridehexafluoropropylene) Coated Layers on the Performance of Polypropylene Separator for
- 1248 Lithium-Ion Batteries." J. Energy Chem. 23 (5): 582–586. http://doi.org/10.1016/S2095-
- 1249 4956(14)60188-1.
- Liu, S., F. Zhang, Z. Yang, M. Wang, and C. Zheng. 2016. "Effects of Al and Mn on the
- Formation and Properties of Nanostructured Pearlite in High-Carbon Steels." *Mater. Des.* 93:
- 73–80. http://doi.org/10.1016/j.matdes.2015.12.134.
- Reagan, James, Dan Seidov and Tim Boyer, 2018: Water vapor transfer and near-surface salinity
- 1254 contrasts in the north Atlantic Ocean, Sci. Rep., 8, 8830, http://dx.doi.org/10.1038/s41598-018-
- 1255 <u>27052-6</u>.
- Robinson, M., C. Bristow, J. McKinley, and A. Ruffell. 2013. "1.5.5. Ground Penetrating
- Radar." In Geomorphological Techniques, Part 1 (Online edition), edited by S.J. Cook, L.E.
- 1258 Clarke, and J.M. Nield, 1–26. London: British Society for Geomorphology.
- 1259 Mansfield, K.L., J. Wyneken, W.P. Porter, J. Luo. 2014. "First Satellite Tracks of Neonate Sea
- Turtles Redefine the 'Lost Years' Oceanic Niche." Proc. Biol. Sci. 281(1781): 20133039.
- 1261 http://doi.org/10.1098/rspb.2013.3039.

- Marullo, S., V. Artale, and R. Santoleri. 2011. "The SST Multidecadal Variability in the
- 1263 Atlantic–Mediterranean Region and Its Relation to AMO." *J. Clim.* 24: 4385–4401.
- 1264 <u>http://doi.org/10.1175/2011JCLI3884.1</u>.
- Matishov, G.G., P. Makarevich, S. Timofeev, L. Kuznetsov, N. Druzhkov, V. Larionov, et al.
- 1266 2000. Biological Atlas of the Arctic Seas 2000: Plankton of the Barents and Kara Seas. NOAA
- 1267 Atlas NESDIS 39. Washington, DC: U.S. Government Printing Office.
- Matishov, G.G., S.V. Berdnikov, A.P. Zhichkin, S.L. Dzhenyuk, I.V. Smolyar, V.V. Kulygin, et
- 1269 al. 2014. Atlas of Climatic Changes in Nine Large Marine Ecosystems of the Northern
- 1270 Hemisphere (1827–2013). NOAA Atlas NESDIS 78, edited by G.G. Matishov, K. Sherman, and
- 1271 S. Levitus. Washington, DC: U.S. Government Printing Office.
- 1272 http://doi.org/10.7289/V5Q52MK5.
- Mattson, J., and Y. Zhang. 2017. "Structural and Functional Differences Between Porcine Aorta
- and Vena Cava." J. Biomech. Eng. 139: 071007. http://doi.org/10.1115/1.4036261.
- 1275 Mayer, G. 2005. "Rigid Biological Systems as Models for Synthetic Composites." Science
- 1276 310(5751): 1144–1147. http://doi.org/10.1126/science.1116994.
- Medawar, P.B., and J.S. Medawar. 1983. Aristotle to Zoos. A Philosophical Dictionary of
- 1278 *Biology*. Cambridege, MA: Harvard University Press.
- Meinhardt, H. 1989. "Tailoring and Coupling of Reaction-Diffusion Systems to Obtain
- 1280 Reproducible Complex Pattern Formation during Development of Higher Organism." Appl.
- 1281 *Math. Comp.* 32: 103–135. http://doi.org/10.1016/0096-3003(89)90090-8.
- 1282 Meyers, M.A., A.M. Hodge, and R.K. Roeder. 2008. "Biological Materials Science and
- 1283 Engineering: Biological Materials, Biomaterials, and Biomimetics." *JOM* 60: 21–22.
- 1284 http://doi.org/10.1007/s11837-008-0066-3.
- 1285 Moya, J.S. 1995. "Layered Ceramics." *Adv. Mater.* 7(2): 185–189.
- 1286 http://doi.org/10.1002/adma.19950070219.
- Novotny, R., D. Slizova, J. Hlubocky, O. Krs, J. Spatenka, J. Burkert, R. Fiala, P. Mitas, P.
- Mericka, M. Spacek, Z. Hlubocka, and J. Lindner. 2017. "Cryopreserved Human Aortic Root
- 1289 Allografts Arterial Wall: Structural Changes Occurring during Thawing." *PLoS ONE* 12(4):
- 1290 e017500. http://doi.org/10.1371/journal.pone.0175007.

- Olson, I.C., R. Kozdon, J.W. Valley, and P.U.P.A. Gilbert. 2012. "Mollusk Shell Nacre
- 1292 Ultrastructure Correlates with Environmental Temperature and Pressure." J. Am. Chem. Soc. 134
- 1293 (17): 7351–7358. http://doi.org/10.1021/ja210808s.
- Pannella, G. 1972. "Paleontological Evidence on the Earth's rotational history since early
- 1295 Precambrian." Astrophys. Space Sci. 16: 212–237. http://doi.org/10.1007/BF00642735.
- Pannella, G., and C. Macclintock. 1968. "Biological and Environmental Rhythms Reflecting in
- 1297 Molluscan Shell Growth." J. Paleont. Met. 42: 64–80.
- 1298 http://doi.org/10.1017/S0022336000061655.
- Parker, A.R. 2000. "515 Million Years of Structural Color." J. Opt. A. 2: R15–R28.
- 1300 http://doi.org/10.1088/1464-4258/2/6/201.
- Passchier, S., and M. G. Kleinhans. 2005. "Observations of Sand Waves, Megaripples, and
- Hummocks in the Dutch Coastal Area and Their Relation to Currents and Combined Flow
- 1303 Conditions." J. Geophys. Res. 110: F04S15. http://doi.org/10.1029/2004JF000215.
- Pennisi, E. 2011. "Global Tracking of Small Animals Gains Momentum." Sci. 334(6059): 1042.
- 1305 http://doi.org/ 10.1126/science.334.6059.1042.
- Poulain, C., A. Lorrain, J. Flye-Sainte-Marie, E. Amice, E. Morize, and Y. M. Paulet. 2011. "An
- 1307 Environmentally Induced Tidal Periodicity of Microgrowth Increment Formation in Subtidal
- Populations of the Clam *Ruditapes philippinarum*." *J. Exp. Mar. Biol. Ecol.* 397(1): 58–64.
- 1309 http://doi.org/10.1016/j.jembe.2010.11.001.
- 1310 Quindlen, J.C., E.T. Bloom, L.E. Ortega, A.T. Moeller, and V.H. Barocas. 2017. "Micropipette
- 1311 Aspiration of the Pacinian Corpuscle." *J. Biomech.* 63: 104–109.
- 1312 <u>http://doi.org/10.1016/j.jbiomech.2017.08.005</u>.
- Radebaugh, J., A. Le Gall, R.D. Lorenz, J.I. Lunine, and the Cassini RADAR Team. 2011.
- "Stabilized Dunes on Titan as Indicators of Climate Change." *EPSC Abs.* 6: 1–3.
- Rayner, N.A., D.E. Parker, E.B. Horton, C.K. Folland, L.V. Alexander, D.P. Rowell, E.C. Kent,
- and A. Kaplan. 2003. "Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine
- 1317 Air Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth
- 1318 Century." J. Geophys. Res, 108: 4407. http://doi.org/10.1029/2002JD002670.
- 1319 Reagan, James, Dan Seidov and Tim Boyer, 2018: Water vapor transfer and near-surface salinity
- 1320 contrasts in the north Atlantic Ocean, Sci. Rep., 8, 8830, http://dx.doi.org/10.1038/s41598-018-
- 1321 <u>27052-6</u>.

- Reeves, G.T., and S.E. Fraser. 2009. "Biological Systems from an Engineer's Point of View."
- 1323 *PLoS Biol.* 7(1): e1000021. http://doi.org/10.1371/journal.pbio.1000021.
- Reynolds, D.J., C.A. Richardson, J.D. Scourse, P.G. Butler, P. Hollyman, A. Román-González,
- and I.R. Hall. 2017. "Reconstructing North Atlantic Marine Climate Variability Using an
- 1326 Absolutely-Dated Sclerochronological Network." Palaeogeo. Palaeoclim. Palaeoecol. 465 Part
- 1327 B(1): 333–346. http://doi.org/10.1016/j.palaeo.2016.08.006.
- Reynolds, D.J., J.D. Scourse, P.R. Halloran, A.J. Nederbragt, A.D. Wanamaker, P.G. Butler,
- 1329 C.A. Richardson, J. Heinemeier, J. Eiriksson, K.L. Knudsen, and I.R. Hall. 2016. "Annually
- 1330 Resolved North Atlantic Marine Climate over the Last Millennium." *Nat. Comm.* 7: 1–11.
- 1331 http://doi.org/10.1038/ncomms13502.
- Reynolds, D.J., P.G. Butler, S.M. Williams, J.D. Scourse, C.A. Richardson, A.D. Wanamaker Jr.,
- W.E.N. Austin, A.G. Cage, M.D.J. Sayer. 2013. "A Multiproxy Reconstruction of Hebridean
- 1334 (NW Scotland) Spring Sea Surface Temperatures between AD 1805 and 2010." *Palaeogeo*.
- 1335 Palaeoclim. Palaeoecol. 386: 275–285. http://doi.org/10.1016/j.palaeo.2013.05.029.
- Rothenberg, M., R.T. Verrillo, S.A. Zahorian, M.L. Brachman, and S.J, Bolanowski Jr. 1977.
- "Vibrotactile Frequency for Encoding a Speech Parameter." J. Acoust. Soc. Am. 62(4): 1003–
- 1338 1012. http://doi.org/10.1121/1.381610.
- 1339 Sadler, J., G.E. Webb, L.D. Nothdurft, and B. Dechnik. 2014. "Geochemistry-Based Coral
- Palaeoclimate Studies and the Potential of 'Non-Traditional' (Non-Massive *Porites*) Corals:
- Recent Developments and Future Progression." *Earth-Sci. Rev.* 139: 291–316.
- 1342 <u>http://doi.org/10.1016/j.earscirev.2014.10.002.</u>
- 1343 Scrutton, C.T. 1978. "Periodic Growth Features in Fossil Organisms and the Length of the Day
- and Month." In *Tidal Friction and the Earth's Rotation*, edited by P. Broche and J. Sundermann,
- 1345 154–196. Berlin: Springer-Verlag. http://doi.org/10.1007/978-3-642-67097-8_12.
- 1346 Seidov, D., A. Mishonov, J. Reagan, and R. Parsons 2017. "Multidecadal Variability and
- 1347 Climate Shift in the North Atlantic Ocean." *Geophys. Res. Lett.* 44:4985–4993.
- 1348 http://doi.org/10.1002/2017GL073644.
- Selçuk, E.B., M. Sungu, H. Parlakpinar, N. Ermiş, E. Taslıdere, N. Vardı, M. Yalçinsoy, M.
- 1350 Sagır, A. Polat, M. Karatas, and B. Kayhan-Tetik. 2015. "Evaluation of the Cardiovascular
- Effects of Varenicline in Rats." *Drug Design, Dev. Ther.* 9: 5705–5717.
- 1352 http://doi.org/10.2147/DDDT.S92268.

