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Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic

Sargassum with negative consequences both ecologically and economically. Based on

deep learning techniques, this study proposes a novel algorithm for floating and

accumulated pelagic Sargassum detection along the coastline of Quintana Roo, Mexico.

Using convolutional and recurrent neural networks architectures, a deep learning network

(named ERISNet) was designed specifically to detect this macroalgae along the coastline

through remote sensing support. A new dataset which includes pixels values with and

without Sargassum was built to training and testing ERISNet. Aqua-MODIS imagery was

used to build the dataset. After the learning process, the designed algorithm achieves a 90

% of probability in its classification skills. ERISNet provides a baseline for automated

systems to accurately and efficiently monitor algal blooms arrivals.
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ABSTRACT14

Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic Sargassum with

negative consequences both ecologically and economically. Based on deep learning techniques, this

study proposes a novel algorithm for floating and accumulated pelagic Sargassum detection along the

coastline of Quintana Roo, Mexico. Using convolutional and recurrent neural networks architectures, a

deep learning network (named ERISNet) was designed specifically to detect these macroalgae along

the coastline through remote sensing support. A new dataset which includes pixels values with and

without Sargassum was built to training and testing ERISNet. Aqua-MODIS imagery was used to build

the dataset. After the learning process, the designed algorithm achieves a 90% of probability in its

classification skills. ERISNet provides a baseline for automated systems to accurately and efficiently

monitor algal blooms arrivals.
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INTRODUCTION25

Pelagic Sargassum is formed by brown macroalgae S. fluitans and S. natans, and constitutes floating26

ecosystems serving as habitats and nurseries for important marine species like sea turtles, fishes, inverte-27

brates, and micro and macro-epiphytes (Rooker et al., 2006; Witherington et al., 2012). However, over the28

last seven years, Caribbean shores have experienced atypical massive shoals of pelagic Sargassum, with29

exceptional abundances during the summers of 2015 and 2018. Massive influx was observed in numerous30

Caribbean beaches linked with the accumulation of Sargassum spp. (hereafter Sargassum)(Gower et al.,31

2013; van Tussenbroek et al., 2017). Since 2011, these extensive off-shore Sargassum shoals have32

appeared in unprecedented ways in oceanic waters off the coast of northern Brazil (De Széchy et al.,33

2012; Gower et al., 2013; Sissini et al., 2017). Those shoals likely have origins in the North Equatorial34

Recirculation Region (NERR) (Schell et al., 2015; van Tussenbroek et al., 2017), suggesting that they did35

not emerge from the traditional northwestern Atlantic Ocean region known as “The Sargasso Sea”. With36

MODIS (Moderate Resolution Imaging Spectroradiometer) and MERIS (Medium Resolution Imaging37

Spectrometer) satellite images, it was possible to track a shift in their distribution in order to identify a38

new possible distribution source (Gower et al., 2013; Sissini et al., 2017).39

The biomass reported since 2011 has no precedent (van Tussenbroek et al., 2017; Rodrı́guez-Martı́nez40

et al., 2016). A crucial difference is that Sargassum does not remain in the open ocean, but rather washes41

ashore at the coast. The accumulated biomass has resulted in negative conditions both economically and42

ecologically (Hu et al., 2016; Schell et al., 2015).43

This excessive biomass along the coast due to decomposing Sargassum modifies beaches and increases44

bioerosion, thus having a direct influence on the tourist industry. The accumulation is also associated45
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with physical-chemical water change, anoxia, and generation of hydrogen sulphide (Louime et al., 2017).46

The decomposition of Sargassum biomass on the beaches is a disturbance agent that can also modify the47

physical, physiological and ecological processes in near-shore coral reef communities. The modified flow48

of organic matter caused by this disturbance could have negative effects at different scales. The negative49

effects would also affect tourism, local fisheries (Cuevas et al., 2018; Ferreira et al., 2009; Solarin et al.,50

2014), and benthic communities. The case of coral reefs is relevant, as they are the most threatened marine51

ecosystems in the world (Hoegh-Guldberg et al., 2007; Harvey et al., 2018). According to Spalding et al.52

(Spalding et al., 2017) coral reefs provide nearly US$ 35.8 billion in net benefits of goods and services to53

world economies each year. This includes tourism, fisheries, and coastal protection. Caribbean region54

represents US$ 1,853 million of those benefits. Annually around 10 million tourists visit the Mexican55

