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Figure 3. Layered pattern structure as graph and logical network

Figure 4. Quantification structural disorder in an anisotropic layered pattern
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Abstract

Various natural patterns—such as terrestrial sand dune ripples, lamellae in vertebrate bones,
growth increments in fish scales and corals, aorta and lamellar corpuscle of humans and
animals—comprise layers of different thicknesses and lengths. Microstructures in manmade
materials—such as alloys, perlite steels, polymers, ceramics, and ripples induced by laser on the
surface of graphen—also exhibit layered structures. These layered patterns form a record of
internal and external factors regulating pattern formation in their various systems, making it
potentially possible to recognize and identify in their incremental sequences trends, periodicities,
and events in the formation history of these systems. The morphology of layered systems plays a
vital role in developing new materials and in biomimetic research. The structures and sizes of
these two-dimensional (2-D) patterns are characteristically anisotropic: That is, the number of

layers and their absolute thicknesses vary significantly in different directions.

The present work develops a method to quantify the morphological characteristics of layered
patterns that accounts for anisotropy in the object of study. To reach this goal, we use Boolean
functions and an N-partite graph to formalize layer structure and thickness across a 2-D plane
and to construct charts of 1) “layer thickness vs. layer number” and 2) “layer area vs. layer
number.” We present a parameter for structural disorder in a layered pattern (DStr) to describe
the deviation of a study object’s anisotropic structure from an isotropic analog and illustrate that
charts and DStr could be used as local and global morphological characteristics describing
various layered systems such as images of, for example, geological, atmospheric, medical,
materials, forensic, plants, and animals. Suggested future experiments could lead to new insights

into layered pattern formation.

Keywords: 0-gravity, anisotropy of layered systems, biomimetics, Boolean functions, image
processing, N-partite graph, structural anomaly, structural disorder of layered systems, world

ocean
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1. Introduction

Layered structures can be found in many natural patterns—including satellite images of the
surfaces of Mars, Pluto (Fig. 1A), and Titan (Fig. 1B) and terrestrial tidal sand ripples—exhibit
layered patterns of varying sizes, ranging from meters to hundreds of kilometers. Fish skin, fish
scales, coral growth increments, leaf structures and flower surface microstructures, snake and
spider skin (Fig. 2A, B), bird plumage patterns, three-dimensional (3-D) images of shells (Fig.
2C), clouds and lightning, human and animal hairs, and wild turkey wings (Fig. 2D) all exhibit
patterns of this type. Other examples are microstructures in manmade materials and in lamella

bones (Fig. 1C).

Natural layered patterns are attractive objects of study for specialists of different disciplines for
several reasons. First, layer thickness and structure represent the cumulative effect of internal
and external factors regulating pattern formation. Thus, layered patterns serve as a record of
diverse events occurring in different space—time domains. This record makes it possible to link
the morphology of layered patterns to external factors such as variability in the Earth’s rotation
(Pannella, 1972), climate cycles (Radebaugh et al., 2011; Ewing et al., 2014), and the state of
the environment (Guyette and Rabeni, 1995; Costa et al., 2002).

Some soft tissues—including the human aorta, skeletal muscle (Fig. 2E), and Pacinian (lamellar)
corpuscles—exhibit layered structures. Pacinian corpuscles are nerve endings in the skin
responsible for detecting and locating skin deformations produced by air vibrations and skin
contact (Kaas, 2012). Studying their morphological parameters has implications for the
development of new technology for conveying speech and visual information through
somatosensory channels (Rothenberg et al., 1977; Bau et al., 2010; Biswas et al., 2015). The
human aorta has a layered (i.e., lamellar) structure (Fig. 14) that typifies the elastic lamina found
in human and animal blood vessels. The study of aortic microstructure and age-related changes is
an urgent area of medical research (Novotny et al., 2017; Tonar et al., 2015; Akhtar et al., 2011;
Selcuk et al., 2015).

Additionally, analyzing layer morphology is an essential element of solving many problems in

materials science, biomimetic, and forensic research. For instance, biometric research has
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explored the structural properties of butterfly photonic systems (Vukusic and Sambles, 2003),
flower surfaces (Barthlott et al., 2016; Huang et al., 2017), and snakeskin (Abdel-Aal and
Mansori, 2011; Klein and Gorb, 2012). In materials science, a material’s mechanical and
physical characteristics are determined by its microstructure, which in many instances is layered
(Moya, 1995; Mayer, 2005). Understanding the relationship between microstructure and these
properties is vital for developing porous materials with new mechanical characteristics (Deville,
2018). In forensic research, morphological features of layered systems in hair and fingerprints
can be used for identification purposes (Champod, 2015; Lee et al., 2014; De Marinis and
Asprea, 20006).

The study and commercial applications of various categories of layered systems requires
formalizing aspects of their analysis. One of the first steps toward this goal is quantitatively
describing the morphology of a layered pattern. Formalizing this morphology is problematic
because of the numerous breaks and confluences (i.e., bifurcations) in the layers of 2-D and 3-D
objects (Blumberg, 2006). The number and thickness of these layers is a function of the direction
in which they are measured; that is, they are anisotropic in both size (including thickness and

area) and structure, thereby making it difficult to develop a formal procedure for their analysis.

Layered systems—irrespective of their nature or size—share several key elements, including the
idea of layers, number of layers, and their thicknesses. If layers have no breaks or confluences
(i.e., layers are structurally isotropic), then calculating the thickness, area, and number of these
layers across a 2-D plane is a straightforward task. But if layers have breaks and confluences,

quantifying a pattern’s characteristics becomes problematic.

To address this problem, we have proposed an empirical model M = {BF, G(N), Tm~} of 2-D
layered patterns, with the aim of providing tools to quantify the morphological features of
anisotropic layered objects (Smolyar et al., 1987; Smolyar and Bromage, 2004; Smolyar, 2014;
Smolyar et al., 2016). This model has three components: a Boolean function (BF) (Fig. 3B-D),
an N-partite graph (G(N)) (Fig. 3A) to describe the 2-D structure of layers, and Table Twm .,

which comprises the thickness of layers along transects Ry, ..., Rj, ..., Ry, plotted from a
pattern’s lower margin to its upper margin. Transects Ry, ..., R, ..., Rx are straight lines always
4
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distributed evenly across a 2-D layered pattern. The concept of open/closed gates (Fig. 3B,C)

makes it possible to describe all possible versions of layer structure using Boolean functions.

The second set of key elements shared by 2-D anisotropic layered systems are the concepts of
layer structure across a 2-D plane and layer length, which are defined in terms of transects that
cross a pattern from its lower to its upper margins (Fig. 4A). We introduce the concept of
synchronizing layer formation across a 2-D plane in order to quantify the structure of layers and
develop a procedure for plotting 1) “layer thickness vs. layer number” and 2) “layer area vs.
layer number” (Smolyar et al., 2016). That is, to construct the structure of each layer across a 2-
D plane, it is necessary to synchronize layer formation in the space—time domain. Because layers
are anisotropic, more than one version of the layered structure could be used for synchronization,
resulting in fuzziness in the charts for “layer thickness vs. layer number” and “layer area vs.
layer number.” Fuzziness is an unavoidable attribute when parameterizing anisotropic layered
patterns. When describing the variability of layer size in anisotropic patterns across a 2-D plane,

high accuracy and high confidence are mutually exclusive.

Smolyar et al. (2016) introduced the idea of an “index of confidence,” which allows a
compromise between detail and signal-to-noise ratio—either more detail and a lower signal-to-
noise ratio or less detail and a higher signal-to-noise ratio—when describing the variability of
layer thickness and area across N transects. It is therefore possible to plot robust charts for “layer
thickness vs. layer number” and “layer area vs. layer number.” These charts describe the global
morphological characteristics of an entire 2-D layered pattern. For instance, if each layer (e.g., of
tree rings, fish scales, lamellar bones, corals) is associated with the instant of time ¢# in which it
was formed, then a layer’s thickness and area are measures of the growth rate of the layered
system at that time. In this case, “layer thickness vs. layer number” and “layer area vs. layer
number” are interpreted as growth-rate variability across the entire system of 2-D anisotropic

layers.

Using model M = {BF, G(N), TmN} to analyze the growth-rate variability of lamella bones
allows us to reveal cyclicity in bone formation not previously observed (Bromage et al., 2009).

These results—as well as evidence that many factors controlling pattern formation are cyclic in
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nature—motivate us to use M = {BF, G(N), Tmn} to reveal and quantify cyclicity for layered

objects when layer formation is not associated with a moment of time, #.

The present paper continues our previous work (Smolyar et al., 2016). The goals of the paper are
two-fold: 1) develop a method for quantifying the structural characteristics of layered patterns
and 2) examine the applicability of DStr and the empirical model M = {BF, G(N), Tm .} for
analyzing layered patterns of various categories. To reach these goals, we

e review layered patterns appearing in the realms of medicine, forensics, geology, botany,
zoology, atmospheric science, and materials science in order to justify that similarities in the
structural anisotropy of layers can be described by M = { BF, G(N), Tmn};

¢ introduce a structural characteristic of layered patterns called “layers structural disorder”
(DStr) and propose a fully automated method for its calculation. DStr serves as a measure of
deviation from an isotropic prototype in patterns with anisotropic layered structure;

e illustrate that DStr is a universal characteristic applicable to any 2-D layered pattern,
irrespective of nature and size, and could be used as a local and global defining
characteristic of a layered pattern;

e illustrate the possibility of using an empirical model of layered patterns, M = { BF, G(N),
TwmN}, to quantify the variability of layer thickness across 2-D planes of images of objects of
various categories.

Various examples underline the applicability of DStr and M = {BF, G(N), Tm~} for quantifying
the structural characteristics of various categories of living and non-living layered systems. We
also give suggestions for further experiments that have the potential to help us better understand
environmental influences on pattern formation. It is necessary to point out that using DStr and M
= {BF, G(N), TmN} to gain insight into any particular layered system is outside of the scope of

the present work.