- 1353 Sensenig, A., I. Agnarsson, and T.A. Blackledge. 2010. "Behavioural and Biomaterial
- 1354 Coevolution in Spider Orb Webs." *J. Evol. Biol.* 23(9): 1839–1856.
- 1355 <u>http://doi.org/10.1111/j.1420-9101.2010.02048.x.</u>
- Shaffer, S.A., Y. Tremblay, H. Weimerskirch, D. Scott, D.R. Thompson, P.M. Sagar, H. Moller,
- 1357 G.A. Taylor, D.G. Foley, B.A. Block, and D.P. Costa. 2006. "Migratory Shearwaters Integrate
- Oceanic Resources across the Pacific Ocean in an Endless Summer." *Proc. Natl. Acad. Sci.*
- 1359 103(34): 12799–12802. http://doi.org/10.1073/pnas.0603715103.
- Shoji, H., A. Mochizuki, Y. Iwasa, M. Hirata, T. Watanabe, S. Hioki, and S. Kondo. 2003.
- "Origin of Directionality in the Fish Stripe Pattern." Dev. Dyn. 226(4): 627–33.
- 1362 http://doi.org/10.1002/dvdy.10277.
- Silvestro, S., L.K. Fenton, D.A. Vaz, N.T. Bridges, G.G. Ori. 2010. "Ripple Migration and Dune
- Activity on Mars: Evidence for Dynamic Wind Processes." *Geophys. Res. Lett.* 37: L20203.
- 1365 http://doi.org/10.1029/2010GL044743.
- Simonson, T.S., Y. Yang, C.D. Huff, H. Yun, G. Qin, D.J. Witherspoon, and Z. Bai. 2010.
- "Genetic Evidence for High-Altitude Adaptation in Tibet." *Science* 329(5987): 72–75.
- 1368 <u>http://doi.org/10.1126/science.1189406.</u>
- Sloss, C.R., P. Hesp, and M. Shepherd. 2012. "Coastal Dunes: Aeolian Transport." *Nat. Educ.*
- 1370 Knowl. 3(10): 21.
- 1371 Slutz, R.J., S.J. Lubker, J.D. Hiscox, S.D. Woodruff, R.L. Jenne, R.H. Joseph, P.M. Steurer, and
- 1372 J.D. Elms. 1985. Comprehensive Ocean-Atmosphere Data Set: Release 1. NTIS PB86-105723.
- Boulder, CO: NOAA Environmental Research Laboratories, Climate Research Program.
- 1374 Smith, T.M. 2006. "Experimental Determination of the Periodicity of Incremental Features in
- Enamel." J. Anat. 208(1): 99–113. http://doi.org/10.1111/j.1469-7580.2006.00499.x.
- 1376 Smith, T.M., and R.W. Reynolds. 2004. "Improved Extended Reconstruction of SST (1854–
- 1377 1997)." J. Clim. 17: 2466–2477. http://doi.org/10.1175/1520-
- 1378 0442(2004)017<2466:IEROS>2.0.CO;2.
- 1379 Smolyar, I., T. Bromage, and M. Wikelski. 2016. "Quantification of Layered Patterns with
- 1380 Structural Anisotropy: A Comparison of Biological and Geological Systems." *Heliyon*, 2(3):
- 1381 e00079. http://doi.org/10.1016/j.heliyon.2016.e00079.
- Smolyar, I.V. 2014. System and Method for Quantification of Size and Anisotropic Structure of
- 1383 *Layered Patterns*. U.S. Patent 8,755,578, issued June 17, 2014.

- Smolyar, I.V., and T.G. Bromage. 2004. "Discrete Model of Fish Scale Incremental Pattern: A
- Formalization of the 2D Anisotropic Structure." *ICES J. Mar. Sci.* 61(6): 992–1003.
- 1386 http://doi.org/10.1016/j.icesjms.2004.07.013.
- 1387 Smolyar, I.V., I. Ermolaeva, and A. Chernitsky. 1987. Mathematical Model of Fish Scales and
- 1388 Algorithms for their Analysis. Apatity, Russia: Kola Science Center, Russian Academy of
- 1389 Sciences.
- Soler, A., and R. Zaera. 2016. "The Secondary Frame in Spider Orb Webs: The Detail that
- 1391 Makes the Difference." *Sci. Rep.* 6: 31265. http://doi.org/10.1038/srep31265.
- 1392 Starkey, T., and P. Vukusic. 2013. "Light Manipulation Principles in Biological Photonic
- 1393 Systems." *Nanophotonics* 2: 289–307. http://doi.org/10.1515/nanoph-2013-0015.
- Sultana, S., A. Siddique, S. Sultana, S. Mahboob, K. Al-Ghanim, and Z. Ahmed. 2017. "Fish
- Scales as a Non-Lethal Tool of the Toxicity of Wastewater from the River Chenab." *Environ*.
- 1396 *Sci. Pollut. Res.* 24:2464–2475. http://doi.org/10.1007/s11356-016-7962-9.
- Taghizadeh, H., and M. Tafazzoli-Shadpour. 2017. "Characterization of Mechanical Properties
- of Lamellar Structure of the Aortic Wall: Effect of Aging." J. Mech. Behav. Biomed. Mater. 65:
- 1399 20–28. http://doi.org/10.1016/j.jmbbm.2016.08.011.
- Tonar, Z., T. Kubíková, C. Prior, E. Demjén, V. Liška, M. Králíčková, and K. Witter. 2015.
- "Segmental and Age Differences in the Elastin Network, Collagen, and Smooth Muscle
- Phenotype in the Tunica Media of the Porcine Aorta." *Ann. Anat.* 201: 79–90.
- 1403 http://doi.org/10.1016/j.aanat.2015.05.005.
- 1404 Trnka, A., and P. Prokop. 2012. "The Effectiveness of Hawk Mimicry in Protecting Cuckoos
- 1405 from Aggressive Hosts." *Anim. Behav.* 83: 263–268.
- 1406 http://doi.org/10.1016/j.anbehav.2011.10.036
- Turing, A.M. 1952. "The Chemical Basis of Morphogenesis." *Phil. Transact. Royal Soc. B Biol.*
- 1408 *Sci.* 237(641): 37–72. http://doi.org/10.1098/rstb.2014.0218.
- 1409 Vanyo, J.P., and S.M. Awramik. 1985. "Stromatolites and Earth-Sun-Moon Dynamics."
- 1410 *Precambrian Res.* 29(1–3): 121–142. http://doi.org/10.1016/0301-9268(85)90064-6.
- 1411 Vukusic, P., and J.R. Sambles. "Photonic Structures in Biology." *Nature* 424: 852–855.
- 1412 http://doi.org/10.1038/nature01941.
- 1413 Wanamaker, A.D. Jr., S. Hetzinger, and J. Halfar. 2011. "Reconstructing Mid- to High-Latitude"
- Marine Climate and Ocean Variability Using Bivalves, Coralline Algae, and Marine Sediment

- 1415 Cores from the Northern Hemisphere." *Palaeogeo. Palaeoclim. Palaeoecol.* 302(1–2): 1–9.
- 1416 http://doi.org/10.1016/j.palaeo.2010.12.024.
- 1417 Welbergen, J.A., and N.B. Davies. 2008. "Reed Warblers Discriminate Cuckoos from
- 1418 Sparrowhawks with Graded Alarm Signals that Attract Mates and Neighbours." *Anim. Behav.*
- 76: 811–822. https://doi.org/10.1016/j.anbehav.2008.03.020.
- Hosts." *Behav. Ecol*, 22: 574–579. http://doi.org/10.1093/beheco/arr008.
- Wilkinson, C., S.D. Woodruff, P. Brohan, S. Claesson, E. Freeman, F. Koek, S.J. Lubker, C.
- Marzin, and D. Wheeler. 2011. "Recovery of Logbooks And International Marine Data: The
- 1424 RECLAIM Project." Int. J. Climatol. 31: 968–979 http://doi.org/10.1002/joc.2102.
- 1425 Wikelski, M., R.W. Kays, N.J. Kasdin, K. Thorup, J.a. Smith, and G.W. Swenson. 2010. "Going
- 1426 Wild: What a Global Small-Animal Tracking System Could Do for Experimental Biologists." J.
- 1427 Exp. Biol. 210(2): 181–186. https://doi.org/10.1242/jeb.02629.
- Williams, S.E., L.P. Shoo, J.L. Isaac, A.A. Hoffmann, and G. Langham. 2008. "Towards an
- 1429 Integrated Framework for Assessing the Vulnerability of Species to Climate Change." PLoS
- 1430 *Biol.* 6(12): e325. http://doi.org/10.1371/journal.pbio.0060325.
- Woodruff, S.D., S.J. Worley, S.J. Lubker, Z. Ji, J.E. Freeman, D.I. Berry, P. Brohan, E.C. Kent,
- 1432 R.W. Reynolds, S.R. Smith, and C. Wilkinson. 2011. "ICOADS Release 2.5: Extensions and
- Enhancements to the Surface Marine Meteorological Archive." *Int. J. Climatol.* 31: 951–967
- 1434 http://doi.org/10.1002/joc.2103.
- Zuo, X., C. Zhao, L. Zhang, and E. Wang. 2016. "Influence of Growth Rate and Magnetic Field
- on Microstructure and Properties of Directionally Solidified Ag-Cu Eutectic Alloy." *Mater.* 9(7):
- 1437 569. http://doi.org/10.3390/ma9070569.
- Zou, Y., and Y. Zhang. 2009. "An Experimental and Theoretical Study on the Anisotropy of
- 1439 Elastin Network." Ann. Biomed. Eng. 37: 1572–1583. http://doi.org/10.1007/s10439-009-9724-z.
- 1440 Zschokke, S., and K. Nakata. 2015. "Vertical Asymmetries in Orb Webs." *Biol. J. Linn. Soc.*
- 1441 114(3): 659–672, http://doi.org/10.1111/bij.12456.