Caribbean (Rioja-Nieto and Álvarez-Filip, 2018). Economic loss caused by Sargassum arrival can reduce56

those benefits. In 2015 alone, the state government invested US$ 3 million to remove the macroalgae from57

tourist areas. More than 4400 workers were hired. In 2018, between June and August US$ 3.1 million58

were spent on wages for 450 workers.59

Through spectral water-leaving radiance or surface reflectance, remote sensing has served as the60

primary means to study ocean constituents suspended or dissolved in water (Dickey et al., 2006). Floating61

Algae Index (FAI) proposed by Hu et al. in 2009 has been the main method used in remote sensing to62

assess presence/absence of floating algae in the open sea (Hu, 2009). Specifically, a research has been63

done to assess and monitor pelagic Sargassum in the Western Central Atlantic, Yellow Sea, the Gulf of64

Mexico, and the Caribbean Sea (Putman et al., 2018). On the other hand, sensors with several spatial,65

temporal, spectral and radiometric features have been used for the study of Sargassum (Dickey et al., 2006;66

Hu et al., 2015; Cuevas et al., 2018). The use of platforms Aqua-MODIS, Terra-MODIS and Landsat67

imagery is highlighted due to their wide coverage and worldwide heritage, as well as being open-access68

datasets (Hu, 2009; Hu et al., 2015; Wang and Hu, 2016). Regarding the coasts of the Gulf of Mexico69

and the Caribbean Sea, Cuevas et al. (Hu, 2009; Cuevas et al., 2018) presents a methodology to detect70

Sargassum in the northeastern region of the Yucatan peninsula applying the ”Random Forest” algorithm71

to a set of Landsat 8 imagery previously selected. The previous studies are valuable contributions to the72

detection of floating vegetation like pelagic Sargassum. However, no study has dealt with the probability73

of presence of Sargassum along the coastline.74

From the optical point of view, the oligotrophic waters of the Quintana Roo coasts are transparent75

under non-sargasso conditions. In 2015 and 2018 specifically, due to the constant arrival of Sargassum, its76

decomposition caused nearshore murky brown waters, which in turn altered the nearshore water surface77

reflectance values (van Tussenbroek et al., 2017).78

An Artificial Neural Network (ANN) is a mathematical model inspired by the biological behavior79

of neurons and how they are organized. The ANNs are massive parallel systems with large numbers of80

interconnected simple processors. A single layer perceptron (SLP) is a feed-forward network based on a81

threshold transfer function. SLP is the simplest type of artificial neural network and can only classify82

linearly-separable cases (Jain et al., 1996). The multilayer Perceptron (MLP) is a generalization of the83

simple Perceptron and arose as a consequence of the limitations of said architecture in relation to the84

problem of non-linear separability. Minsky and Papert showed that the combination of several MLPs85

could be an adequate solution to treat certain non-linear problems (Minsky and Papert, 2017). Neural86

networks have had many applications in various areas of knowledge such as: control systems (Hunt et al.,87

1992), business (Vellido et al., 1999), manufacturing (Zhang and Huang, 1995) and medicine (Baxt, 1991)88

to mention just a few.89

Deep Learning (DL) was presented in Science magazine in 2006, since then multiple algorithms have90

been developed, among which convolutional neural network (CNN), recurrent neural network (RNN),91

stacked auto-encoder (SAE) and deep belief network (DBN). Many variants of deep learning algorithms92

are a combination of two or more of these algorithms (Zhang et al., 2018).93

DL is a subfield of machine learning inspired by the ANN and is formed by a set of algorithms94

that try to model high-level abstractions in data using architectures composed of multiple non-linear95

transformations (LeCun et al., 2015) In DL, a Convolutional Neural Network (CNN) are a type of ANN96

composed of multiple layers of convolutional filters of one or more dimensions, and are very effective for97

tasks of artificial vision, such as classification and segmentation of images (Schmidhuber, 2015).98

Another type of NN widely used in DL is the Recurrent Neural Network (RNN). An RNN implements99

a Long Short-term memory architecture (LSTM), which makes RNN an ideal tool for modeling and100
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classifying time series (Schmidhuber, 2015). Deep Learning has been used successfully in multiple areas101

such as biomedicine (Mamoshina et al., 2016), medicine (Greenspan et al., 2016), time series prediction102

(Weigend, 2018), speech recognition, computer vision, pattern recognition and remote sensing (Liu et al.,103

2017) among others.104

The main objective of this study is to analyze if we can detect Sargassum along the Mexican Caribbean105

coastline by using MODIS data and Deep Learning Networks with an accuracy of more than 80% . Under106

this view a new algorithm for Sargassum detection is presented. This algorithm is based on DL techniques.107