In different publications, layers may be called growth lines, growth layers, circuli, bands, growth
increments, lamellae, ripples, or ridges, depending on the object of study. The present work uses

these terms synonymously.
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2. Method

This section explains DStr and describes two structural extremes of anisotropic 2-D layered

systems: minimal disorder (DStr = 0) and maximal disorder (DStr = 1).

2.1. Basic concept

A precise definition of anisotropy/isotropy depends on the object of study. Our definition of
isotropic and anisotropic layered patterns comes from the study of growth increments in fish
scales. Growth rates of fish scales vary in different directions, resulting in numerous breaks and
confluences in growth layers, which are the source of anisotropy in fish scale growth layers
because more than one possibility exists for describing layer structure across a 2-D plane (i.e.,
across N transects). In other words, the structure of layers is a function of the state of gates (Fig.
3B-D). Therefore, characteristics of anisotropy in a layered pattern are 1) the possibility of more
than one version of layer structure and ii) different lengths of layers, where length is defined as
the number of transects crossing the layer. In an isotropic image, each layer is crossed all N
transects (i.e., layers have no breaks and confluences), and only one possibility exists to describe
the structure of each layer. Objects with isotropic layered structure are relatively rare. Hence, a
general definition of anisotropy implies different properties in various different directions, and
anisotropy in a layered system implies different properties in the directions of layers formation

only.

2-D layered patterns consist of both isotropic (IC) and anisotropic (AC) components. We
therefore define the DStr of a 2-D layered pattern as the measure of a pattern’s deviation from
isotropy. Because the N-partite graph, G(N), represents the structure of a layered pattern, AC and

IC could be understood in terms of edges and vertices in G(N).

G(N) consists of a sequence of bi-partite graphs, G(R1,R2), ... G(Rj,Rj+1), ... G(RN-1,RN), Where
G(Rj,Rj+1) is a bi-partite graph that describes the structure of a layered pattern situated between
transects Rj and Rj+1 (Fig. 3A). An isotropic layer here would imply that vertex a€R; connects
only with vertex b€R;:+1 and bERj+1 connects only with a€R;. Edge ab in G(R;,R;+1) is therefore
an isotropic edge. TotalEdges denotes the total number of edges in G(Rj,Rj+1). The number of

anisotropic edges in G(Rj,Rj+1) 1s equal to TotalEdges minus the number of isotropic edges.

7
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Disorder (DGrp (R;,Rj+1)) of bi-partite graph G(R;,Rj+1):

DGrp(Rj,Rj+1) = anisotropic edges/ TotalEdges.
Disorder of N-partite graph G(N):
(1) DGrp(R1,RN) = 1/(N—1)*Z DGrp(Rj,Rj+1), j =1, N.

Two questions follow from equation (1).

Question #1. From equation (1), it transpires that DGrp(R1,Rx) depends on sampling density
(i.e., the number of transects used to calculate DGrp(R1,Rn)). How many transects should be
used to quantify DGrp(R1,Rn), which has not yet been technically defined? Section 2.2 answers

this question.

Question #2. Following equation (1), DGrp(R1,Rn) varies from O to 1. If DGrp(R1,Rn) = 0, then
the layered pattern is entirely isotropic; such layered images are easily visualized (Fig. 24). But
what do entirely anisotropic patterns (that is, DGgr(Ri,Rn) = 1) look like? Section 2.3 tackles

this issue.

2.2. Sampling density

Because the AC of a layered pattern are unevenly distributed in 2-D space, we examine multiple
versions of sampling density to determine how many transects are necessary to quantify DStr.
We plot the function y = f(x) (i.e., DStr = f(number of transects)), which describes dynamic
changes in DStr when the number of transects tends to the maximum possible number. The area

bounded by y = f(x) and the y-axis is the measure of DStr.

The choice of how many transects, Ry, ..., Rj, ..., Rn, to use to develop the empirical model M =
(BF, G(N), Tm.n) plays an essential role in analyzing the structure of anisotropic layered patterns.
Consider the proposed approach for constructing sets of transects used to describe model

components BF, G(N), and Tm~ and calculate DStr.

The general principle in choosing the number of transects is based on the fact that we do not

know a priori how many transects will best describe the particular layered pattern within the

8
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frame of finding a solution to the specific problem. In these circumstances, our choice is to
examine as many different versions of transect sets. In the present work, all transects are straight

lines, and the distance between two adjacent transects remains constant across all transects.

Figure 4 illustrates the procedure for constructing y = f(x) and calculating DStr. Fig. 4A depicts a
layered pattern with structural anisotropy and a graph constructed for transects A, B, and C;
Figure 4B depicts a graph for four transects. The initial layered pattern is presented as a raster
graphic; thus, the size of the layered pattern is measured in terms of pixels. The minimum
distance between two adjacent transects is 1 pixel. If the thickness of a transect is equal to 1
pixel, then the maximal number of transects is Nmax = pattern width/2 (if the pattern width is
divisible by 2), and Nmax = (pattern width+1)/2 otherwise. The layered pattern in Fig. 4 has a
maximum of 103 transects. We calculate DGrp for N=3,4, 5, ..., 103, or 100 versions of
transect sets (Fig. 4C) to plot y = f(x) and normalize the number of transects in order to present
the results of the calculation in scale [0,1]; Ni(normalized) = Ni/Nmax (Fig. 4D). By calculating
DGrp for transect Set #1 = (R1, Rz, R3), Set #2 = (R1, Rz, R3, R4), ..., Set #100 = (R, Ro, ...,
R103), we describe the variability of DStr across all possible transect versions. In this case, y =

f(x) contains as much structural detail as possible for the layered pattern under study.

We refer to the number of transect sets used to plot y = f(x) and calculate DStr as “sampling
density.” Sampling density is “highest” if all possible versions of transect sets are used to
construct y = f(x) and calculate DStr (Fig. 4D). Sampling density could be described as
“medium” or “low” depending on the number of transect sets used to construct y = f(x). Fig. 22B

illustrates how high, medium, and low sampling density affect the shape of y = f(x).

The coefficient of determination, R? (Draper and Smith, 1998), ranges from O to 1 and is used to
estimate how well the partial-rational function y = mx¥ replicates y = f(x). fR*=1, then y =
mx* is the approximation of y = f(x) with 0 error. We choose function y = mx™ to replicate y =
f(x) for two reasons. First, it contains two numeric coefficients, m and k, so only two numeric
values serve as global structural characteristics of the entire 2-D layered pattern. Second, for

many-layered patterns, R?>0.93 for y = mx’k,
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We use Microsoft Excel 2007 to calculate parameters m and k for y = mx™* and R? for y = mx .

Because R?=0.9962, y = 0.0228x %% (Fig. 4D), thus equation (2) can be used to calculate DStr:
) DStr = [ f(x)dx.
For the pattern in Fig. 4D, DStr = 0.08346.

2.3. Maximal structural disorder of layered patterns (DStr = 1)

Consider the appearance of a layered pattern with DStr = 1 (i.e., the layered pattern’s has no IC):
Each vertex situated along transect R; connects with all vertices situated along Rj1; thus, the bi-
partite graph G(R;, Rj+1) is complete. If the layered image consists of complete bi-partite graph
sequences for all possible numbers of transects, then DStr = 1. It should be stressed that we do
not use isolated vertices (i.e., those that are not connected to other vertices) in calculating DStr,
because they do not form isotropic or anisotropic edges. One possible example of a pattern in

which DStr approaches maximal structural disorder is stars in the night sky (Fig. 11A, B).

3. Results

We use images of living and non-living systems to justify applying the proposed method to
quantify structural characteristics of a broad range of patterns. Section 3.1 presents results of
calculating DStr, Section 3.2 presents the variability of layer size across a 2-D plane, and Section
3.3 presents experiments illustrating the sensitivity of these methods to detecting minor changes

in layered structures.

3.1. Structural disorder of layered patterns

The algorithm for calculating DStr consists of the following steps:

1. The original layered image (in grayscale raster format) is converted into M = (BF, G(N),
TwmN) using the technology described in Smolyar, 2014 and Smolyar et al. (2016).

2. Transects Ry, ..., Rj, ..., R are plotted and DGrp(R;,Rj+1) is calculated (equation 1).

3. Step 2 is repeated P times, resulting in DGrp(1,N1), DGrp(1,N>), ..., DGrp(1,Np).

4, The function y = f(x) is constructed and R? is calculated.

5. DStr for the entire sampling area is calculated (equation 2).

We consider DStr for layered images in seven categories: geology, atmosphere, materials,

medicine, plants, animals, and forensics.
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Geology (Figures 5—8). Sand dunes on the Martian surface form a record of the role of wind in

climatic regime (Gardin et al., 2011; Diniega et al., 2017; Lapotre et al., 2016). Studying the
structural characteristics of dunes and their changes over time is necessary to better understand
Martian climatic systems and how they impact robotic and human activity on Mars. Figure 5
shows the structural similarities and differences among four parts of the sampling area.
Parameter DStr for parts A — D indicates that part D has the most complicated layered structure,

1.e deviation from isotropic layered object, since DStr(D)> DStr(B)> DStr(A)> DStr(C).

Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of
the sampling area a is 10 times less than that of nearby area b, which exhibits structural anomaly
with respect to area a. Figure 6B depicts the structural anomaly of sand ripples. The red sampling
area exhibits structural anomaly with respect to nearby orange and blue areas. The DStr of the

orange and blue areas is 2.3 times less than that of the red area.

Figure 7 shows a vertical section of underground soil structure, obtained by Ground Penetrating
Radar, that demonstrates anisotropic layers that can be used to identify pipes, archeological
artifacts, or soil composition in the study area (Robinson et al., 2013). The sampling area of
Figure 7 is divided into four parts, and DStr is calculated for each part. Part D has the most
complicated structure since DStr(D)> DStr(B)> DStr(A)> DStr(C).

Figure 8 shows significant differences between structures of sand ripples formed in the tidal zone
at Inch on the Dingle Peninsula in Ireland. Knowledge of the dynamics and morphology of dunes
and ripples is useful for managing beach ecosystems (Sloss et al., 2012; Passchier and Kleinhans,

2005).