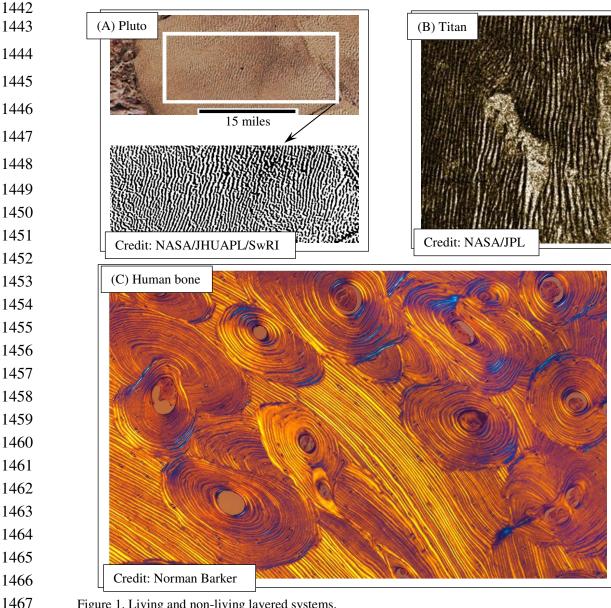


Figure 1. Living and non-living layered systems.

1469

1470

1471

1472

1473 1474

1475

1476

1477 1478

1479

1480

1481

1482

Structure of layers and variability of its thickness and chemical composition across 2D plane is the record of the internal and external factors responsible for patterns formation. These layered patterns form a record of internal and external factors regulating pattern formation in their various systems, making it potentially possible to recognize and identify in their incremental sequences trends, periodicities, and events in the formation history of these systems. Recent discoveries are:

Baleen whale cortisol levels reveal a physiological response to 20th century whaling, S. J. Trumble, S. A. Norman, D. D. Crain, F. Mansouri, Z. C. Winfield, R. Sabin, C. W. Potter, C. M. Gabriele & S. Usenko. Nature Communications, volume 9, Article number: 4587 (2018). http://doi: 10.1038/s41467-018-07044-w

Nacre Tablet Thickness Records Formation Temperature in Modern and Fossil Shells. Gilbert, P.U.P.A., K.D. Bergmann, C.E. Myers, M.A. Marcus, R.T. DeVol, C.-Y. Sun, A.Z. Blonsky, E. Tamre, J. Zhao, E.A. Karan, N. Tamura, S. Lemer, A.J. Giuffre, G. Giribet, J.M. Eiler, and A.H. Knoll. 2017. Earth Planet. Sci. Letter, 460: 281-292. http://doi.org/10.1016/j.epsl.2016.11.012.

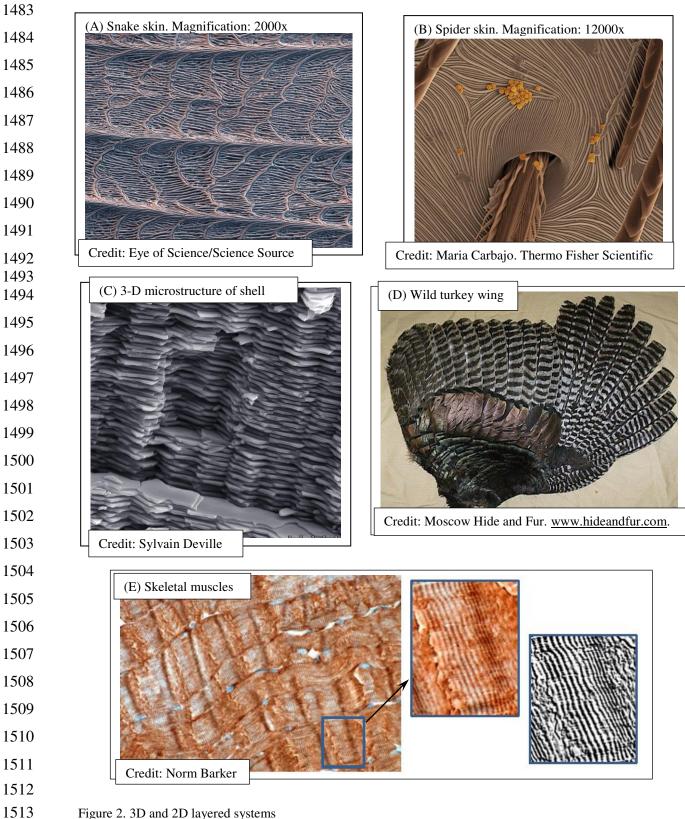


Figure 2. 3D and 2D layered systems

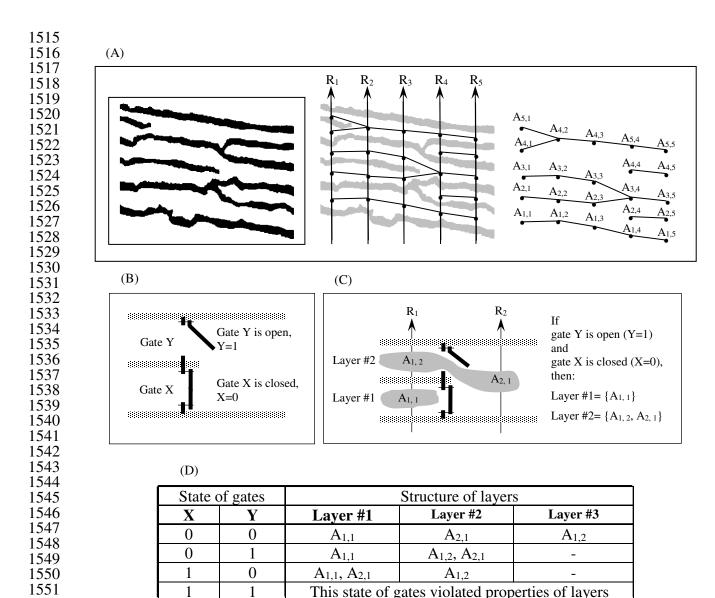
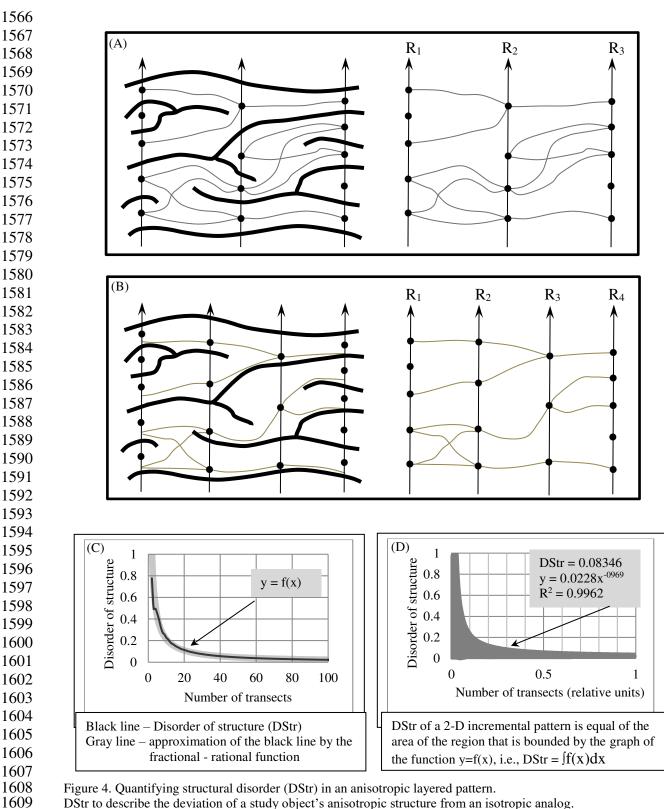



Figure 3. Structure of layered patterns as graphs (A) and logical network (B) – (D) Empirical model $M = \{G(N), BF, T_{M,N}\}$ of a layered pattern comprising N-partite graph G(N), Boolean Function (BF) and thickness of layers along transects $R_1, ..., R_N$ presented in the table $T_{M,N}$. Proposed methods allows us to fully automate conversion of a binary layered patterns into $M = \{G(N), BF, T_{M,N}\}$:

Quantification of Layered Patterns with Structural Anisotropy: A Comparison of Biological and Geological Systems. Smolyar, I.V., T. Bromage, M. Wikelski. 2016. Heliyon, 2(3): e00079. <u>doi.org/10.1016/j.heliyon. 2016.</u> e00079.

System and Method for Quantification of Size and Anisotropic Structure of Layered Patterns. Smolyar, I.V. 2014. U.S. Patent 8,755,578, issued June 17, 2014.

DStr to describe the deviation of a study object's anisotropic structure from an isotropic analog.

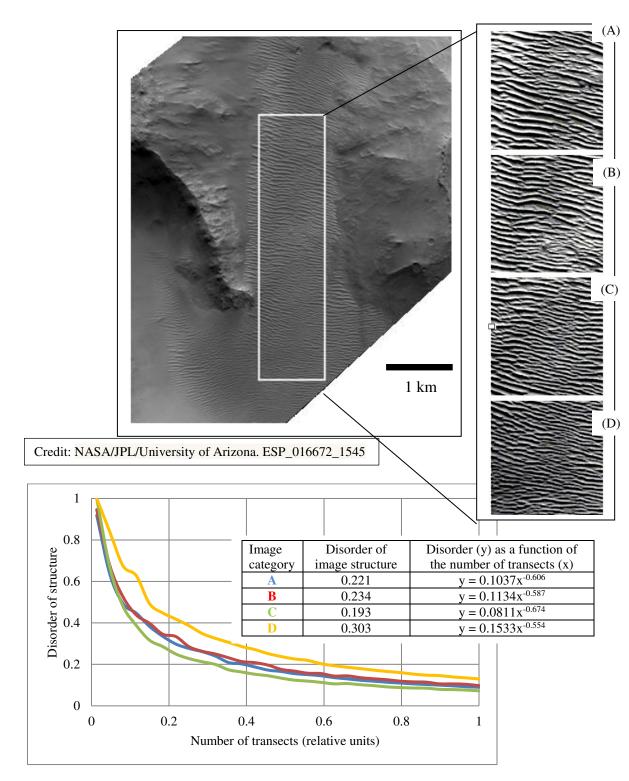
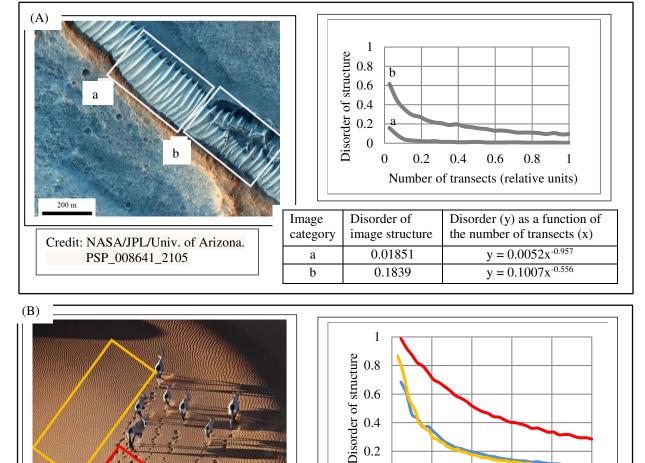


