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Abstract 16 

Changing trend in coastal ecosystem can be quantified by performing time series analysis. Time 17 

series analysis performed using long term remote sensing data will help us to identify the 18 

dynamic changes happening in the coastal ecosystem and its surrounding regions. In the present 19 

study we performed time series analysis on northern sector of Chilika Lake and its nearby 20 

regions of Odisha, which is situated in the east coast of India using three decades of freely 21 

available Landsat archive data. In order to detect dynamic changes trend parameters were 22 

calculated by using available data sets from Landsat Thematic Mapper (TM) and Operational 23 

Land Imager and Thermal Infrared Sensor (OLI/TIRS) for the observation period from 1988 to 24 

2017. Two multi-spectral indices i.e. NDVI and EVI were generated from the available data sets 25 

and the trend analyses were performed using Theil-Sen (T-S) regression method by identifying 26 

robust trend parameters (slope and pvalue). The average mean values for NDVI and EVI were 27 

recorded at 0.4 and 0.2. Significant positive trend was observed in both vegetation indices 28 

(NDVI and EVI) with a mean slope value of 0.004 and 0.003 and pvalue of 0.03 and 0.02 29 

respectively. 30 

Introduction 31 

Coasts are dynamic in nature and contain various geomorphic features which keep changing over 32 

seasonal, annual and multi-decadal timescales (Cowell and Thom, 1994; Splinter et al., 2013). 33 
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Coastal ecosystems are undergoing rapid changes due to development activities and increasing 34 

population (Halpern, B. S. et al., 2008; He, Q. et al., 2014). Natural disturbance such as climate 35 

warming poses a major threat to these ecosystems by causing erosion, loss of biodiversity and 36 

overall sustainability of these ecosystems (Harley, C. D. et al., 2006; Sara, G. et al., 2014). 37 

Increasing population and technology advancement leads to disturbance of the coastal 38 

ecosystems and exploitation of coastal resources. Remote sensing provides a comprehensive way 39 

to monitor these coastal ecosystems and natural processes by providing large scale data on 40 

surface conditions that reveal the dynamic variation and allow detection and forecasting of trends 41 

(Ozesmi, S. L. et al., 2002; Lin, Q., 2012).  42 

For better understandings the fate of these ecosystems over the last several decades, satellite 43 

program such as Landsat provides a long-term data archive (Cohen et al., 2004; Wulder, M.A et 44 

al., 2012). Landsat program was launched in 1972 with Multi Spectral Scanner (MSS) followed 45 

by Landsat Thematic Mapper (TM) in 1982, Landsat Enhanced Thematic Mapper Plus (ETM+) 46 

in 1999 and Landsat Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) in 2013. 47 

The spatial resolution available for TM, ETM+ and OLI are at 30m and for MSS at 60m. The 48 

Landsat sensor has a temporal coverage of every 16 days. The Landsat (MSS) has four spectral 49 

bands, Landsat (TM) with seven spectral bands, Landsat (ETM+) having six spectral bands, one 50 

thermal band and one panchromatic, while the Landsat 8 (OLI/TIRS) consist of eight spectral 51 

bands, one panchromatic and two thermal infrared bands.  52 

Vegetation indices (NDVI and EVI) represent the Greenness activity of plant. These indices are 53 

widely used to monitor the surface vegetation for entire earth (http://profhorn.meteor.wisc.edu). 54 

NDVI is often used due to its ‘ratio’ properties which enable to eliminate the noise such as 55 

(topography, sun angle and clouds) present in the data (Matsushita B. et al., 2007). EVI is 56 

considered as a modified NDVI due to its improved sensitivity towards higher biomass region 57 

and reduction in atmosphere influences (Huete A.R. and Justice C., 1999). Typical NDVI and 58 

EVI values ranges between -1 to +1, negative values represents snow and water while the 59 

positive values for NDVI represents vegetated areas and soil, with classified ranges for; sparse 60 

vegetation from 0.2 to 0.5 which is considered as moderate vegetation, from 0.6 and above are 61 

considered as dense vegetation while in EVI healthy vegetation falls between 0.2 to 0.8. 62 

The time series analysis technique with temporal data can be used to perform seasonal and 63 

annual variations. This type of analysis provides a benefit in various fields such as land use/land 64 
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cover change, agriculture, forest management, ecosystem changes and water management 65 