Atmosphere (Figures 9—11). Altocumulus clouds (Fig. 9) and cloud-to-ground lightning (Fig. 10)

are examples of atmospheric layered patterns. The morphology of these phenomena can be
described in the same quantitative terms used for geologic and biological systems, namely, as a
deviation from a layered object with isotropic structure. The structure of lightning could be

described with different levels of detail. A satellite image of the United States at night and
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another from the Hubble Space telescope (Fig. 11) illustrate what the chart for “DStr vs. number

of transects” looks like in images tending toward complete disorder.

Materials (Figure 12). Materials science is an attractive area for the application of M = {BF,

G(N), Tmn} because the macro- and nanostructures of various materials exhibit layered
anisotropic patterns (Fig. 12) that define their properties. Thus, DStr could serve as a local and
global morphological parameter for describing material microstructures. DStr could also be used
to link structures and properties, an essential step in developing materials with desired
combinations of characteristics. Figure 12A exhibits images of a eutectic alloy, ion-induced

ripples (Lian et al., 2006), and perlite and their corresponding DStr parameters.
The morphology of the surface of black diamonds is an essential element in developing solar
energy conversion systems (Calvani et al., 2016). Figure 12B shows the dynamic of DStr as a

function of different treatments of the black diamond surface.

Medicine (Figures 13—15). Lamella bones (Fig. 13), the human aorta (Fig. 14), and an eye

angiogram (Fig. 15) are medical examples of layered patterns with structural anisotropy. Because
medical treatments affect their structures, estimating the influence of treatment necessitates
comparing the morphology of layered patterns before and after treatment (Novotny et al., 2017).
Structural disorder in the sampling area of bone B is much simpler than that in bone A (Fig. 13).
Sampling area B is uniform, whereas sampling area A includes a combination of bone and osteon

lamellar systems.

The aorta lamellar pattern in Figure 14 has uniform anisotropic structure since parts A, B, C, and
D have similar values of DStr. It is possible to consider an eye angiogram as a layered pattern
with structural anisotropy (Fig. 15). The structure of an eye angiogram with medium detail is
more complicated than that with low detail. DStr allows us to quantitatively describe this

difference.

Plants (Figures 16—17). Flower surfaces can be super hydrophobic and self-cleaning, features

that make their morphology an important object of biomimetic study (Barthlott et al., 2017).
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Figure 16 shows the layered microstructure of the surface of a Rose petal divided into four
sampling areas. Visual inspection of the sampling areas allows us to note that area B has the

most complicated layer structure. Values of DStr for A, B, C, and D verify this observation.

Figure 17 depicts juvenile and adult leaves of an aquatic Madagascar Lace plant, which is an
excellent model for studying programmed cell death in plants (Gunawardena et al., 2004;
Dauphinee et al., 2017). We use the juvenile and adult vein systems in Madagascar Lace leaves
to compare their morphology. The sampling area of the juvenile leaf is completely isotropic,
DStr(lace juvenile leaf) = 0 (Fig. 17), whereas the sampling area of the adult leaf has a high
degree of disorder, which is obvious from its pattern; DStr(lace adult leaf) = 0.7116 (Fig. 17).

Animals (Figures 18-21). The configuration of stripes on fish skin (Fig. 18) is a typical example

of an anisotropic layered pattern. The formation of patterns on the surfaces of fish, shells, and
mammals has been explained by a reaction—diffusion system (Turing, 1952; Meinhardt, 1989;
Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D imply that
DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure
and area D has the simplest structure among four sampling areas. This result inspires two
questions: 1) Is the DStr of the right side of the fish similar to the DStr of the left side? 2) Could
the morphology of stripes serve as a record of internal and external events in the life history of a

fish? Model M = {BF, G(N), Tm~} could be one tool to help to answer these questions.

The micro-ornamentation of snakes is broadly studied in biomimetic research due to unique
combinations of surface features (Arnold, 2002; Gower, 2003; Filippov and Gorb, 2016). Figure
19 shows hierarchical layered microstructures in snake skin. Although the entire area of snake
skin shown in Figure 19 has complicated morphology, sampling areas A and B have DStr close

to 1sotropy because the DStr of A and B are very low: DStr(A) = 0.042 and DStr(B) = 0.063.

Plumage patterns in banded pitta, kingfisher, and owl (Fig. 20) offer examples of layered
systems in bird plumage. DStr shows significant diversity in the structure of these layered
systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires

us to ask whether parameters of layered structures might serve as phenotypic characteristics
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(Gluckman and Mundy, 2016). Model M = {BF, G(N), Tm.n} could be used to test this
hypothesis (i.e., examine the structural characteristics of birds’ plumage patterns with respect to

state of the environment).

Photonic systems of biological objects generate interest among scientists and engineers across
various disciplines due to their unique ability to manipulate color using micro-structured surfaces
(Starkey and Vukusic, 2013; Parker, 2000). Many photonic surfaces in flowers and animals
exhibit lamellar structures (Vukusic and Sambles, 2003), such as the scales arranged in
anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We use DStr
to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results
of DStr calculations for six sampling areas. The left and right wings of Morpho butterfly have
similar structural characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a
characteristic of blue color nuances in Morpho butterflies? Do male and female Morpho
butterflies have similar structural characteristic DStr? How do local/global structural anomalies
in butterfly wings with respect to DStr affect butterfly color? Model M = { BF, G(N), Tm~}

could be used to answer these questions.

Forensic (Figures 22-23). The layered microstructures of human hair are much more

complicated than those of some animals (Fig. 22A), which is confirmed by DStr(human),
DStr(deer), DStr(mouse), and the corresponding charts for “structural disorder of hair =
f(number of transects).” Figure 22B shows that high sampling density accounts for more

structural details than low sampling density.

As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive
structural characteristics that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) =
0.1978. Distinctions between DStr among different categories of fingerprints substantially
depend on the number of transects used to calculate DStr (Section 2.2). To define the number of
transects that allow maximal differences among DStr in the four categories of fingerprints, we
plot the chart (Fig. 23B) as DStr(central pocket loop) — DStr(plain arch) = f(number of
transects). Nine transects allow the maximal possible differences between two categories of

fingerprints; that is, DStr(central pocket loop) — DStr(plain arch) = 0.253, which is 2.6 times
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more than the DStr(central pocket loop) and DStr(plain arch) comparison if equation (2) is used
to calculate DStr. Sampling density and number of transects could complement DStr in forensic

identification.

Excel file (Supplemental) presented raw data for calculation DStr and DStr = f(transect number).

3.2. Cyclic variability of layer size across 2-D plane

The algorithm for constructing chart for “layer thickness vs. layer number is identical to that
used in Smolyar et al. (2016). The signal-to-noise ratio for charts (Figures 24-29) is equal to 6.
The experiments described in this section examine the distribution of layer thickness across a
sampling area in order to estimate whether average layer thickness accurately describes the

morphological characteristics of 2-D layered systems.

Geology (Figures 24-25). Dune fields are an example of the layered patterns that exist

throughout nature. Dune spacing (i.e., layer thickness) is a basic morphological characteristic of
dune systems (Lancaster, 2009). Figures 24 and 25 show layered fragments of the surface of
Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to describe
the variability of layer thickness across the 2-D sampling area with high accuracy. Several
transects are used to calculate average thickness of each layer. Charts of “layer thickness vs.
layer number” show cyclic trends in the variability of layer thickness across the sampling area
(Fig. 24 and 25). Similar cyclic trends in anisotropic structures are also observed on Mars and

Earth (Smolyar et al., 2016).

Materials (Figure 26). Lamellar/rippled/layered patterns have been found in metals, alloys,

insulators, semiconductors, and many others materials (Deville, 2018; Zuo et al., 2016; Moya,
1995). Lamellar thickness is a micromorphological characteristic that plays a central role in the
relationship between a material’s microstructure and its macro properties because “‘the unique
properties of natural layered materials and nanocomposites are achieved through a fine control of
the layer thickness” (Deville et al., 2007, p. 970). Figure 26A depicts an image of layered Al-Si
composite with anisotropic structure. The chart of “layer thickness vs. layer number” shows

cyclicity in the variability of layer thickness across the sampling area (Fig. 26B), which is
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divided into parts A, B, C, and D (Fig. 26C) according to the uniform distribution of layer
thickness in each part (Fig. 26D). It follows that the chart of “layer thickness vs. layer number”
provides a more detailed description of a layered pattern’s morphological characteristic than

average layer thickness.

Medicine (Figures 27). Figure 27 shows a Pacinian (lamellar) corpuscle (PC), a sensory receptor

in skin that is sensitive to contact and vibration. The anisotropic lamellar structure of PCs plays
an essential role in the function of the PC system; lamellar thickness and number of lamellae are
used to examine the link between the PC’s material and morphological characteristics and its
response to vibration (Quindlen et al., 2017). We use 42 transects to plot the chart of “layer
thickness vs. layer number” (Fig. 27), which clearly demonstrates the cyclic nature of variability

in lamellar thickness across the sampling area.

Animals (Figures 28-29). The chart of “layer thickness vs. layer number” exhibits non-random

trends in the variability of layer thickness across bird feathers (Fig. 28). The chart and DStr could
potentially serve as morphological characteristics of birds with application to the study of their
life cycles. Striped patterns are often used to distinguish bird species from one another. In
particular, shrikes and their relatives are recognizable to birders by the peculiar differences in the
thickness and layering of their striped patterns, many of which are simply black and white.
Furthermore, there are often marked differences in the morphological features of feathers
between males and females of the same species, a dimorphism that is recognized both by the

animals themselves and by human observers (Gluckman 2014).

The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of
their superior mechanical properties but also as a source of information about spiders’
construction behaviors (Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb
web represents a layered system with structural anisotropy: “One of the most relevant structural
traits of orb webs is their mesh width” (Zschokke and Nakata, 2015, p. 661). Mesh width (i.e.,
layer thickness) is used to understand the construction features of web systems and relate them to
spiders’ behavior. For instance, Zschokke and Nakata (2015, p. 661) point out that “a closer look

at the orb webs reveals that mesh widths are not the same throughout the entire web.” Charts
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describing the variability of mesh width across the sampling area (Fig. 29) confirm this statement
and indicate cyclicity in the variability of mesh width across the sampling area. Thus, M = { BF,
G(N), Tmn} could be used to generate a new set of structural characteristics describing the

anisotropy of an orb web and its segments.