Figure 5. Structural disorder on the Martian surface

1695

1696


1697 1698

1699

1700

1701

1702 1703

0.2

Disorder of

image structure

0.4794

0

0.2

0.4

Number of transects (relative units)

0.6

Disorder (v) as a function of

 $y = 0.826x^2 - 1.5221x + 1.0096$

the number of transects (x)

0.8

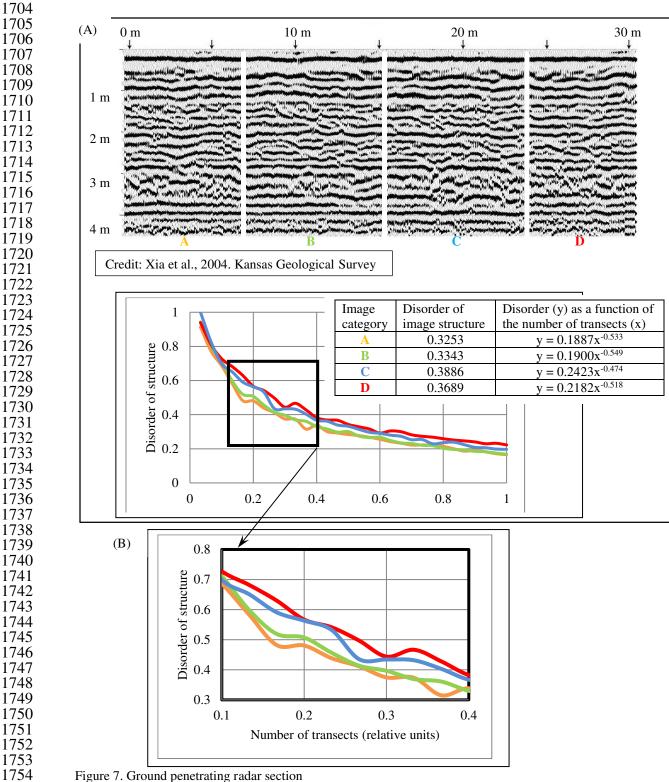

 $y = \overline{0.0849x^{-0.764}}$ 0.2042 Credit: Martin Harvey $v = 0.0995x^{-0.699}$ 0.2014 Figure 6. Morphological characteristics of structural anomalies Figure 6A. Martian surface structural anomaly

Figure 6B. Dunes sand ripples structural anomaly

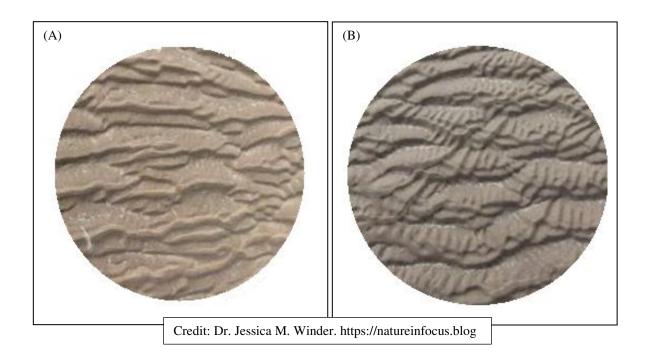
Image

category

Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of the sampling area a is 10 times less than that of nearby area b, which exhibits structural anomaly with respect to area a. Figure 6B depicts the structural anomaly of sand ripples. The red sampling area exhibits structural anomaly with respect to nearby orange and blue areas. The DStr of the orange and blue areas is 2.3 times less than that of the red area.

1756

1757


1758

1759

Figure 7A. Structural disorder in round penetrating radar section

Figure 7B. Fragment of the equation DStr = f(number of transects)

Fig. 7B shows that numbers of transects more than 0.1 and less than 0.4 maximize structural differences between segments A, B, C and D.

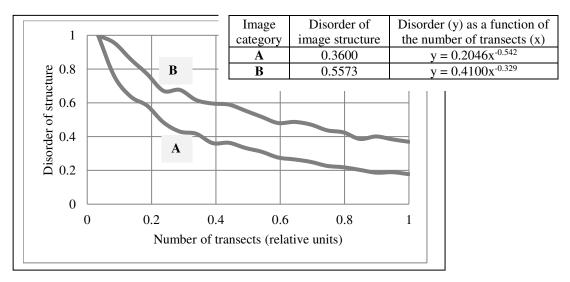
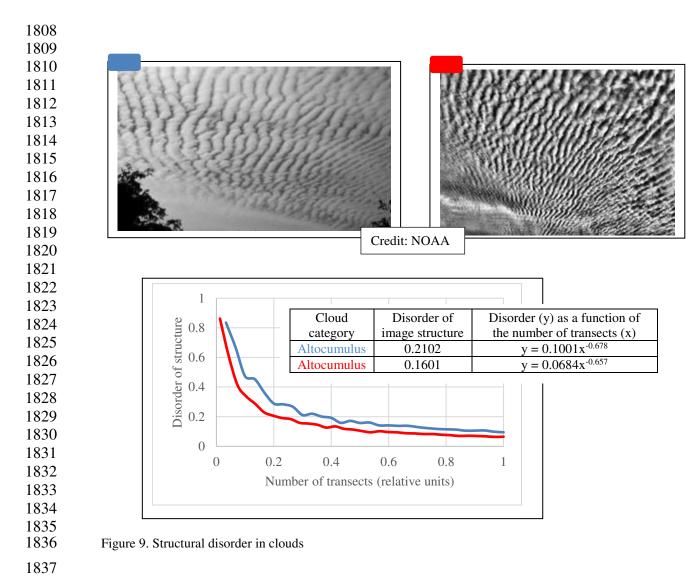
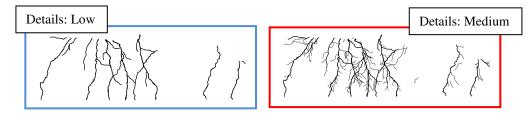




Figure 8. Structural disorder in sand ripples at tidal zone. Diameter of images ~0.3 m

Credit: C. Clark. NOAA Photo Library, NOAA Central Library; OAR/EPL/National Severe Storm Laboratory (NSSL)

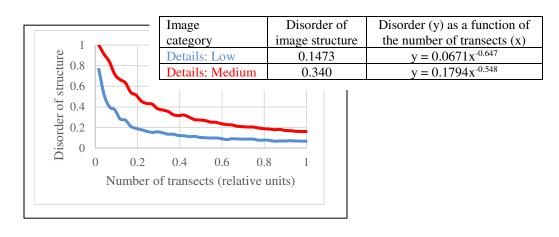
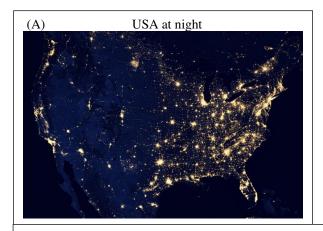
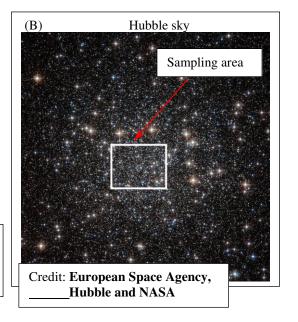




Figure 10. Structural disorder in lightning

Credit: Earth Observatory/NASA;
National Geophysical Data Center,
National Centers for Environmental Information,
NOAA

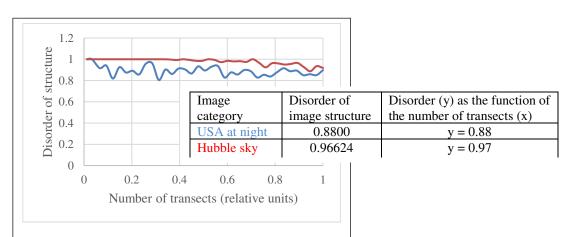


Figure 11. Images of high-level structural disorder

Figure 11A. Structural disorder in satellite image of USA at night

Figure 11B. Structural disorder in photograph from Hubble space telescope

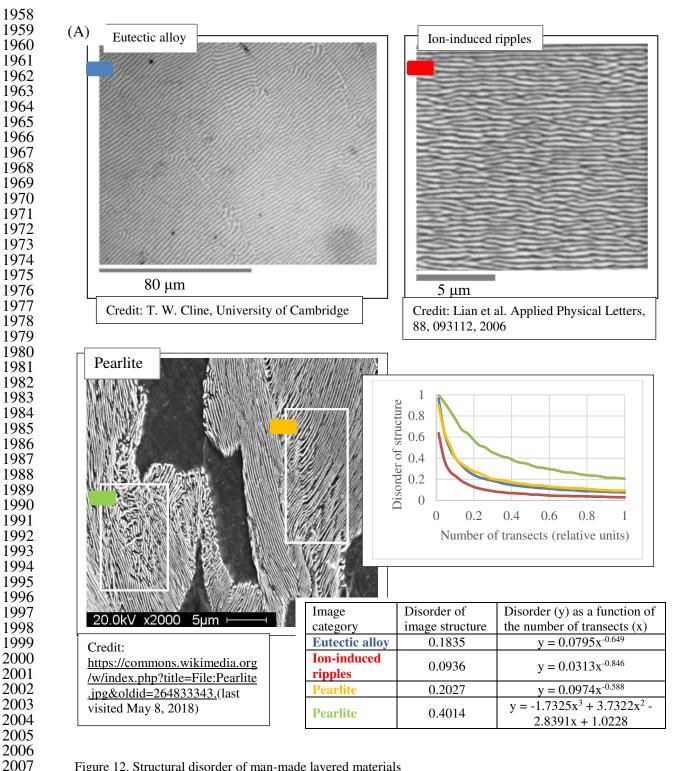
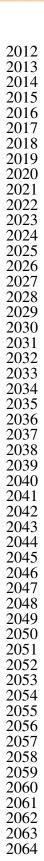
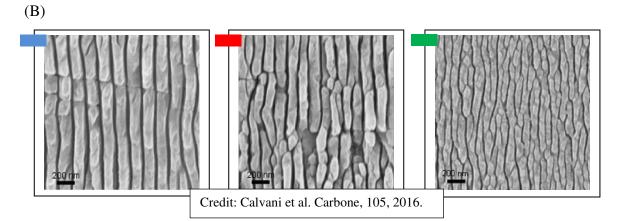