(Muttitanon W., 2004). To perform such analysis in remote sensing based studies, we require 66 

high spatial and temporal resolution satellite data such as Landsat (TM, ETM+ and OLI) at 30m 67 

spatial resolution and provides 16 days temporal resolution, which is provided by USGS at free 68 

of cost and it can be quite useful in performing time series analysis to identify seasonal and 69 

annual trends over decades. However Landsat is as an optical sensor and presence of cloud can 70 

profoundly affect the quality of data and time series analysis performed using this data. For 71 

detecting the seasonal response of vegetation, both NDVI and EVI time series are considered as 72 

efficient data products (Wardlow et al., 2007), while for the short term interannual variability; 73 

Seasonal Trend Analysis (STA) proved to be robust technique and it is also very effective for 74 

long-term trends to identifying the gradual and abrupt changes (S. Eckert et al., 2015). Lin, Q. 75 

(2012) performed times series analysis using MODIS derived product enhanced vegetation index 76 

(EVI) by using linear regression trend analysis method and maximum value method. Leon et al. 77 

(2012) examined the post-fire vegetation response by using the interannual trends in the NDVI 78 

time series data which is derived from the MODIS.  79 

This study aims to monitor and understand the coastal ecosystem dynamics by performing trend 80 

analysis on 30m Landsat derived vegetation indices (NDVI and EVI). Here we presented multi-81 

temporal analysis of Landsat based ecosystem monitoring for the northern sector of Chilika Lake 82 

and its nearby region, for the 1988 to 2017 period. We calculated the robust linear trend on 83 

vegetation indices [NDVI and EVI] to understand the dynamics of vegetation in Chilika Lake 84 

and its surrounding regions.  85 

Study Area  86 

Study Area 87 

Chilika lagoon is the Asia largest brackish water lagoon. Our study area focuses on northern 88 

sector of Chilika Lake situated on east coast of India in the state of Odisha (Fig. 1). The study 89 

area experiences the southwest and northeast monsoon in May to August and November to 90 

December respectively. Chilika Lake is divided into four zones which are southern zone, 91 

northern zone, central zone and outer channel (Mohanty S. et al., 2015). The lagoon is under 92 

constant pressure from both the natural and anthropogenic activities such as siltation, infestation 93 

and degradation in salinity which results in loss of productivity and biodiversity.  94 
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 95 

Figure 1 Location map of study area 96 

Materials & Methods 97 

Data 98 

The 30 m spatial resolution Landsat Thematic Mapper (TM) and Operational Land Imager and 99 

Thermal Infrared Sensor (OLI/TIRS) data were downloaded from the USGS via Earth Explorer 100 

(https://earthexplorer.usgs.gov) for the period of 1988 – 2017. The acquired data are radio-101 

metrically and geometrically terrain-corrected (Processing Level L1TP). The common spectral 102 

bands such as (blue, green, red, near-infrared/NIR, shortwave infrared 1 and 2 /SWIR1 and 103 

SWIR 2) were used for analysis while the remaining bands were excluded from processing. Total 104 

Landsat scenes observed for the study region is 240. All the available scenes were downloaded 105 

from 1988 to 2017. The time span taken for the study region is 29 years. List of data and bands 106 

used in this study are listed in Table 1. 107 

 108 
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Table 1  Details of bands used for the study 109 

Landsat 4-5 (TM) Landsat 8 (OLI/TIRS) 

Bands Wavelength (μm) Res. (m) Bands Wavelength (μm) Res. (m) 

1-Blue 0.45-0.52 30 1- Ultra blue 0.435-0.451 30 

2-Green 0.52-0.60 30 2-Blue 0.452-0.512 30 

3-Red 0.63-0.69 30 3- Green 0.533-0.590 30 

4-NIR 0.76-0.90 30 4-Red 0.636-0.673 30 

5-SWIR1 1.55-1.75 30 5-NIR 0.851-0.879 30 

6-Thermal 10.40-12.50 120*(30) 6-SWIR1 1.566-1.651 30 

7-SWIR2 2.08-2.35 30 7-SWIR2 2.107-2.294 30 

(NIR = Near Infrared; SWIR = Short-wave Infrared). 