3.3. Sensitivity of DStr to minor structural changes

Next, we examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A),
fish scale (Fig. 30B), and an eye angiogram (Fig. 30C) as test objects. Let us denote
characteristics of images before and after structural changes by DStr(before changes) and
DStr(after changes). We describe the link between DStr(before changes) and DStr(after changes)
and structural changes in images in quantitative terms using the following procedure: First, we
describe the difference between DStr(before changes) and DStr(after changes) on a relative scale
(%). All changes in layer structure are marked in red. We denote the difference as Parameter-1.
Second, we describe (in %) the difference (in pixels) between the images before and after
changes. To do so, we calculate the number of black pixels in an image before changes (total
pixels before changes) and the total number of pixels that change color (white to black or vice
versa) as a result of structural changes (total pixel change). The ratio (%) of “total pixel
change/total pixels before changes” allows us to calculate the magnitude of structural changes in
an image. This ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2
allows us to estimate the sensitivity of DStr to structural changes in the image. Results of
calculating Parameter-1 and Parameter-2 are

Parameter-1 Parameter-2

Fingerprint  0.55% 0.072%

Fish scale  3.80% 0.150%

Eye angiogram  0.32% 0.077%
Average 1.56% 0.10%

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1%
structural change in layers results in a 15.6% change in DStr. This result provides evidence that
minor changes in layer structure are accompanied by substantially greater changes in DStr
values. This feature of M = {BF, G(N), Tm~} could be positive or negative, as required by

application. For instance, if it is necessary to identify a fingerprint image of poor quality with
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many gaps, then the sensitivity of DStr and y = f(x) to structural changes is a barrier. If the image
is of a good quality and it is necessary to track minor changes in structure over time (Silvestro et
al., 2010) or find structural differences between patterns of spider webs (Eberhard, 2014;
Hesselberg, 2013; Blackledge and Zevenbergen, 2006) or aorta (Avolio et al., 1998; Zou and
Zhang, 2009; Taghizadeh and Tafazzoli-Shadpour, 2017; Mattson and Zhang, 2017), for

instance, then the sensitivity of M = { BF, G(N), Tmn} to structural changes is an advantage.

4. Discussion

4.1. Method summary

Model M = {BF, G(N), Tmn} is an example of an empirical approach to studying anisotropic
layered systems. Analyzing large datasets requires this procedure to be formalized. The
developed method allows us to fully automate the conversion of a layered image into M = { BF,
G(N), Tmn} and to calculate the morphological characteristics of layered patterns (Smolyar,
2014; Smolyar et.al., 2016). The present work introduces the idea of structural disorder in
layered systems. The fundamental difference between DStr and other approaches to quantifying
structures (Adams et al., 2004) is that DStr measures the deviation of anisotropic layer structures
from isotropy. Also, it is usual practice to choose parameters for describing patterns based on the
specific characteristics of an object of study. DStr and charts of “layer thickness vs. layer
number” and “layer area vs. layer number” can be used globally as well as locally to describe the
morphological characteristics of any anisotropic layered pattern. This property of DStr and the
charts allows us to formulate new questions, suggest new testable hypotheses about pattern
formation, and identify links between properties and structures of study objects, extending areas

of applications for analyzing various anisotropic layered systems.

It is transparent that the transition from layered to non-layered patterns occurs continuously and
monotonously, which raises the question of whether it is possible to distinguish between layered
and non-layered images. Let us consider how we can use DStr to answer this question. DStr
could be defined in either of two ways: First, DStr is the area between y = 0 and the function y =
f(x) (Fig. 4D). In this case, DStr is the measure of deviation of an anisotropic pattern from
isotropy, denoted by DStr(deviation from isotropy). Second, DStr could be interpreted as the

deviation of an anisotropic pattern from a system with maximal disorder (i.e., a chaotic system),
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which is defined as the area between y = f(x) and y = 1, denoted DStr(deviation from chaos).
Thus, y = f(x) divides a 1x1 square into two areas (Fig. 4D): DStr(deviation from isotropy) and
DStr(deviation from chaos). Because the area of the square is equal to 1, thus
3) Deviation of anisotropic layer structure from maximal order +

Deviation of anisotropic layered structure from maximal disorder = 1,
where
maximal order = isotropy in layers structure,
maximal disorder = chaos in layers structure.
Using equation (3), it is possible to quantitatively describe a layered pattern in the following
manner: If DStr < 0.5, then the structure of a pattern is more layered then chaotic; if DStr > 0.5,
then the structure is more chaotic than layered. Therefore, DStr < 0.5 is the maximal possible
value for the characteristic of disorder in the structure of layered patterns. This is why a
threshold of 0.5 1s used to describe the difference between the structures of layered patterns in

percentages (Section 4.2).

Let us consider some of the limitations of the proposed method. Many limitations are as yet
unknown because the morphology of anisotropic layered patterns is a relatively new object of
study. Thus, we list the most obvious limitations that follow from the image analyses presented
in Section 3:

e Images of the Martian surface (Fig. 24) exhibit layered patterns as a result of processes
occurring in different space—time domains. The proposed method does not provide tools to
describe global structural parameters of this category of images.

e  Many images presented in Section 3 consist of lines with simple shapes, but the images of
the human aorta (Fig. 14) and Pacinian corpuscle (Fig. 27) have more complicated
configurations. The proposed method ignores the shape of layers.

e Itis necessary to quantify the spatial orientation of layers when developing new materials
(Deville, 2018) and setting up correspondence between the morphology of layered systems
and water temperature (Olson et al., 2012; Gilbert et al., 2017). The proposed method does
not provide tools to quantify the preferential orientation of layers.

e Model M = {BF, G(N), Tmn} does not account for the material properties of layers.
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e All the transect versions used to calculate DStr are plotted in one direction, which is
perpendicular (or quasi-perpendicular) to the layers.

. The problem of layered pattern normalization is outside the scope of this work.

4.2. Experimental results

We calculate DStr for images in seven categories: geology, atmosphere, materials, medicine,
forensic, plants, and animals (Fig. 31). The leaves of Madagascar Lace plants demonstrate the
highest level of structural diversion from fully isotropic layered pattern, with DStr = 0 to DStr =
0.7116. Landforms on Mars also demonstrate relatively high levels of structural diversion, from
isotropic (DStr = 0) to anisotropic (DStr = 0.303). Experiments with tidal ripples, alloys, hairs,
lightning, bones, eye angiograms, fingerprints, and bird plumage patterns illustrate the potential
for DStr to be used as a global structural characteristic of the entire sampling area of layered
patterns. Thus, it is reasonably safe to suggest that DStr is a universal characteristic that allows
us to compare the structure of various categories of 2-D layered patterns, irrespective of size and

origin.

If a sampling area can be divided into subareas, then DStr and the chart of “layer thickness vs.
layer number” could serve as local structural characteristics of layered patterns. Experiments
with Martian landforms (Fig. 5 and 6A), ground-penetrating radar sections (Fig. 7), fish skin
(Fig. 18), and the human aorta (Fig. 14) demonstrate that DStr is distributed unevenly across
sampling areas. Since DStr varies from 0 to <0.5 for layered patterns, it is possible to describe
changes in DStr as percentages, which is more convenient for interpreting and estimating the
degree of distinction between objects. For instance, segments C and D of the Martian landform
in Figure 5 have DStr(C) = 0.193 and DStr(D) = 0.303, respectively. The percentage difference
between DStr(C) and DStr(D) is

DStr(C) — DStr(D) = abs [(0.193 —0.303)/0.5] * 100% = 22%.
The 22% ditference between DStr(C) and DStr(D) could be interpreted as low, medium, or high
depending on the type of object under study and the problem statement.

Figure 6 shows an interesting example of uneven distribution of DStr across a Martian landform

(Fig. 6A) and sand ripples (Fig. 6B). There is a 33% difference in DStr between sampling areas

20

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019




635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

A and B (Fig. 6A), which is characterized by substation disruption in layer structure. There is a
55% difference in DStr between the red and blue/orange sampling areas (Fig. 6B). The
distinguishing features are obvious, and the differences in structure between areas A and B (Fig.
6A) and the red and blue/orange areas (Fig. 6B) are detectable with the naked eye. From a
general point of view, Figure 6 is an example of structural anomalies in an anisotropic layered
system. Such anomalies could exist in any category of object of study. For instance, structural
anomalies in metal microstructure could be interpreted as cracks. Procedures for detecting
structural anomalies in layered patterns could find applications in solving broad problems,

especially in medicine and materials science.

The pattern of the human aorta (Fig. 14) is an example of a layered pattern with very
complicated structural anisotropy that cannot be manually processed. Four segments—A, B, C,
and D—show similar but not identical DStr (Fig. 14). There is a 4% difference between DStr(A)
and DStr(D), which is probably close to the noise due to converting the initial color image to

black and white.

Another application of DStr is describing local structures in Morpho butterfly wings (Fig. 21A).
We assume that the left and right wings of flying objects have identical structures. In order to test
whether DStr is suitable to test this assumption, we divide the left and right wings into

symmetric segments (Fig. 21A). DStr are calculated and the symmetric segments are presented
in charts for “DStr vs. number of transects” (Fig. 21B). The DStr differences between the

symmetric segments do not exceed 2.8%, justifying our original assumption.