Figure 12. Structural disorder of man-made layered materials Figure 12A. Structural disorder in lamellar alloys Figure 12B. Structural disorder in black diamonds See next page

2009

2010

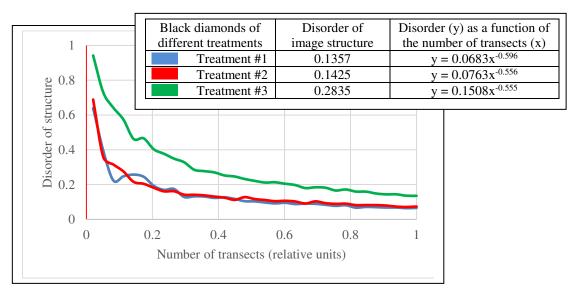
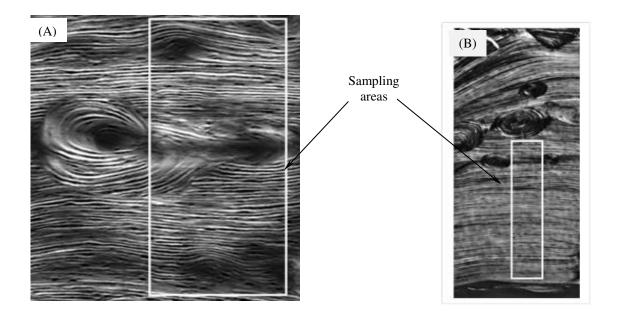



Figure 12B. Structural disorder in black diamonds Materials science is an attractive area for the application of $M = \{BF, G(N), T_{M,N}\}$ because the macro- and nanostructures of various materials exhibit layered anisotropic patterns (Fig. 12) that define their properties. Thus, DStr could serve as a local and global morphological parameter for describing material microstructures. DStr could also be used to link structures and properties, an essential step in developing materials with desired combinations of characteristics.

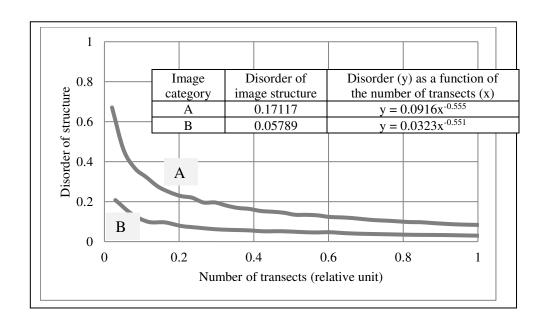
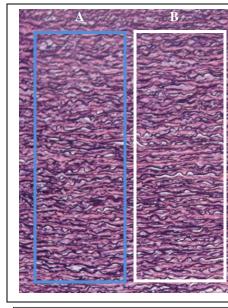
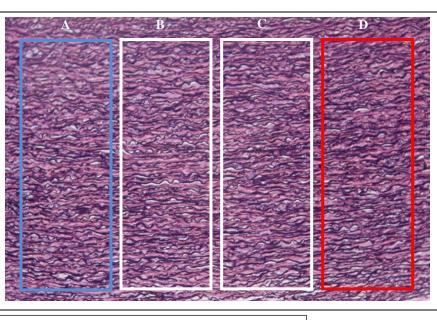
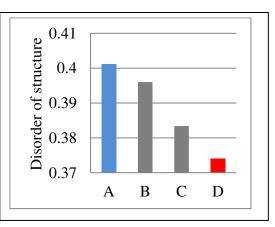





Figure 13. Structural disorder in lamella bones

Credit: Donna Charley-Johnson, Triarch Incorporated

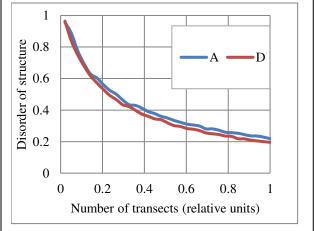
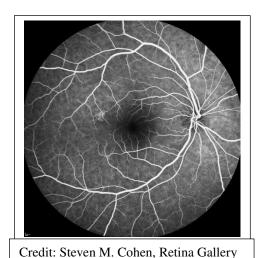
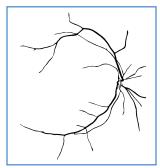




Figure 14. Structural disorder in lamellar human aorta

0.4

0.2

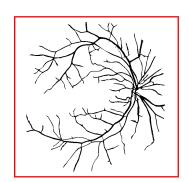
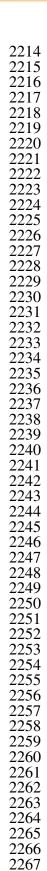
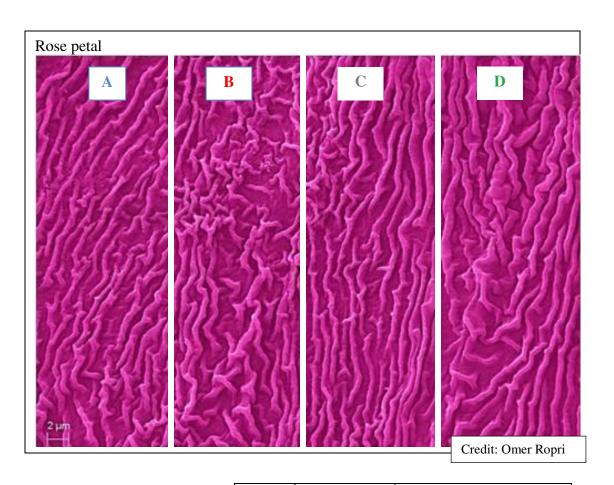




Image Disorder of Disorder (y) as the function of Disorder of structure category image structure the number of transects (x) 0.8 Details: Low 0.1804 $y = 0.0669x^{-0.714}$ Details: Medium 0.3051 $y = 0.1559x^{-0.529}$ 0.6

0.2 0.4 0.6 0.8 Number of transects (relative units)

Figure 15. Structural disorder in human eye angiogram

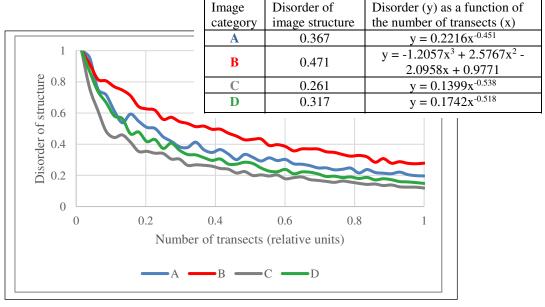
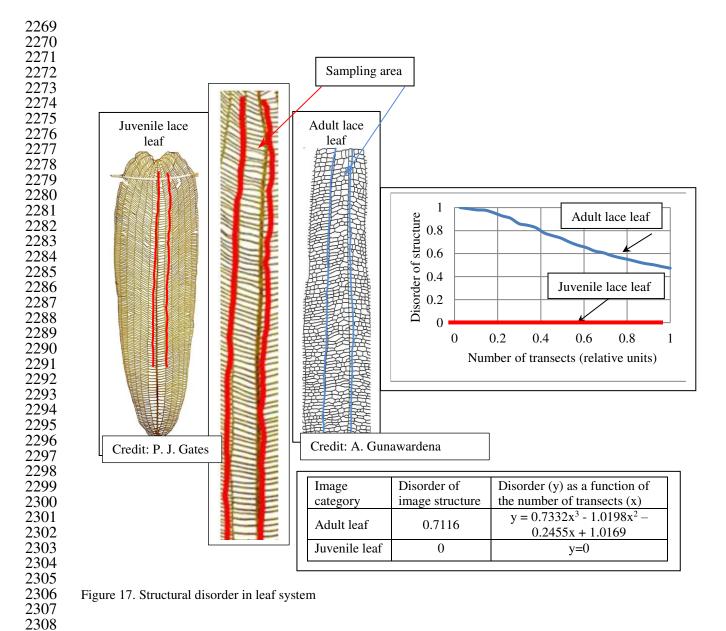
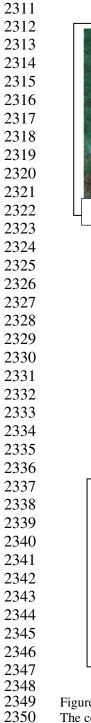
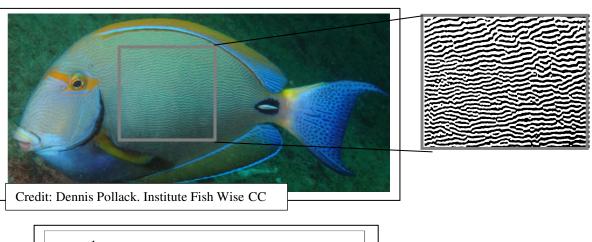
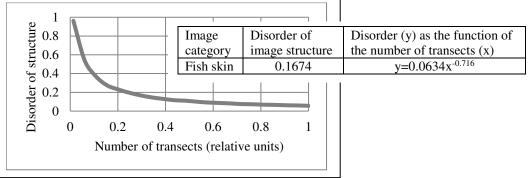






Figure 16. Structural disorder in flower surfaces

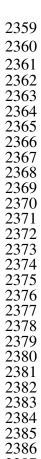
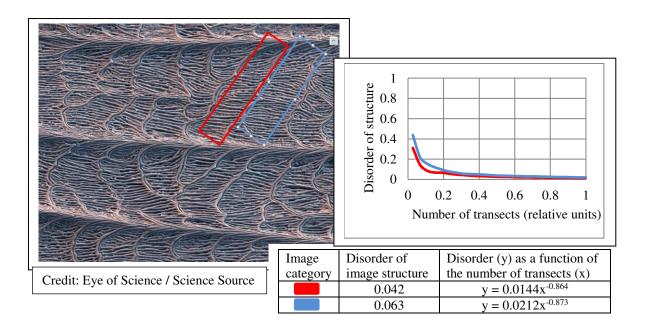
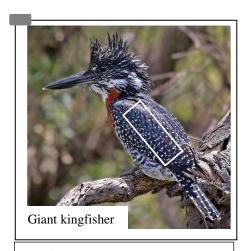
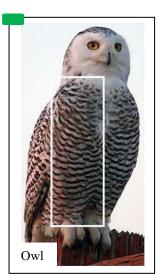


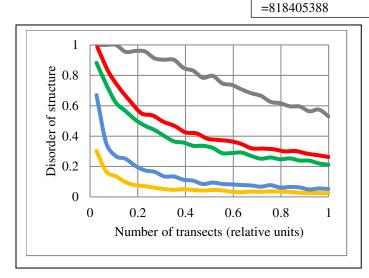
	Image category	Disorder of image structure	Disorder (y) as a function of the number of transects (x)
ГАВ	A	0.1578	$y = 0.0657x^{-0.755}$
	B	0.1939	$y = 0.0811x^{-0.753}$
	C	0.1697	$y = 0.0719x^{-0.744}$
	D	0.1393	$y = 0.0598x^{-0.735}$
	≋⊢		
	~		
	\cong		
	≋		
	≅		

Figure 18. Structural disorder in fish skin

The configuration of stripes on fish skin (Fig. 18) is a typical example of an anisotropic layered pattern. The formation of patterns on the surfaces of fish, shells, and mammals has been explained by a reaction—diffusion system (Turing, 1952; Meinhardt, 1989; Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D imply that DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure and area D has the simplest structure among four sampling areas. This result inspires two questions: 1) Is the DStr of the right side of the fish similar to the DStr of the left side? 2) Could the morphology of stripes serve as a record of internal and external events in the life history of a fish? Model $M = \{BF, G(N), T_{M,N}\}$ could be one tool to help to answer these questions.