Methods 110 

 111 

Figure 2 Landsat data processing workflow 112 

The data processing workflow shown in (Fig. 2) depicting the process starting from data 113 

download to the final product generation. The flow chart is divided into two parts; first part 114 

consists of all the pre-processing activities such as conversion of raw DN values to surface 115 
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reflectance, layer stacking, cloud masking and subset, while in second part we calculate 116 

vegetation indices and performed trend analysis on them using Theil – Sen (T-S) slope 117 

regression method. 118 

Pre-Processing 119 

Landsat archive data downloaded from the USGS Earth explorer and pre-processed it by using 120 

Semi-Automatic Classification plug-in (SCP) in QGIS software. SCP is a free opens source 121 

plugin developed by (Congedo Luca, 2016), which allows the user to perform pre-processing, 122 

post processing, raster calculations, supervised and unsupervised classifications of remote 123 

sensing images. It also facilitate to download remote sensing data at free of cost such as 124 

(Landsat, MODIS, Sentinel-2, Sentinel-3, ASTER). The SCP plug-in takes Metadata file of 125 

Landsat as input which contains required information for the conversion of raw DN values to 126 

surface reflectance values. The first process performed by SCP is conversion of raw DN values 127 

of individual bands to radiance values by using ‘Equation (1)’.   128 

L λ = ML * Qcal + AL                 (1) 129 

Where ML and AL are the multiplicative rescaling and additive rescaling factor from the Landsat 130 

metadata, Qcal is the quantised and calibrated pixel values (DN). The next process performed by 131 

SCP Plugin is conversion of radiance value to Top of Atmosphere (TOA) reflectance which is 132 

calculated by ‘Equation (2)’. 133 

⍴p = (π * Lλ * d
2
) / (ESUNλ * cosθs )  (2) 134 

Where Lλ is the spectral radiance at the sensors aperture, d is the Earth-Sun distance, ESUNλ is 135 

the mean solar exo-atmospheric irradiances, and θs is the solar zenith angle in degrees. 136 

The TOA reflectance was converted to surface reflectance with Dark Object Subtraction (DOS1) 137 

correction technique. DOS is an image based atmospheric correction method which rectifies the 138 

image containing pixels which are completely covered by the shadow and radiance received by 139 

the satellite due to atmospheric scattering. The path radiance was calculated by the ‘Equation 140 

(3)’. 141 
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Lp = Lmin – L DO1%     (3) 142 

Where Lmin is the radiance that corresponds to a digital count value, L DO1% is the radiance of 143 

dark object. Finally the surface reflectance was calculated by using the ‘Equation (4)’. 144 

⍴ = [π * (Lλ – LP) * d
2
] / [Tv * ((ESUNλ * cosθs * Tz ) + Edown)]  (4) 145 

Where Lp is the path radiance, Tv is the atmospheric transmittance in the viewing direction, Tz is 146 

the atmospheric transmittance in the illumination direction and Edown is the down welling diffuse 147 

irradiance. Processed individual bands were layer stacked and cloud masking technique was 148 

performed on these images.  149 

Cloud Removal 150 

The open source cloud masking (Fmask) plugin tool developed by (Zhu & Woodcock, 2012) was 151 

successfully applied on each stacked image with its standard settings. This algorithm detects 152 

cloud, cloud shadow and snow/ice in Landsat scenes. Fmask separates Potential Cloud Pixel 153 

(PCPs) and Clear Sky Pixels based on the cloud physical properties and removes all non-valid 154 

data from the scenes i.e. Cloud, Shadow, and No Data (Fig. 3).  155 

 156 

Figure 3 Overview of Fmask process 157 
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Index Calculation 158 

Landsat TM and OLI/TIRS data are having different spatial extent, to achieve common spatial 159 

extent we created an area of interest (AOI) boundary for study region and all the data sets were 160 

subset to that boundary. Using the subset data we calculated vegetation indices NDVI and EVI. 161 

NDVI was calculated from Landsat surface reflectance band: near infrared band and red band 162 

and it is defined by ‘Equation (5)’. EVI was calculated from Landsat surface reflectance of red, 163 

near infrared and blue band and it is defined by ‘Equation (6)’. 164 

      
       

       
  (5) 165 

Where NIR and RED is the spectral reflectance measurements acquired on the red and near 166 

infrared regions. 167 

       
       

                        
  (6) 168 

Where NIR, RED and BLUE are reflectance in the near infrared, red and blue band respectively, 169 

L is the canopy background, C1 & C2 are the coefficient of the aerosol resistance, and G is the 170 

gain factor. 171 

Theil – Sen Regression Method 172 

Theil-Sen method is a robust non-parametric statistical operator which is used to analyse trends 173 