Fingerprints are another example of layered patterns. The structural characteristics of fingerprint
ridges—such as bifurcation, trifurcation, and ridge ending and crossing—as well as peculiarities
of their distribution across the 2-D plane are used for individual identification. Model M = {BF,
G(N), Tmn} allows us to account for tiny characteristics of the fingerprint image. Figure 23
illustrates the potential for using DStr to distinguish the structure of four basic categories of
fingerprint patterns. Also, via open/closed gates (Fig. 3B and C), it is possible to reveal
morphological characteristics of ridges that are most sensitive or robust to fingerprint

identification. In this way, it may be possible to decrease uncertainty in fingerprint recognition.
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Parameter DStr is the result of generalizing the sequence DGrp(N1), ..., DGrp(Nx), ...,
DGrp(Nmax), where Nk is the number of transects used to calculate DGrp(Nk) (equation 2).
Generalizing the sequence of DGrp(Ny), ..., DGrp(Ny), ..., DGrp(Nmax) makes the result of the
DStr calculation independent of the number of transects. In individual cases, DGrp(Nk) could
also be used to quantify the structural disorder of 2-D anisotropic layered patterns. We illustrate
this use of DGrp(Nk) with an example using the four categories of fingerprints depicted in Figure
23. The chart of “DStr vs. number of transects” (Fig. 23) makes it clear that structural differences
among the four categories of fingerprints are distributed unevenly along the axis “number of
transects.” This raises a question about how many transects, Nk, are necessary to maximize the
structural differences among fingerprints of different categories. The chart for “{DStr(Central
pocket loop) — DStr(Plain arch)} vs. number of transects” (Fig. 23B) demonstrates that using
nine transects maximizes the structural differences between central pocket loop and plain arch
fingerprint patterns. If a different number of transects is used to calculate DStr (equation 2), then
the structural distinction between these categories of fingerprints is

(0.198 — 0.102)/0.5*%100% = 19.2%.
If nine transects (i.e., a fixed number of transects) are used to calculate the structural distinction
between central pocket loop and plain arch patterns, the result is

0.25/0.5*100% = 50%.

Thus, applying nine transects increases the structural differences between central pocket loop

and plain arch more than 2.6 times.

Experiments with fingerprints (Fig. 23A) illustrate that the chart for “DStr vs. number of
transects,” which is highly accurate (R?>0.9), could be interpolated to a power function, y=mx’k.
Because DStr is sensitive to minor structural changes (Fig. 30A) and the four basic categories of
fingerprints have substantially different m and k parameters, y=mx¥ could serve as a unique
fingerprint identification number. Using m and k would be sufficient to find in a database those
fingerprints with identical m and k parameters or identify a relatively small set of fingerprints
with similar m and k values. Images in a large database could be sorted according to m and k

values in order to speed up fingerprint identification.
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The geometrical configuration of chart DStr = f(number of transects) could be used as a
morphological characteristic of layered patterns in addition to DStr and DStr for the fixed
number of transects. We demonstrate on an image of human hair (Fig. 22B) how the variability
of distance between transects (i.e., sampling density) could affect the shape of DStr = f(number
of transects). Figure 22B shows that shape of the chart for DStr = f(number of transects) for low
sampling density is much simpler than that of the chart for high sampling density. Thus, in
addition to DStr, the shape of DStr = f(number of transects) itself could serve as a morphological

characteristic of a 2-D layered pattern.

Complicated layered patterns in bird plumage (Fig. 20) are formed by multiple individual
feathers that have, individually, relatively simple patterns. Thus, it is not quite clear whether
layer thickness is distributed chaotically across the body or demonstrates trends similar to other
layered systems (Fig. 24-27). We calculate DStr (Fig. 20) and the chart for “layer thickness vs.
layer number” (Fig. 28) in order to analyze the morphology of these layers. Because DStr(Pitta,
Owl) < 0.5, we conclude that the feather patterns form layers in these species. Charts for “layer
thickness vs. layer number” (Fig. 28) exhibit trends in variability of layer thickness across pitta
and owl bodies. These results justify the potential applicability of DStr and the chart for “layer
thickness vs. layer number” for describing morphological characteristics of bird plumage. In this
context, it should be noted that the distinction between layer thickness and layer number is also
used by birds themselves to distinguish among different species, even in a generalized way.
Sparrow hawks, which are among the most fearsome predators of small birds, particularly
songbirds, have a particular pattern of feathers on the breast plumage. Sparrow hawks are
mobbed by small birds all over the world, and the feather patterns alone suffice to entice small

birds to engage in the mobbing behavior.

Cuckoos, on the other hand, are not predatory birds but throw the eggs of other birds out of their
nests, replacing them with their own egg, which is then raised by the host bird. Cuckoos are also
generally mobbed by small birds, as well as physically attacked whenever they approach (Davies
and Welbergen, 2008). Most cuckoos have evolved layered feather patterns on their breast
plumage that mimic those of sparrow hawks, helping them to mislead songbirds into thinking a

dangerous predator (sparrow hawk) is in front of them, not a benign (but annoying) cuckoo
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(Welbergen and Davies, 2011). This pattern mimicry has proven somewhat effective (Trnka and
Prokop, 2012). However, it is important to note that some small bird species have learned to
distinguish the subtle differences in layered patterns between predators and their cuckoo mimics

and now differentially attack these two groups of enemies (Welbergen and Davies, 2008).

The structure and size of lamellar bone form a record of the state of internal and external factors
responsible for lamellar formation over an organism’s life history. The cyclicity of lamellae
thickness (Bromage et.al., 2009) over the period of formation is a cumulative effect of many
cyclic factors. Many hard tissues form incremental patterns at varying time scales. For instance,
mammalian enamel and dentine develop according to a circadian rhythm, creating a pattern
visible as daily microanatomical growth lines. These tissues, as well as those of bone, have also
been observed in some mammals to contain longer-period developmental rhythms that scale with
body mass (Bromage et al., 2012). These hard tissue rhythms are of substantial interest in
mammal life history research, providing information about the duration and amplitude of
periodic phenomena as well as about other natural history events occurring during bone and

tooth formation, which for some species could not be obtained by other means.

In bone in particular, a specific tissue called lamellar bone may be found in many, if not most,
mammals and many other vertebrates. Lamellar bone is profoundly incremental and thus of
particular concern here because each layer, while representing a defined period of formation, can
vary in width, the layers reflecting growth rate. The significance of such layers for biological
research is that changes in their widths potentially reflect internal and external events in an
organism’s life history. It is also significant that this record is often preserved after an organism’s
death, either as resilient hard tissue or as a fossil. Incremental patterns are a primary source of
information about the duration and amplitude of periodic phenomena as well as about other
natural history events occurring during formation: Information about cyclicity, interactions
between environmental and/or physiological cycles, and perturbations to the responding system

are all inherently contained in these incremental patterns.

For instance, in a child growing during a period of drought, bone lamellae have been observed to

diminish from approximately 6 um to 4 um in width over the 8- or 9-day period over which each
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lamella is formed (Bromage et al., 2011). Seasonal rhythms, perhaps dependent on food

availability, are also apparent in such studies of lamellar bone growth-rate variability.

Substantial areas of the Martian surface are covered by dunes and ripples formed by wind-blown
sand (Kok, 2010). Images of Martian landforms such as Transverse Aeolian Ridges, sand dunes,
and ripples are examples of 2-D anisotropic layered systems. Figures 24 and 25 show examples
of isotropic Martian landforms. Charts of “layer thickness vs. layer number” for these landforms
exhibit cyclicity in the variability of layer thickness across a 2-D plane. By averaging layer
thickness across the entire sampling area, we lose some important morphological characteristics.

A similar statement can be made for materials with layered microstructures.

Pearlite steel (Liu et al., 2016), alloy (Ivanchenko et al., 2008), ceramic (Deville, 2008), and thin
films (Alberius et al., 2002) exhibit lamellar microstructures with various levels of anisotropy
(i.e., numbers of bifurcations and breaks in the lamellar structure). The distribution of
bifurcations and breaks across a 2-D sampling area plays an important role in quantifying the
micromorphological features of lamellar systems (Ardel, 1999; Deville, 2018; Lia et al., 2017).
Average lamellar thickness is one of the key parameters broadly used to characterize lamellar
structure. Charts for “layer thickness vs. layer number” demonstrate cyclic variability of lamellar
thickness across the 2-D plane. In this case, average lamellar thickness is not a precise
morphological characteristic. For instance, the chart of “layer thickness vs. layer number” (Fig.
26) shows that the lamellar pattern has four blocks—A, B, C, and D—with distinctive lamellar
thicknesses. This must be considered when searching for links between material properties and

microstructures.

The variable cyclicity of layer thickness across the sampling area of an anisotropic layered
system is to be expected because “the whole pattern [of nature] is of cycles within cycles within
cycles” (Medawar and Medawar, 1983, p. 73). Model M = {BF, G(N), Tm,n} provides tools to

reveal cyclicity in layered anisotropic environments.
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4.3. Possible experimental tests

Many factors that contribute to the formation of layered patterns in living systems have cyclic
natures. For instance, layers in growth systems are formed in direct response to cyclic
environmental factors such as temperature (Goodwin et al., 2001; Izzo and Zydlewski, 2017),
tides (Poulain et al., 2011), and light—dark rhythms (Scrutton, 1978; Smith, 2006). Cyclic
planetary dynamics can also affect the formation of growth increments (Clark II, 1974; Pannella
and MacClintock, 1968; Kahn and Pompea, 1978; Vanyo and Awramic, 1985). On the surfaces
of Earth and Mars, winds are mainly responsible for the formation of dunes and ripples (Lapotre
et al., 2016; Kok et al., 2012). It is reasonable to suggest that the cyclicity of layer thickness
stems from the cyclicity of factors controlling layer formation, but this explanation is not always
possible. Layered patterns are the cumulative result of many factors occurring in different space—

time domains, not all of which are cyclic, and not all factors are known.

Notwithstanding the fact that each object of study has unique properties, the layers of various
systems are all formed in the gravity fields of the massive rotating bodies of Earth, Mars, and
other planets. Thus, it would be reasonable to explore the influence of zero-gravity (i.e., extreme
external factors on layer formation). Let us consider some possible additional experiments that
would help us better understand the mechanisms of layer formation. A promising approach
would be to examine the influence of extreme external factors—such as zero-gravity, extreme
temperature, radioactive contamination, low oxygen, and absence of light—on layer
morphology. Empirical model M = {BF, G(N), Tmn} is a suitable tool for such experiments
since it 1s sensitive to minor structural changes (Fig. 30) and allows us to detect anomalies in

layered systems.