Figure 19. Structural disorder in snake skin


Credit: <u>en.wikipedia.org/w/index.php?title=</u> Giant_kingfisher&oldid=818405388

Credit: en.wikipedia.org/w/index.php ?title=Giant_kingfisher&oldid

Credit: Philip Anderson

Color	Image	Disorder of	Disorder (y) as a function of
code	category	image structure	the number of transects (x)
	Giant kingfisher	0.7591	y = -0.5248x + 1.049
	Banded pitta	0.4277	$y = 0.2866x^{-0.406}$
	Owl	0.3590	$y = 0.2331x^{-0.424}$
	Banded kingfisher	0.1299	$y = 0.0561x^{-0.722}$
	Banded kingfisher	0.0574	$y = 0.0261x^{-0.682}$

Figure 20. Structural disorder in bird plumage patterns. Plumage patterns in banded pitta, kingfisher, and owl (Fig. 20) offer examples of layered systems in bird plumage. DStr shows significant diversity in the structure of these layered systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires us to ask whether parameters of layered structures might serve as phenotypic characteristics (Gluckman and Mundy, 2016). Model $M = \{BF, G(N), T_{M,N}\}$ could be used to test this hypothesis (i.e., examine the structural characteristics of birds' plumage patterns with respect to state of the environment).

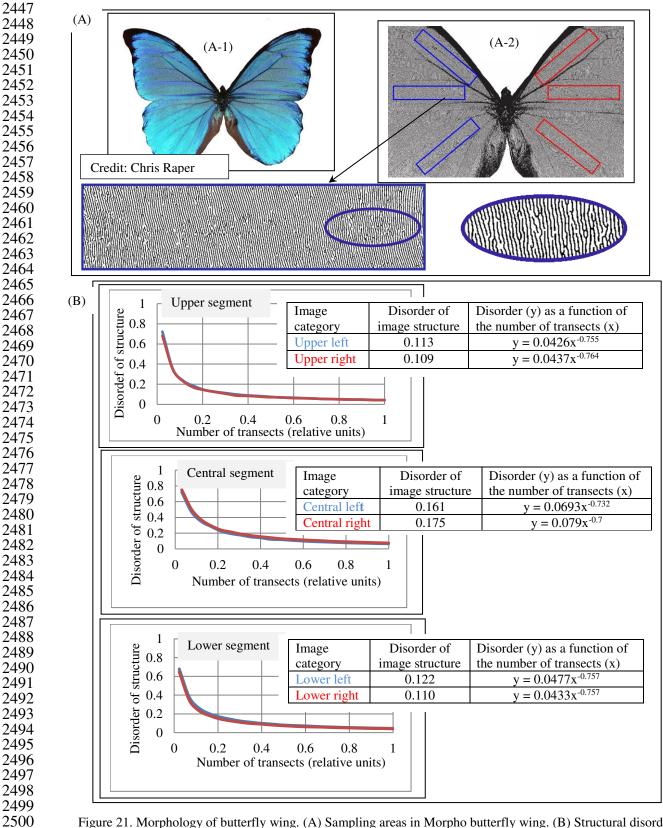


Figure 21. Morphology of butterfly wing. (A) Sampling areas in Morpho butterfly wing. (B) Structural disorder in butterfly wing. See next page.

Figure 21. Morphology of butterfly wing. (A) Sampling areas in Morpho butterfly wing. (B) Structural disorder in butterfly wing

Photonic systems of biological objects generate interest among scientists and engineers across various disciplines due to their unique ability to manipulate color using micro-structured surfaces (Starkey and Vukusic, 2013; Parker, 2000). Many photonic surfaces in flowers and animals exhibit lamellar structures (Vukusic and Sambles, 2003), such as the scales arranged in anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We use DStr to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results of DStr calculations for six sampling areas. The left and right wings of Morpho butterfly have similar structural characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a characteristic of blue color nuances in Morpho butterflies? Do male and female Morpho butterflies have similar structural characteristic DStr? How do local/global structural anomalies in butterfly wings with respect to DStr affect butterfly color? Model $M = \{BF, G(N), T_{M,N}\}$ could be used to answer these questions.

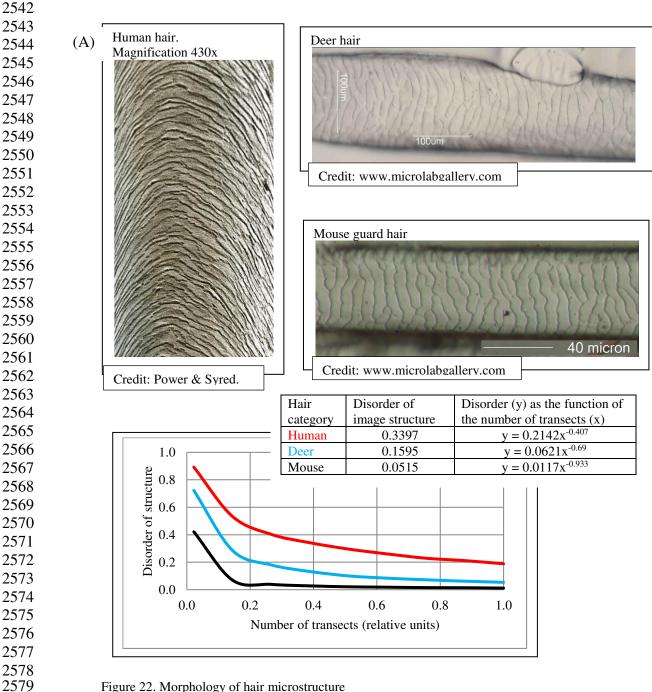


Figure 22. Morphology of hair microstructure

2581

2582 2583

2584

2585

2586

2587

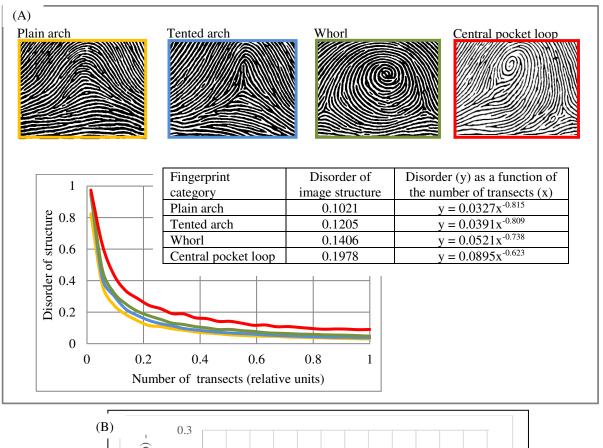

Figure 22A. Structural disorder in human and animal hairs

Figure 22B. Structural disorder as a function of sampling density

The layered microstructures of human hair are much more complicated than those of some animals (Fig. 22A), which is confirmed by DStr(human), DStr(deer), DStr(mouse), and the corresponding charts for "structural disorder of hair = f(number of transects)." Figure 22B (next page) shows that high sampling density accounts for more structural details than low sampling density.

Figure 22B. Structural disorder as a function of sampling density

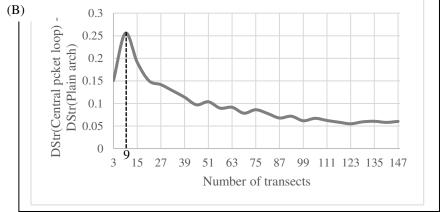


Figure 23. Morphology of fingerprints

Figure 23A. Structural disorder in four categories of fingerprints

Figure 23B. Structural disorder as a function of number of transects

As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive structural characteristics that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) = 0.1978. Distinctions between DStr among different categories of fingerprints substantially depend on the number of transects used to calculate DStr (Section 2.2). To define the number of transects that allow maximal differences among DStr in the four categories of fingerprints, we plot the chart (Fig. 23B) as DStr(central pocket loop) – DStr(plain arch) = f(number of transects). Nine transects allow the maximal possible differences between two categories of fingerprints; that is, DStr(central pocket loop) – DStr(plain arch) = 0.253, which is 2.6 times more than the DStr(central pocket loop) and DStr(plain arch) comparison if equation (2) is used to calculate DStr. Sampling density and number of transects could complement DStr in forensic identification.