(Osunmadewa B.A., 2014) and it is determined by calculating paired slopes, from every point in 174 

time to each other (Nitze, I., & Grosse, G., 2016). Remote sensing application such as estimation 175 

of leaf area, water quality and long term wind trend of wind speed and occurrence can be 176 

identified by using T-S regression method. O. Dubovyk et al. (2015) calculated the trends on 177 

EVI time series data using T-S estimator and the Mann-Kendall (MK) test.  178 

In final process all datasets were stacked to make a one temporal image and trend were 179 

calculated for each multi-spectral index in the temporal domain by using robust Theil-Sen (T-S) 180 

regression method (Sen, 1968; Theil, 1992). The T-S regression method was applied on these 181 

spectral indices to calculate trend parameters such as slope and pvalue. T-S calculation was 182 
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carried out in R Studio v 1.0.153 software followed by using ‘trend’ package to get the trend 183 

statistics. 184 

Results 185 

Vegetation/greening 186 

The Chilika region exhibits a moderate vegetation trend which can be seen in both the vegetation 187 

indices NDVI and EVI (Fig. 4). Annual mean NDVI and EVI value ranged between 0.2 and 0.87 188 

with an average mean value of 0.4 and 0.2. Greening hotspot changes was observed in the 189 

northern sector of Chilika Lake which is the most active region and strongly influenced by 190 

infestation such as Fragmites Karka and water hyacinth. 191 

J.Y. Kim et al. (2015) identified that the centre of lagoon consist of minimum NDVI values 192 

which can be due to siltation, while the maximum NDVI values was observed in the northern 193 

part of lagoon which may be due to presence of weeds. The satellite derived products will help 194 

us in quantifying the ecosystem changes which are happening due to the natural disturbances and 195 

artificial alterations (Goetz et al., 2006; Goodin and Henebry, 1997). 196 

 197 

Figure 4 Annual composite of vegetation indices from 1988-2017. 198 
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Trend Analysis 199 

Trend analysis refers to rate of change in times series analysis and results are often similar to 200 

ordinary linear regression which was used for long term series analysis (Osunmadewa B.A. et. 201 

al., 2014). We calculated vegetation indices (NDVI and EVI) for the each temporal image and T-202 

S regression method was applied on these indices and statistics were calculated to identify trend 203 

parameters (slope and pvalue) which are shown in Table 2. The mean slope values were 204 

estimated by performing T-S regression method and the final output was written in raster format. 205 

Trend slope maps were generated for both multi-spectral indices which are shown in (Fig. 5). 206 

Graph show in (Fig. 6) depicts temporal trend of annual mean NDVI and EVI composites and we 207 

observed a gradual increase in vegetation trend from 1988 to 2017. 208 

 209 

Figure 5 Significant NDVI and EVI change from 1988-2017 210 

Table 2 Statistics of trend (slope and pvalue) 211 

Index Slope mean P Value 

NDVI 0.004 0.03 

EVI 0.003 0.02 

 212 
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 213 

Figure 6 Graph depicting the temporal profile of multispectral indices with trend line 214 

Local Changes 215 

 216 

Figure 7  False colour RGB composite of Landsat image overlaid on base map depicts changes 217 

over the northern part of Chilika Lake 218 
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Chilika lagoon has change significantly in the past four and half decades due to constant pressure 219 

of natural and anthropogenic activities. These changes can be seen visually on the images shown 220 

in (Fig. 7). The lagoon is highly infected with Fragmites Karka which is deposited on northern 221 

part of lagoon and water hyacinth, marked with dotted circle in the images. The old mouth of 222 

Chilika Lake became inactive due to natural siltation, which can affect sea water exchange, so in 223 

year 2000 Chilika development Authority (CDA) created a new mouth in the outer channel by 224 

dredging the sand bar. The restoration of new mouth leads to increase of Lake Fish and a 225 

reduction of freshwater weeds, but after restoration of mouth in year 2000 the salinity level was 226 

increased in Chilika lagoon (J.Y. Kim et al., 2015).   227 

Discussion 228 

Time series analysis performed using Landsat archive data can reveal an abrupt and gradual 229 

changes happening in the coastal ecosystem by performing a multi-temporal trend analysis. From 230 

satellite observations we can identify the changing trend in ecosystem productivity (Forkel, 231 