Experiment #1: Examine the influence of zero-gravity on the formation of layered systems.
Aquatic habitats for studying the lifecycle of freshwater fish are available on the International
Space Station and could be used to investigate the influence of zero-gravity on scale formation in
medaka fish (Chatani et al., 2015) and zebrafish (Aceto et al., 2015). Lamella bones of iguana
(Smolyar et al., 2016), Madagascar Lace leaves (Fig. 17), and flower surfaces (Fig. 16) are other
potential candidates for exploring the formation of anisotropic layers under zero-gravity

conditions.
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Experiment #2: Examine the influence of extreme temperatures—including drought, high/low air
temperature, and high/low water temperature—on the formation of anisotropic growth incre-
ments. Extreme temperatures are a major environmental stress that affect the growth of terrestrial
and marine living systems. For instance, “high temperature stress is a major environmental stress
that limits plant growth, metabolism, and productivity worldwide. Plant growth and development
involve numerous biochemical reactions that are sensitive to temperature” (Hasanuzzaman et al.,
2013, p. 9643). Various marine and terrestrial layered living systems could be used to examine

the influence of extreme temperature on the formation of layered systems.

Experiment #3: Examine the influence of radioactive contamination on layer formation. The
areas around Chernobyl (Ukraine) and Fukushima (Japan) are natural laboratories for studying
the influence of radioactive contamination on growth increments of various layered systems,
including flower surfaces, spider webs, and butterfly wings. For instance, there is strong
evidence that water contamination affects fish scale structures (Hidayati et al., 2013, Sultana et

al., 2017).

Experiment #4: Examine the influence of the absence of light on the formation of fish scale
growth increments. Sweetwater, Tennessee, where trout live without light in a cave lake, would
be an ideal natural laboratory. Other candidates for experiments could be the scales of various
categories of salt- and freshwater fish from aquariums permanently covered with light-tight

material.

Experiment #5: Examine the influence of oxygen levels on the morphology of elastic lamellae in
humans and animals. Since aorta distribute oxygenated blood to all parts of the body, it is
possible to assume that environmental oxygen levels might affect aorta morphology (Fig. 14).
One possible avenue for experimentation could be the aorta of human and animal populations
subjected for many generations to high-altitude, low-oxygen conditions, such as those in the
high-altitude Tibetan highlands (Simonson et al., 2010; He et al., 2016). Model M = {BF, G(N),
TwmN} could be used to compare the morphology of aortas formed in Tibet to those formed in

sea-level oxygen environments.
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4.4. Areas of application

Macro-, micro-, and nanostructures play a vital role in understanding pattern formation and
relationships between processes and structures (Aizenberg and Fratzl, 2009). Central problems in
studying layered objects—particularly in medicine (Novotny et al., 2017), materials science
(Deville, 2018), and biomimetic research (Meyers et al., 2008; Gilbert et al., 2017)—are
quantitatively describing the relationship between structure and properties, tracking structural
changes over a period of time, and revealing structural anomalies. Experiments with various
categories of layered systems justify the possibility of using M = { BF, G(N), Tm~} to help to

solve these problems.

Detecting structural anomalies in layered systems is necessary when solving a broad spectrum of
medical and engineering problems. For instance, cracks are a typical example of anomalies in the
lamellar structures of metals and alloys; anomalies in growth increments in tree rings allow us to
reconstruct extreme environmental phenomena. Experiments with animal footprints on sand
ripples and the layered surface of Mars (Fig. 6) provide evidence on the applicability of M =

{BF, G(N), Tmn} to reveal structural anomalies in layered systems.

Many layered objects—such as corals, fish scales and bivalve shells—are formed in the world
ocean. Morphological characteristics of growth increments in these objects are a function of
seawater parameters and changes in the space—time domain. Model M = { BF, G(N), Tm~} could
be used to analyze growth increments of shells in a seawater environment. Our interest in the
link between growth increments and the marine environment is based on available marine data
products, new instrumental technology measuring the chemical composition of seawater, and
recently published discoveries of relationships between the morphology of shell growth

increments and seawater temperature (Gilbert et al., 2017).

Marine data products. The World Ocean Database (WOD) and International Comprehensive

Ocean-Atmosphere Data Sets (ICOADS) are the world’s largest freely available marine
databases. WOD comprise 16+ million globally distributed profiles, beginning with instrumental

observations in 1772 through the present (Levitus, 2012; Boyer et al., 2014). A profile is the set
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of measurements of physical, hydrochemical, and plankton characteristics of seawaters on the

surface and at various depths (Matishov et al., 2000).

ICOADS is an archive of global near-surface marine data, with over 456 million individual
records since 1662 (Slutz et al. 1985; Smith and Reynolds, 2004; Wilkinson et al., 2011;
Woodruff et al. 2011; Freeman et al., 2017). Each record is a set of sea-surface temperature
(SST) and marine meteorological parameters such as wind speed and direction, humidity, sea-
level pressure, cloud cover, sea state, sea ice, and descriptive information such as type and
amount of cloud cover at different levels in the atmosphere. ICOADS and WOD are used to
study local (Reagan et al., 2018; Seidov et al., 2017; Matishov et al., 2014: Kaplan et al., 1997;
Ansell et al., 2006; Marullo et al., 2011) and global (Casey and Cornillon, 2001; Rayner et al.,
2003; Garcia et al., 2005; Levitus et al., 2005; Ishii et al., 2005) climatic characteristics of the
world ocean and its dynamics. Time series of sea characteristics at various depths, SST, and
near-surface meteorology are used to study marine climate dynamics. Time series data are
essential to study how “global climate change threatens global biodiversity, ecosystem function
and human well-being” (Williams et al., 2008, p. 2621). WOD and ICOADS allow us to plot
time series of temperature over 120+ years; WOD additionally includes time series of salinity for

80+ years.

Seawater temperature as a function of chemical composition of growth increments. Using WOD

and readily available databases of layered objects, M = {BF, G(N), Tm N} could be used to study
growth patterns of marine life, such as corals and mollusks, which are used as proxies for
environmental state (Sadler et al., 2014; Wanamaker et al., 2011; Reynolds et al., 2017, Carroll
et al., 2009). Specifically, the link between seawater temperatures and the morphology and
chemical composition of growth layers is a focus of sclerochronological and sclerochemical
research (Butler and Schone, 2017; Reynolds et al., 2016). The availability of WOD as well as
large-scale coral and mollusk archives (Reynolds et al., 2017; Donner et al., 2017) allows us to
compensate for the lack of water-temperature data before instrumental observations were estab-
lished. Model M = {BF, G(N), TmN} could be used to formalize a procedure for the development
of growth-rate variability (i.e., charts of “layer thickness vs. layer number” and “layer area vs.

layer number”), which is essential to accurately reconstruct historical seawater temperatures.
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One possible result of water temperature reconstruction could be long time-series of temperature
variability in the Gulf Stream system from the East Coast of the United States to the Barents Sea
(Wanamaker et al., 2011; Reynolds et al., 2013; Carroll et al., 2011; Carroll et al., 2014).

Seawater temperature as a function of growth increment morphology. Gilbert et al. (2017)

developed a novel method that allows us to reconstruct present and past seawater temperature by
analyzing the morphology of modern and fossil shells, which “complements the strength and
compensates for the weaknesses of existing geochemical method” (p. 291). Model M = {BF,
G(N), Tm,n} could be used to formalize some stages of layered image processing and account for
the structural anisotropy of shells’ growth increments. WOD could be used to define areas of the
world ocean suitable to examine the influence of seawater parameters of different water masses
on the development of shells’ growth increments. Gilbert et al. (2017) hypothesized that factors
such as salinity, pH, or nutrients can affect the morphology of shells’ growth increments in
addition to water temperature. Within the frame of this hypothesis it would be reasonable to
examine the influence of seawater chemical composition on the development of shells’ growth
lines. The new method for measuring the chemical composition of fresh and saltwater could be

used for this purpose.

Measuring periodic table in fresh and salt waters (Biduchle,et al., 2018). Water is an

accumulation of dissolved elements in the form of organic (typically carbon-hydrogen-based)
and inorganic (non-organic) molecules. Given the importance of water to all life, it is astonishing
that not a single aqueous sample has ever been measured for element concentrations across the
breadth of the chemical periodic table. This dearth of research is not for the lack of want for
knowledge but because technologies for detecting all elements in a water sample have been
unwieldy and expensive to operate. A recently developed “simultaneous Mass Spectrometer”
ICP-MS (s1-ICP-MS) permits 71 inorganic elements to be detected in one evaluation from small

sample volumes in seconds and at relatively low consumable and personnel costs.

To examine the potential of si-ICP-MS for evaluating environmental water, and for assessing its
usefulness in studies of incremental structures, we first measured tap, well, rain, freshwater lake,

river, seawater, and snow. Figure 32 depicts the distribution of fresh and saltwater samples.
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Figure 33 shows that most of the periodic table is indeed represented in environmental water,
which includes municipally treated tap water. This is fascinating because snow is essentially the
same as all other fresh waters, which indicates that the atmosphere—after being scrubbed by
snowflakes—is fundamental to the movement of elements at high latitudes and altitudes around

the world. Seawater stands out as having higher abundances of elements overall.

The WOD, integrated with chemical composition of seawater, will thus allow us to examine the
influence of a broad spectrum of seawater characteristics on the development of growth
increments in marine life such as coral, fish scales, and shells. Additionally, the chemical
composition of soil and air allows us to use M = { BF, G(N), Tm~} to quantify the

correspondence between environment and growth patterns of terrestrial plants and animals.

To appreciate the relevance of such data to the study of incremental structures, we examined the
lamellar bone of a subsistence fisherman who lived around a freshwater lake. We used a laser
ablation system attached to the si-ICP-MS to measure the same elements measured from the lake
water on which he made his living. We have made two interesting observations from this
research: First, the inorganic spectrum of elements in the local water and in a bone from the

fisherman were quite similar.

Second, we discovered that the lamellar increments of bone are formed on the same interval at
which the growth increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009).
Striae of Retzius may be calibrated in absolute time, and in this fisherman that period was 8
days. Roughly 15 years of continuously formed lamellar bone were available from years for
which we have meteorological data. In the example shown in Figure 34, we demonstrate, for
instance, that from 1981 to 1995, the concentration of Strontium (Sr) varies cyclically in its ratio

with Zinc (Zn).