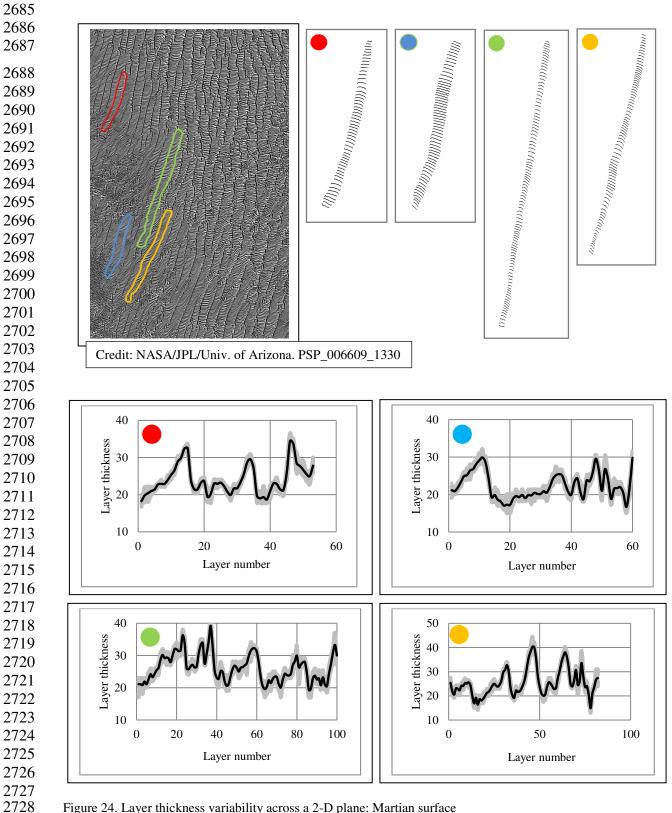
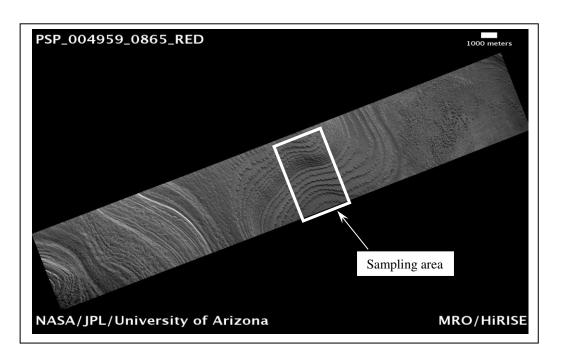



Figure 24. Layer thickness variability across a 2-D plane: Martian surface See text next page

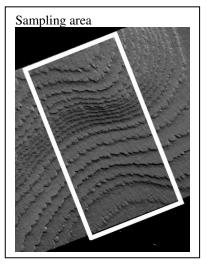
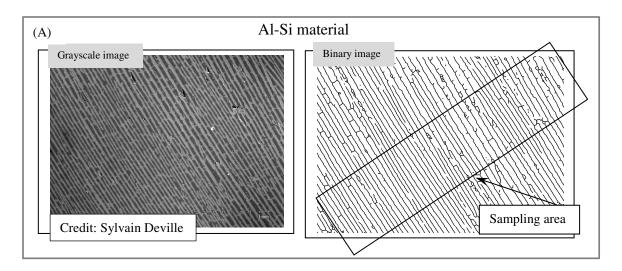
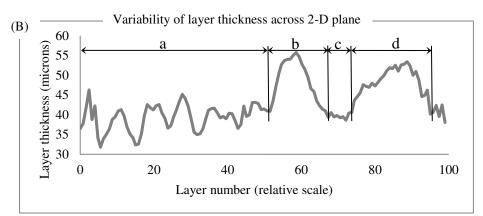
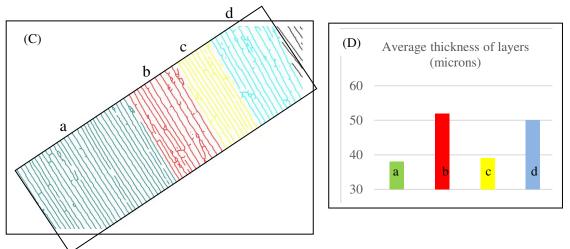
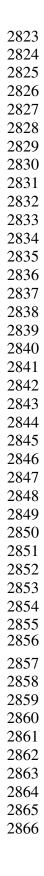
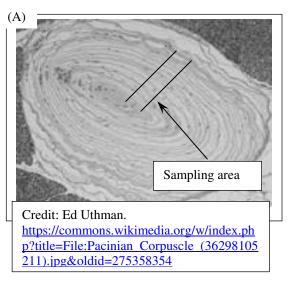
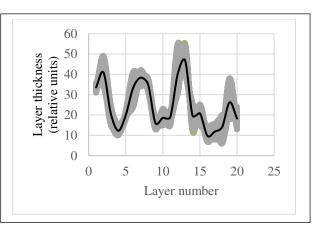
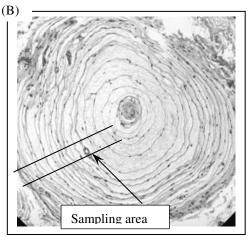
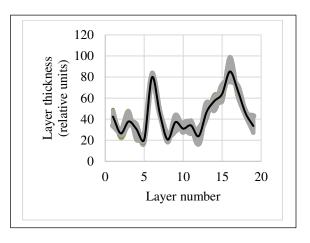




Figure 25. Layer thickness variability across a 2-D plane: South Pole of Mars

Dune fields are an example of the layered patterns that exist throughout nature. Dune spacing (i.e., layer thickness) is a basic morphological characteristic of dune systems (Lancaster, 2009). Figures 24 and 25 show layered fragments of the surface of Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to describe the variability of layer thickness across the 2-D sampling area with high accuracy. Several transects are used to calculate average thickness of each layer. Charts of "layer thickness vs. layer number" show cyclic trends in the variability of layer thickness across the sampling area (Fig. 24 and 25). Similar cyclic trends in anisotropic structures are also observed on Mars and Earth (Smolyar et al., 2016).


Figure 26. Layer thickness variability across a 2-D plane: material. Figure 26A depicts an image of layered Al–Si composite with anisotropic structure. The chart of "layer thickness vs. layer number" shows cyclicity in the variability of layer thickness across the sampling area (Fig. 26B), which is divided into parts A, B, C, and D (Fig. 26C) according to the uniform distribution of layer thickness in each part (Fig. 26D). It follows that the chart of "layer thickness vs. layer number" provides a more detailed description of a layered pattern's morphological characteristic than average layer thickness.

Credit: Donna Charley-Johnson, Triarch Inc.

Figure 27. Layer thickness variability across a 2-D plane: Pacinian corpuscle

Credit: http://en.wikipedia.org/w/index.php?title =Banded_pitta&oldid=746065080

Credit: Philip Anderson

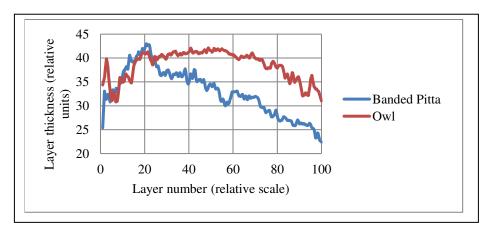


Figure 28. Layer thickness variability across a 2-D plane: banded pitta and owl feathers. The chart of "layer thickness vs. layer number" exhibits non-random trends in the variability of layer thickness across bird feathers (Fig. 28). The chart and DStr could potentially serve as morphological characteristics of birds with application to the study of their life cycles. Striped patterns are often used to distinguish bird species from one another. In particular, shrikes and their relatives are recognizable to birders by the peculiar differences in the thickness and layering of their striped patterns, many of which are simply black and white. Furthermore, there are often marked differences in the morphological features of feathers between males and females of the same species, a dimorphism that is recognized both by the animals themselves and by human observers (Gluckman 2014).

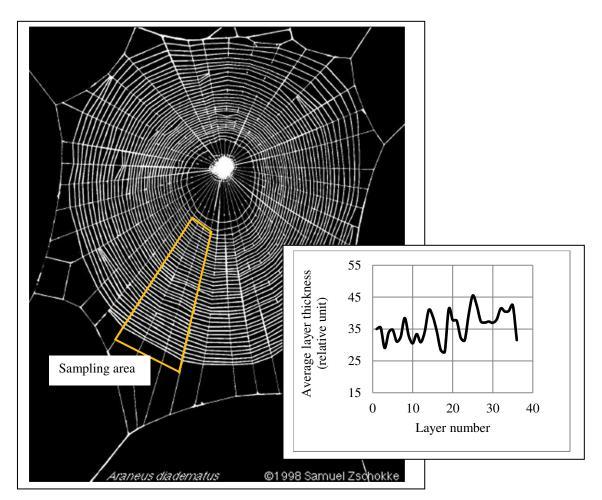


Figure 29. Layer thickness variability across a 2-D plane: spider web

The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of their superior mechanical properties but also as a source of information about spiders' construction behaviors (Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb web represents a layered system with structural anisotropy: "One of the most relevant structural traits of orb webs is their mesh width" (Zschokke and Nakata, 2015, p. 661). Mesh width (i.e., layer thickness) is used to understand the construction features of web systems and relate them to spiders' behavior. For instance, Zschokke and Nakata (2015, p. 661) point out that "a closer look at the orb webs reveals that mesh widths are not the same throughout the entire web." Charts describing the variability of mesh width across the sampling area (Fig. 29) confirm this statement and indicate cyclicity in the variability of mesh width across the sampling area. Thus, $M = \{BF, G(N), T_{M,N}\}$ could be used to generate a new set of structural characteristics describing the anisotropy of an orb web and its segments.

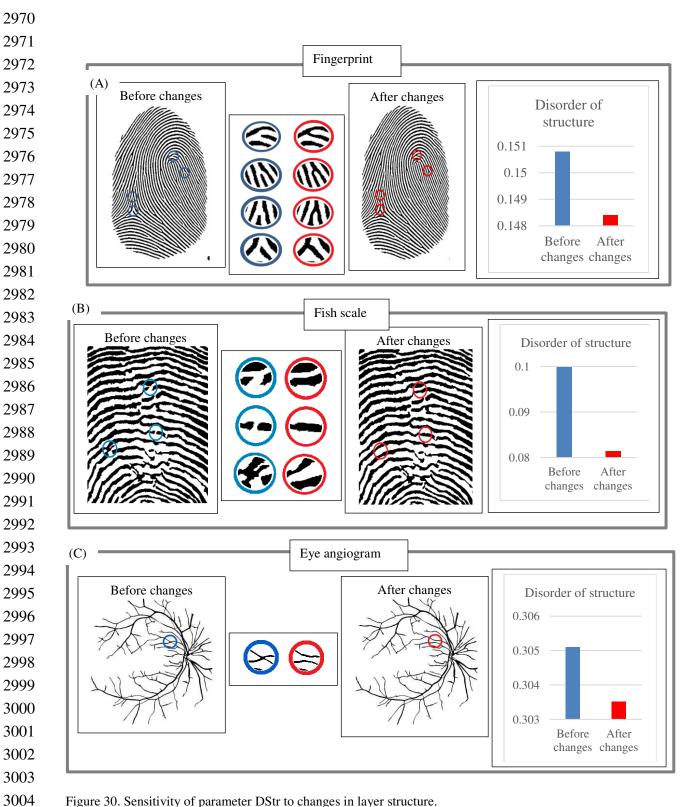
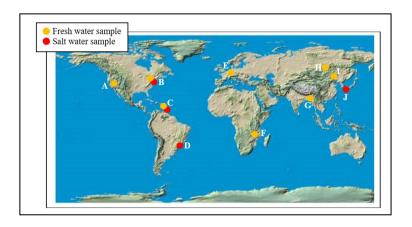


Figure 30. Sensitivity of parameter DStr to changes in layer structure. See next page.