Matthias, et al., 2013) by generating the Normalised Difference Vegetation Index (NDVI). The 232 

transformation of vegetation or crop land into dry land can be considered as gradual changes and 233 

during this period we can observe a slight decline in trends. The abrupt changes in the vegetation 234 

trends can be seen due to cyclones, forest fire or urbanisation in the particular area. 235 

Trend slope can be classified into different classes, for example: slope values (> 0): considered 236 

as significantly increasing in the vegetation trend, slope values (< 0): considered as slight 237 

decrease or significantly decreasing trend (Lin, Q., 2012). Forkel, Matthias, et al., (2013) 238 

classified significant trend slope into six different trend classes, if: (slope < 0 and p ≤ 0.05): 239 

significant negative trend; (slope < 0 and 0.05 < p ≤ 0.1): non-significant negative trend; (slope < 240 

0 and p >  0.1): no trend with negative tendency; (slope > 0 and p > 0.1): no trend with positive 241 

tendency; (slope > 0 and 0.05 < p ≤ 0.1): non-significant positive trend; (slope > 0 and p ≤ 0.05): 242 

significant positive trend. J.Y. Kim et al.(2015) conducted study on Chilika Lake, which reveals 243 

that average greenness rate of change (GRC) for the entire lagoon was -0.057 indicating overall 244 

gradually decreasing NDVI trend from (1998 – 2014). The NDVI over the lagoon can be 245 

decreased due to the higher salinity present in the lagoon (Pattanaik, A.K., 2007). Goswami et 246 

al., (2017) recently carried out a land use and land cover study on Chilika Lake and its 247 

surrounding regions by using Landsat time series data from 1988 to 2017 and they observed 248 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27448v1 | CC BY 4.0 Open Access | rec: 24 Dec 2018, publ: 24 Dec 2018



some changes such as decrease in area of barren ground, grass and water while there is increase 249 

in area of shrubs and forest. 250 

We conducted our study on northern sector of Chilika Lake and its surroundings regions to 251 

identify vegetation trend and some hotspot changes which are happening for past four and half 252 

decades. Trend analyses performed using long term satellite data will be useful for detecting 253 

these dynamic changes. All the available Landsat data were downloaded and processed for year 254 

1988 to 2017. Vegetation indices (NDVI & EVI) were calculated from the available datasets and 255 

performed trend analysis. Annual mean NDVI and EVI value ranged between 0.2 and 0.8 with 256 

an average mean value of 0.4 and 0.2. The trend analysis of dense Landsat time-series has 257 

potential to reveal a sudden and gradual changes happening in the coastal ecosystem. Positive 258 

trend indicates ‘greening’ and negative trend indicates ‘browning’. Our results shows the 259 

positive trend for both the vegetation indices which indicates that there is a greening trend. The 260 

trend slope for NDVI and EVI ranged from -0.043 to 0.070 and -0.016 to 0.029 respectively. 261 

Mean slope value of 0.004 and 0.003 and pvlaue of 0.03 and 0.02 recorded for both the indices 262 

which indicate the significant positive trend (slope > 0 and p < 0.05).  263 

We observed some local changes in Chilika lagoon such as migration of mouth, weed infestation, 264 

water hyacinth and sediment transport pattern which can be seen clearly in satellite images (Fig. 265 

7). Satellite image acquired on Dec 1988 shows that huge weed formation in northern part of the 266 

lake and presence of these weeds will reflect the NDVI and EVI values, similarly image acquired 267 

on Dec 2017 shows that floating weed is cleaned up. The migration and formation of new mouth 268 

can be seen clearly on satellite image, old mouth became inactive due to siltation which affects 269 

the flow of water into the lagoon. In September 2000 Chilika Development Authority (CDA) 270 

created a new mouth by dredging the sand bar at the distance of 13km from the old mouth. 271 

 272 

Conclusions 273 

In this study we performed a trend analysis by using 29-years records of Landsat data, which can 274 

be effectively used for monitoring the dynamic changes happening in the coastal ecosystem. The 275 

robust trend of multi-spectral indices (NDVI and EVI) reveals the positive i.e. greening trend 276 

over the northern sector of Chilika Lake. We identified some dynamic changes over the study 277 

region which was analysed by taking temporal images. With 30m spatial resolution and 16 days 278 

temporal resolution, Landsat data can be quite useful for performing time series analysis to 279 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27448v1 | CC BY 4.0 Open Access | rec: 24 Dec 2018, publ: 24 Dec 2018



detect seasonal and annual trends over decades. 280 
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