Other examples in which marine data could relate to the structure of living organisms are birds’
and turtles’ morphology and their migration patterns across the world ocean (Fig. 35). Although
the focus of the present work is the quantitative description of morphology of layered anisotropic

patterns, nevertheless a proposed method could be potentially extended for processing morpholo-
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gical characteristics of arbitrary images such as birds’ feathers, backs, and footprints. New instr-
umental methods of monitoring birds’ and turtles’ migration on a global scale (e.g., the ICARUS

project) provide us with tools to describe collective birds motion across the world ocean.

Bird migration. ICARUS, short for “International Cooperation for Animal Research Using

Space,” is a global collaboration of animal scientists to establish a novel satellite-based
infrastructure (Cook et al., 2004; Wikelski et al., 2011) for Earth observation of small objects
such as migratory birds, bats, or sea turtles (Pennisi, 2011). These findings will aid behavioral
research, species protection, and research into the paths taken in the spread of infectious
diseases. The information could even help predict ecological changes and natural disasters. In the
process, ICARUS researchers will attach miniaturized transmitters to hundreds or thousands of
animal species. These transmitters send measurement data via a CDMA-encoded signal (code-
division multiple access) to a receiver station in space that transmits data to a ground station. The

results will be published in a database that will be accessible to everyone at www.movebank.org

A miniaturized, solar-powered animal tag can communicate with the ICARUS equipment at the
International Space Station from a distance of up to 800 kilometers, allowing it to record its
absolute position at regular intervals using GPS and to acquire local temperatures, 3-D
acceleration, and 3-D magnetometer values as well as pressure, altitude, and humidity, which
give indications of the animal’s behavior, internal and external state, and environmental

conditions—all using a tag with a mass less than 5 grams and a volume of approximately 2 cm?.

Integrated morphological characteristics of individual birds, their migration routes, WOD and

ICOADS create a basis to formulate testable hypotheses of scientific and commercial value.
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5. Conclusion

The anisotropic features of layered systems make them attractive objects of study from both
scientific and commercial points of view. The empirical model M = { BF, G(N), Tm} is an
example of the engineering approach (Reeves and Fraser, 2009) to studying pattern formation in

nature and beyond.

Various layered systems presented in this paper exhibit surprising levels of structural similarity,
what Ball (2009, p. 177) called nature’s use of “not the Law of Pattern but a palette of

principles”.

The key element of the present work is the notion of structural disorder in 2-D layered systems
(DStr), which is applicable to any layered object, irrespective of size or nature. Equation (3),
which shows that layered patterns comprise anisotropic and isotropic components, provides a
foundation for formalizing DStr. Equation (3) could potentially be used to extend the
applicability of DStr to quantify the morphological characteristics of arbitrary 2-D binary

patterns.
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Figure 1. Living and non-living layered systems.

Structure of layers and variability of its thickness and chemical composition across 2D plane is the record of the
internal and external factors responsible for patterns formation. These layered patterns form a record of internal
and external factors regulating pattern formation in their various systems, making it potentially possible to
recognize and identify in their incremental sequences trends, periodicities, and events in the formation history of
these systems. Recent discoveries are:

Credit: Norman Barker

Baleen whale cortisol levels reveal a physiological response to 20th century whaling. S. J. Trumble, S. A.
Norman, D. D. Crain, F. Mansouri, Z. C. Winfield, R. Sabin, C. W. Potter, C. M. Gabriele & S. Usenko.
Nature Communications, volume 9, Article number: 4587 (2018). http://doi: 10.1038/s41467-018-07044-w
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K.D. Bergmann, C.E. Myers, M.A. Marcus, R.T. DeVol, C.-Y. Sun, A.Z. Blonsky, E. Tamre, J. Zhao, E.A.
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Figure 6. Morphological characteristics of structural anomalies
Figure 6A. Martian surface structural anomaly
Figure 6B. Dunes sand ripples structural anomaly

Figure 6A depicts structural anomalies in a layered system of the Martian surface. The DStr of the sampling area a is
10 times less than that of nearby area b, which exhibits structural anomaly with respect to area a. Figure 6B depicts

the structural anomaly of sand ripples. The red sampling area exhibits structural anomaly with respect to nearby
orange and blue areas. The DStr of the orange and blue areas is 2.3 times less than that of the red area.
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Figure 7. Ground penetrating radar section

Figure 7A. Structural disorder in round penetrating radar section
Figure 7B. Fragment of the equation DStr = f(number of transects)

Fig. 7B shows that numbers of transects more than 0.1 and less than 0.4 maximize structural differences between

segments A, B, C and D.

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019

54




1796
1797

1801
1802
1803
1804
1805
1806
1807

Preprints

NOT PEER-REVIEWED

A)

(B)

Credit: Dr. Jessica M. Winder. https://natureinfocus.blog

Image Disorder of Disorder (y) as a function of
1 category | image structure | the number of transects (x)
A 0.3600 y = 0.2046x 042
% 0.8 \\ B B 0.5573 y = 0.4100x03%
2 N~
£ 0.6 "\
(35
5 \
- 04 \
el Ny
5 0.2 \
0
0 0.2 0.4 0.6 0.8 1
Number of transects (relative units)

Figure 8. Structural disorder in sand ripples at tidal zone. Diameter of images ~0.3 m

55

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019



1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834

1835
1836

1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

1850
1851

NOT PEER-REVIEWED

-
) |
Fes
~ - )
<%
Credit: NOAA |
1 |
) Cloud Disorder of Disorder (y) as a function of
g 0.8 category image structure the number of transects (x)
2 0.6 Altocumulus 0.2102 y =0.1001x70678
% : Altocumulus 0.1601 y = 0.0684x70657
g 0.4
]
S
A 0.2
0
0 0.2 0.4 0.6 0.8 1
Number of transects (relative units)

Figure 9. Structural disorder in clouds
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See next page
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Figure 12B. Structural disorder in black diamonds
Materials science is an attractive area for the application of M = { BF, G(N), Tm} because the macro- and
nanostructures of various materials exhibit layered anisotropic patterns (Fig. 12) that define their properties.
Thus, DStr could serve as a local and global morphological parameter for describing material
microstructures. DStr could also be used to link structures and properties, an essential step in developing
materials with desired combinations of characteristics.
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Figure 13. Structural disorder in lamella bones
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Figure 15. Structural disorder in human eye angiogram
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Figure 16. Structural disorder in flower surfaces
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Figure 18. Structural disorder in fish skin

The configuration of stripes on fish skin (Fig. 18) is a typical example of an anisotropic layered pattern. The
formation of patterns on the surfaces of fish, shells, and mammals has been explained by a reaction—diffusion system
(Turing, 1952; Meinhardt, 1989; Shoji et al., 2003). Results of calculating DStr for sampling areas A, B, C, and D
imply that DStr(B)>DStr(C)>DStr(A)>DStr(D), indicating that area B has the most complicated structure and area
D has the simplest structure among four sampling areas. This result inspires two questions: 1) Is the DStr of the right
side of the fish similar to the DStr of the left side? 2) Could the morphology of stripes serve as a record of internal
and external events in the life history of a fish? Model M = {BF, G(N), Tmn} could be one tool to help to answer
these questions.
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Figure 20. Structural disorder in bird plumage patterns. Plumage patterns in banded pitta, kingfisher, and owl (Fig.
20) offer examples of layered systems in bird plumage. DStr shows significant diversity in the structure of these
layered systems: DStr(giant kingfisher) = 0.7591; DStr(banded kingfisher) = 0.0574. This result inspires us to ask
whether parameters of layered structures might serve as phenotypic characteristics (Gluckman and Mundy, 2016).
Model M = {BF, G(N), Tm~} could be used to test this hypothesis (i.e., examine the structural characteristics of

birds’ plumage patterns with respect to state of the environment).
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Figure 21. Morphology of butterfly wing. (A) Sampling areas in Morpho butterfly wing. (B) Structural disorder in
butterfly wing

Photonic systems of biological objects generate interest among scientists and engineers across various disciplines
due to their unique ability to manipulate color using micro-structured surfaces (Starkey and Vukusic, 2013; Parker,
2000). Many photonic surfaces in flowers and animals exhibit lamellar structures (Vukusic and Sambles, 2003),
such as the scales arranged in anisotropic layered patterns on the surfaces of morpho butterfly wings (Fig. 21A). We
use DStr to compare the anisotropic characteristics of left and right wings. Figure 21B reports the results of DStr
calculations for six sampling areas. The left and right wings of Morpho butterfly have similar structural
characteristics: DStr is equal to 0.132 and 0.131, respectively. Could DStr be a characteristic of blue color nuances
in Morpho butterflies? Do male and female Morpho butterflies have similar structural characteristic DStr? How do
local/global structural anomalies in butterfly wings with respect to DStr affect butterfly color? Model M = {BF,
G(N), Tmn} could be used to answer these questions.
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Figure 22. Morphology of hair microstructure
Figure 22A. Structural disorder in human and animal hairs

Figure 22B. Structural disorder as a function of sampling density

The layered microstructures of human hair are much more complicated than those of some animals

(Fig. 22A), which is confirmed by DStr(human), DStr(deer), DStr(mouse), and the corresponding charts for
“structural disorder of hair = f(number of transects).” Figure 22B (next page) shows that high sampling
density accounts for more structural details than low sampling density.
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Figure 23. Morphology of fingerprints
Figure 23A. Structural disorder in four categories of fingerprints
Figure 23B. Structural disorder as a function of number of transects

As Figure 23A indicates, the four basic categories of fingerprint patterns have distinctive structural characteristics
that vary from DStr(plain arch) = 0.1021 to DStr(central pocket loop) = 0.1978. Distinctions between DStr among
different categories of fingerprints substantially depend on the number of transects used to calculate DStr (Section
2.2). To define the number of transects that allow maximal differences among DStr in the four categories of
fingerprints, we plot the chart (Fig. 23B) as DStr(central pocket loop) — DStr(plain arch) = f(number of transects).
Nine transects allow the maximal possible differences between two categories of fingerprints; that is, DStr(central
pocket loop) — DStr(plain arch) = 0.253, which is 2.6 times more than the DStr(central pocket loop) and DStr(plain
arch) comparison if equation (2) is used to calculate DStr. Sampling density and number of transects could
complement DStr in forensic identification.
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Figure 25. Layer thickness variability across a 2-D plane: South Pole of Mars