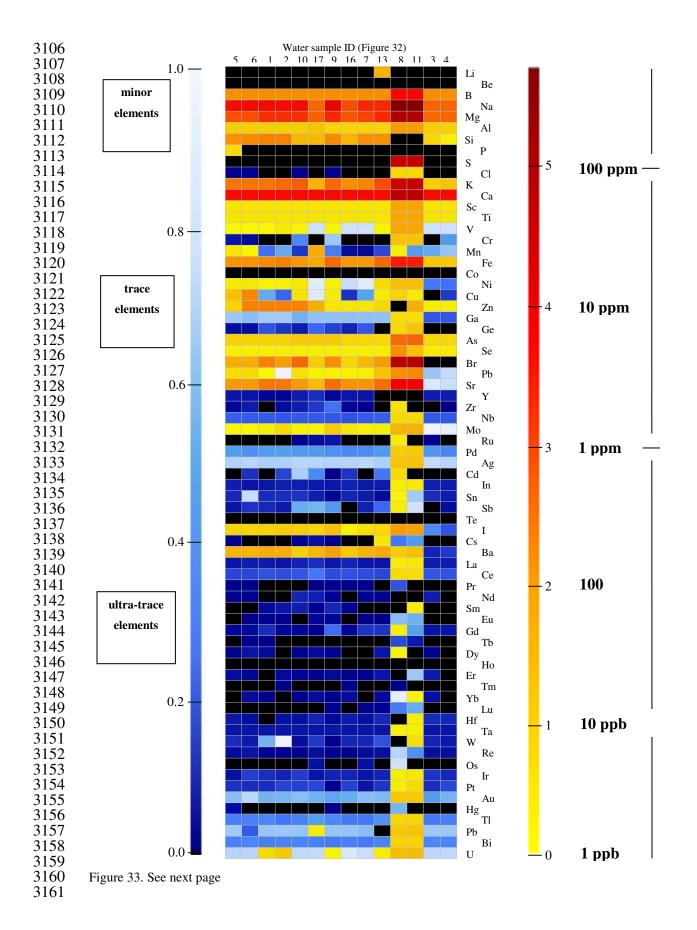

We examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A), fish scale (Fig. 30B), and an eye angiogram (Fig. 30C) as test objects. Let us denote characteristics of images before and after structural changes by DStr(before changes) and DStr(after changes). We describe the link between DStr(before changes) and DStr(after changes) and structural changes in images in quantitative terms using the following procedure: First, we describe the difference between DStr(before changes) and DStr(after changes) on a relative scale (%). All changes in layer structure are marked in red. We denote the difference as Parameter-1. Second, we describe (in %) the difference (in pixels) between the images before and after changes. To do so, we calculate the number of black pixels in an image before changes (total pixels before changes) and the total number of pixels that change color (white to black or vice versa) as a result of structural changes (total pixel change). The ratio (%) of "total pixel change/total pixels before changes" allows us to calculate the magnitude of structural changes in an image. This ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2 allows us to estimate the sensitivity of DStr to structural changes in the image. Results of calculating Parameter-1 and Parameter-2 are

	Parameter-1	Parameter-2
Fingerprint	0.55%	0.072%
Fish scale	3.80%	0.150%
Eye angiogram	0.32%	0.077%
Average	1.56%	0.10%

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1% structural change in layers results in a 15.6% change in DStr. This result provides evidence that minor changes in layer structure are accompanied by substantially greater changes in DStr values.

				Degr	ee of disc	order of la	ayer struc	ctures				
	0	>0-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1	
		ology										
Mars surface	•		•	••	•							Fig. 5, 2
Tidal ripples					•		•					Fig. 8
Vertical section					•••							Fig. 7
	Geo	ology. St	ructural a	anomaly								
Mars surface		•	•									Fig. 6A
Earth sand ripples				•		•						Fig. 6B
	Atn	nosphere										
Clouds			•	•								Fig. 9
USA at night										•		Fig. 11A
Hubble sky											•	Fig. 11B
Lightenings			•		•							Fig. 10
	Ma	terials										
Alloy			•									Fig. 12A
Ion-induced ripples		•										Fig. 12A
Pearlite steel				•		•						Fig. 12A
Black diamond			••	•								Fig. 12E
	Me	dicine										
Bones		•	•									Fig. 13
Aorta					•••	•						Fig. 14
Eye angiogram			•		•							Fig. 15
	For	ensic										
Fingerprints	101	CHSIC	•••									Fig. 23
Hairs		•	•		•							Fig. 22A
	Pla	nte										
Flower	1 14	111.5	•••									Fig. 16
Leaf	•			_	_				•			Fig. 17
	A •	imala										
Fish skin	Ani	mals	•••									Fig. 18
Snake skin		••										Fig. 19
Birds coloration						•						Fig. 19
Butterfly wing		-	•••		<u> </u>	_			-			Fig. 20 Fig. 21B
Butterny wing	0	>0-0.1	0.1-0.2	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1	11g. 41E
	U	>0-0.1	0.1-0.2		0.3-0.4 ee of disc				0.7-0.8	0.8-0.9	0.9-1	

Figure 31. Overview of experiments: structural disorder in patterns formed in nature and beyond



Area code	Sample ID*	Water category	Water sources	Place	Country	Coordinate
A	1	eategory	Well-2	Fresno, CA	USA	36°39'13"N, 119°39'49"W
A	2		Well-3	Fresno, CA	USA	36°38'57"N, 119°37'51"W
A	3		Snow	Lassen Volcanic Nat. Park	USA	40°28'27.3"N, 121°30'21.7"W
A	4		Snow	Crater Lake Nat. Park, CA	USA	42°54'32"N, 122°04'25"W
В	5		Tap, 0-min	Middletown, NY	USA	42°27' N, 74°25'W
В	6		Tap, 5-min	Middletown, NY	USA	42°27' N, 74°25'W
В	7	•	Delaware R.	Pleasant Park Hill, PA	USA	40°2'27.51"N, 4°59'31.04"W
В	8	•	Shore	Sea Island City, NJ	USA	39°11'34.4"N, 74°39'23.7"W
В	9	•	Canandaigua lake	State Marine Park, NY	USA	42°52'32.40"N, 77°16'36.50"W
С	10	•	Rain	Bathsheba	Barbados	13°12'42.18"N, 9°31'4.46"W
С	11	•	Shore	Oistins,	Barbados	13°3'39.86"N, 9°32'25.35"W
D	12	•	Shore	Rio de Janeiro	Brazil	22.977854°S, 43.187257°W
Е	13	•	Nidda river	Frankfurt	Germany	50°9'46.10"N, 8°39'7.99"E
F	14	•	Malawi lake	Malawi Lake National Park	Malawi	12°10'60.00" S 34°21'59.99" E
G	15		Rain	Karachi	Pakistan	24.8427554°N, 67.06103329°E
Н	16	•	Baikal lake	Khuzhir, Irkutsk Oblast	Russia	53°12'11"N, 107°20'27"E
I	17	•	Rain	Beijing	China	39°41'21"N, 115°55'23"E
J	18		Shore	Fukuoka,	Japan	33.596823°N, 130.359027°E

* ID - identification number

Figure 32. Distribution of water samples

3162
3163
3164
3165
3165
3166
3166
3166
3167
3168

Figure 33. Element concentration patterns in (environmental) water. Element symbols are on right vertical axes. Trace concentrations between not detected (black) and 1 μg/L (white) are shown in shades of blue.

Concentrations above 1 μg/L are represented by warm colors and given in a logarithmic scale and range from >1 μg/L (yellow) to over 3600 mg/L (dark red)
3168

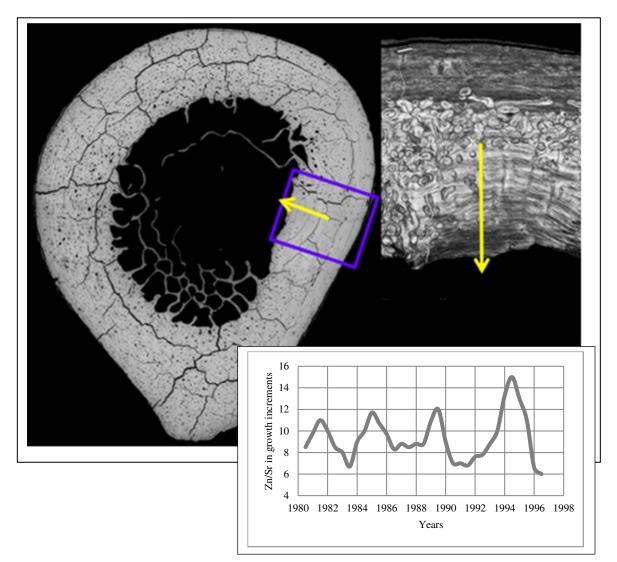


Figure 34. Zn/Sr ratio over 15 years of lamella bone

We discovered that the lamellar increments of bone are formed on the same interval at which the growth increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009). Striae of Retzius may be calibrated in absolute time, and in this fisherman that period was 8 days. Roughly 15 years of continuously formed lamellar bone were available from years for which we have meteorological data. In the example shown in Figure 34, we demonstrate, for instance, that from 1981 to 1995, the concentration of Strontium (Sr) varies cyclically in its ratio with Zinc (Zn).

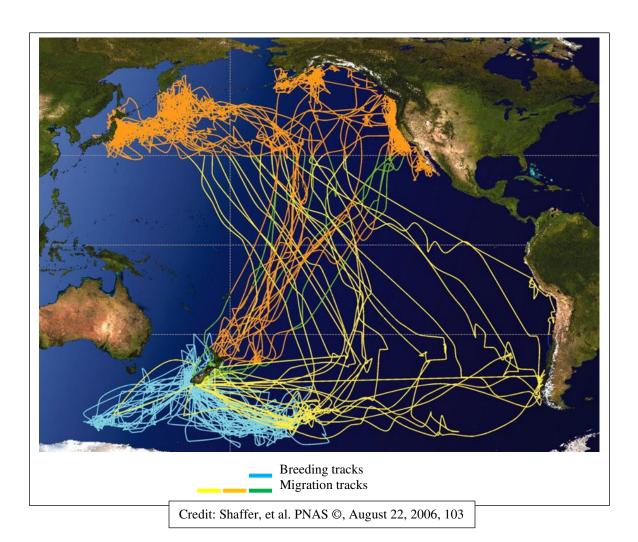


Figure 35. Sooty shearwaters migration routes across Pacific Ocean

Examples in which marine data could relate to the structure of living organisms are birds' and turtles' morphology and their migration patterns across the world ocean (Fig. 35). Although the focus of the present work is the quantitative description of morphology of layered anisotropic patterns, nevertheless a proposed method could be potentially extended for processing morphological characteristics of arbitrary images such as birds' feathers, backs, and footprints. New instrumental methods of monitoring birds' and turtles' migration on a global scale (e.g., the ICARUS project) provide us with tools to describe collective birds motion across the world ocean.