Dune fields are an example of the layered patterns that exist throughout nature. Dune spacing (i.e., layer thickness)
is a basic morphological characteristic of dune systems (Lancaster, 2009). Figures 24 and 25 show layered
fragments of the surface of Mars that have isotropic structure (i.e., all fragments have DStr = 0), which allows us to
describe the variability of layer thickness across the 2-D sampling area with high accuracy. Several transects are
used to calculate average thickness of each layer. Charts of “layer thickness vs. layer number” show cyclic trends in
the variability of layer thickness across the sampling area (Fig. 24 and 25). Similar cyclic trends in anisotropic
structures are also observed on Mars and Earth (Smolyar et al., 2016).
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Figure 26. Layermg variability across a 2-D plane: material. Figure 26A depicts an image of layered Al-Si
composite with anisotropic structure. The chart of “layer thickness vs. layer number” shows cyclicity in the
variability of layer thickness across the sampling area (Fig. 26B), which is divided into parts A, B, C, and D (Fig.
26C) according to the uniform distribution of layer thickness in each part (Fig. 26D). It follows that the chart of
“layer thickness vs. layer number” provides a more detailed description of a layered pattern’s morphological
characteristic than average layer thickness.
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Figure 28. Layer thickness variability across a 2-D plane: banded pitta and owl feathers.

The chart of “layer thickness vs. layer number” exhibits non-random trends in the variability

of layer thickness across bird feathers (Fig. 28). The chart and DStr could potentially serve
as morphological characteristics of birds with application to the study of their life cycles.
Striped patterns are often used to distinguish bird species from one another. In particular,
shrikes and their relatives are recognizable to birders by the peculiar differences in the
thickness and layering of their striped patterns, many of which are simply black and white.
Furthermore, there are often marked differences in the morphological features of feathers

between males and females of the same species, a dimorphism that is recognized both by the
animals themselves and by human observers (Gluckman 2014).
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Figure 29. Layer thickness variability across a 2-D plane: spider web

The morphology of orb (circular) spider webs (Fig. 29) is frequently studied not only because of their
superior mechanical properties but also as a source of information about spiders’ construction behaviors
(Sensenig et al., 2010; Eberhard, 2014; Soler and Zaera, 2016). The orb web represents a layered system
with structural anisotropy: “One of the most relevant structural traits of orb webs is their mesh width”
(Zschokke and Nakata, 2015, p. 661). Mesh width (i.e., layer thickness) is used to understand the
construction features of web systems and relate them to spiders’ behavior. For instance, Zschokke and
Nakata (2015, p. 661) point out that “a closer look at the orb webs reveals that mesh widths are not the
same throughout the entire web.” Charts describing the variability of mesh width across the sampling area
(Fig. 29) confirm this statement and indicate cyclicity in the variability of mesh width across the sampling
area. Thus, M = { BF, G(N), Tmn} could be used to generate a new set of structural characteristics
describing the anisotropy of an orb web and its segments.
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We examine how minor changes in layer structure affect DStr, using fingerprint (Fig. 30A), fish scale (Fig. 30B),
and an eye angiogram (Fig. 30C) as test objects. Let us denote characteristics of images before and after structural
changes by DStr(before changes) and DStr(after changes). We describe the link between DStr(before changes) and
DStr(after changes) and structural changes in images in quantitative terms using the following procedure: First, we
describe the difference between DStr(before changes) and DStr(after changes) on a relative scale (%). All changes in
layer structure are marked in red. We denote the difference as Parameter-1. Second, we describe (in %) the
difference (in pixels) between the images before and after changes. To do so, we calculate the number of black
pixels in an image before changes (total pixels before changes) and the total number of pixels that change color
(white to black or vice versa) as a result of structural changes (total pixel change). The ratio (%) of “total pixel
change/total pixels before changes” allows us to calculate the magnitude of structural changes in an image. This
ratio is denoted Parameter-2. The relation between Parameter-1 and Parameter-2 allows us to estimate the sensitivity
of DStr to structural changes in the image. Results of calculating Parameter-1 and Parameter-2 are

Parameter-1 Parameter-2

Fingerprint  0.55% 0.072%
Fish scale  3.80% 0.150%

Eye angiogram  0.32% 0.077%
Average  1.56% 0.10%

The average ratio between Parameter-1 and Parameter-2 is 1.56:0.1, which implies that a 1% structural change in
layers results in a 15.6% change in DStr. This result provides evidence that minor changes in layer structure are

accompanied by substantially greater changes in DStr values.

81

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019



3037 .
3038 Degree of disorder of layer structures
3039 0 >0-0.1 0.1-0.2 02-03 0.3-04 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
3040 | Geology .
3041 s . .
ggjg Vertical section oo Fig. 7
3044 Geology. Structural anomaly
3045 Mars surface . . Fig. 6A
3046 Earth sand ripples . . Fig. 6B
3047
3048 Atmosphere
3049 Clouds i . Fig. 9
3050 USA at night . Fig. 11A
3051 Hubble sky e|Fig. 11B
3052 Lightenings . . Fig. 10
3053

Materials
3054 Alloy . Fig. 12A
3055 Ton-induced ripples 4 Fig. 12A
3056 Pearlite steel 4 . Fig. 12A
3057 Black diamond oo . Fig. 12B
3058
3059 Medicine
3060 Bones . . Fig. 13
3061 Aorta eee (o Fig. 14
3062 Eye angiogram| . . Fig. 15
%823_ Forensic
3065 Fingerprints see Fig. 23
3066 Hairs . . 4 Fig. 22A
3067 Plants
3068 Flower eoe |o . Fig. 16
3069 Leaf]| * . Fig. 17
3070
3071 Animals
3072 Fish skin see Fig. 18
3073 Snake skin oo Fig. 19
3074 Birds coloration . . 4 4 . Fig. 20
3075 Butterfly wing eoo Fig. 21B
3076 0 >0-0.1 0.1-02 02-03 0.3-04 04-05 0.5-06 0.6-0.7 0.7-0.8 0.8-09 09-1
3077 Degree of disorder of layer structures
3078
3079
3080  Figure 31. Overview of experiments: structural disorder in patterns formed in nature and beyond
3081
3082
3083
3084
3085
3086

82

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27451v2 | CC BY 4.0 Open Access | rec: 5 Jan 2019, publ: 5 Jan 2019



3087
3088 Fresh water sample
3089 @ Salt water sample
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
Area | Sample | Water Water Place Country Coordinate
code | ID* category | sources
A 1 Well-2 Fresno, CA USA 36°39°13"N,
119°39'49"W
A 2 Well-3 Fresno, CA USA 36°38°57"N,
119°37'51"W
A 3 Snow Lassen Volcanic Nat. Park USA 40°28°27.3"N,
121°3021.7"W
A 4 Snow Crater Lake Nat. Park, CA USA 42°54'32"N,
122°04'25"W
B 5 Tap, 0-min Middletown, NY USA 42°27' N, 74°25'W
B 6 Tap, 5-min Middletown, NY USA 42°27' N, 74°25'W
B 7 Delaware R. | Pleasant Park Hill, PA USA 40°227.51"N,
4°59'31.04"W
B 8 o Shore Sea Island City, NJ USA 39°11'34.4"N,
74°39'23.7"W
B 9 Canandaigua | State Marine Park, NY USA 42°52'32.40"N,
lake 77°16'36.50"W
C 10 Rain Bathsheba Barbados 13°12'42.18"N,
9°31'4.46"W
C 11 o Shore Qistins, Barbados 13°3'39.86"N,
9°32'25.35"W
D 12 o Shore Rio de Janeiro Brazil 22.977854°S,
43.187257°W
E 13 Nidda river Frankfurt Germany 50°9'46.10"N,
8°39'7.99"E
F 14 Malawi lake Malawi Lake National Park Malawi 12°10'60.00" S
34°21'59.99" E
G 15 Rain Karachi Pakistan 24.8427554°N,
67.06103329°E
H 16 Baikal lake Khuzhir, Irkutsk Oblast Russia 53°12'11"N,
107°2027"E
I 17 Rain Beijing China 39°4121"N,
115°5523"E
J 18 o Shore Fukuoka, Japan 33.596823°N,
130.359027°E
3102 *ID - identification number
3103
3104 Figure 32. Distribution of water samples
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Figure 33. Element concentration patterns in (environmental) water. Element symbols are on right vertical
axes. Trace concentrations between not detected (black) and 1 pg/L (white) are shown in shades of blue.
Concentrations above 1 pg/L are represented by warm colors and given in a logarithmic scale and range
from >1 pg/L (yellow) to over 3600 mg/L (dark red)
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Figure 34. Zn/Sr ratio over 15 years of lamella bone

We discovered that the lamellar increments of bone are formed on the same interval at which the growth
increments in enamel, the striae of Retzius, are formed (Bromage et al., 2009). Striae of Retzius may be
calibrated in absolute time, and in this fisherman that period was 8 days. Roughly 15 years of continuously
formed lamellar bone were available from years for which we have meteorological data. In the example
shown in Figure 34, we demonstrate, for instance, that from 1981 to 1995, the concentration of Strontium
(Sr) varies cyclically in its ratio with Zinc (Zn).
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Credit: Shaffer, et al. PNAS ©, August 22, 2006, 103

Figure 35. Sooty shearwaters migration routes across Pacific Ocean

Examples in which marine data could relate to the structure of living organisms are birds’ and turtles’
morphology and their migration patterns across the world ocean (Fig. 35). Although the focus of the
present work is the quantitative description of morphology of layered anisotropic patterns, nevertheless a
proposed method could be potentially extended for processing morphological characteristics of arbitrary
images such as birds’ feathers, backs, and footprints. New instrumental methods of monitoring birds’ and
turtles’ migration on a global scale (e.g., the ICARUS project) provide us with tools to describe
collective birds motion across the world ocean.
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