Hence, our aim was to classify the presence/absence of pelagic Sargassum along the coastline of Quintana108

Roo, Mexico using a NN and MODIS data. This study offers a challenge for remote sensing studies as109

it allows in the short and mid-term to provide a capable tool to determine variables allowing to detect110

Sargassum pixel by pixel.111

MATERIALS AND METHODS112

948 km of coastline of the state of Quintana Roo, Mexico was defined as the study area to test and to113

develop the proposed algorithms. Additionally, by using MODIS satellite information, a set of data114

containing official information about zones and dates with and without presence of Sargassum was also115

defined.116

Study Area117

We selected the entire coast of Quintana Roo, located in the eastern zone of the Yucatan Peninsula, Mexico.118

One-kilometer-sized MODIS pixels in front of the beach line were selected (from 21.496124 Latitude,119

-87.546677 Longitude, to 18.477211 Latitude, -88.293625 Longitude), bordering the coast of Quintana120

Roo Figure 1. This region is the main vacation destination in Mexico. In addition, the area is located121

where massive arrivals of Sargassum were recorded in 2015 (van Tussenbroek et al., 2017) and 2018.122

Figure 1. Study Area: Coastal zone of Quintana Roo. Represented by 948 pixels of 1 km2, close to the

beach line.

Dataset Definition and Processing123

To build the dataset, three components were developed: 1) A list of sites and dates with and without124

Sargassum based on official information compiled by the government of Quintana Roo (2018) and125

field work in 2015 and 2018; 2) sets of Aqua-MODIS imagery, both with and without Sargassum, for126
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the coast of Quintana Roo based on the list of dates and sites mentioned above 1; and 3) A software127

was developed (extract data.py) to add the list of sites and images set, which ultimately outputs the data set.128

129

Area and dates of interest130

The list of sites and dates with and without Sargassum used in this study was built as follows. First, a131

pixel list of the entire coastal zone of the state of Quintana Roo at a spatial resolution of 1 km was built.132

This pixel list included the following parameters: latitude, length, position on the x-axis, position on the133

y-axis, township, and date. With the support of Seadas software7, pixels from an AQUA-MODIS image134

with WGS84 projection were selected. These 948, one-kilometer-sized pixels represented all of the coast135

of Quintana Roo. Subsequently, based on official information from the state of Quintana Roo and field136

work, the pixels where Sargassum was observed, were labeled. The labeling was done for 29 different137

dates. A total of 115 different pixels were found with Sargassum.138

Selection of Aqua-MODIS swath imagery139

Based on the known Sargassum arrivals in the coastal zone of Quintana Roo, Aqua-MODIS swath images140

were also used in the construction of the dataset. The Julian day and the Universal Time Coordinated141

(UTC time) of all selected swath images (with and without Sargassum) were recorded! and then the PDS142

files (L0) were downloaded from MODIS OceanData§. In total, 80 PDS files were downloaded (42 files143

corresponding with Sargassum dates and 38 files without). After the processing and re-projection of all144

files, an RGB composition for each swath image was made to allow a visual quality check of each image.145

Due to the presence of clouds in the area of interest, a total of 19 images were discarded (eight images146

with Sargassum and eleven without). Afterwards, 30 files with Sargassum and 29 files without Sargassum147

remained as the imagery used in the development of the dataset. An example of these images is shown in148

Figure 2. Not all the images were ideal for network training, because of clouds.149

Figure 2. Sample of Aqua-MODIS imagery used in this study, (Day/UTC): a) From 2015 232/18:55,

from 2018: b) 92/19:20, c) 94/19:10, d) 158/19:10, e) 200/19:45 and f) 201/18:50.

Data Processing150

Data processing started with the swath images (PDS files) downloaded from the ocean color data website¶.151

Based on the software SeaDAS7.5.1, PSD file goes through different processing levels to evolve from152

7https://seadas.gsfc.nasa.gov/
 https://www.qroo.gob.mx/noticias/sargazo?buscar=page=0
!https://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/realtime.cgi
§https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/
¶https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/L0/
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level 0 (L0) to level 2 (L2). First, L0 file was processed to obtain the level 1A file (L1A). After that, the153

file GEO was created. Based in files L1A and GEO, level 1B file (L1B) was produced. Next, L2 product154

was created and then re-projected. Features of MODIS data processing levels can be consulted on the155

MODIS Nasa website�. Using latitude and longitude pixel-features and the in-house computer program156

(extract data.py), rhos and rhot MODIS data corresponding to the coastal zone were extracted. To avoid157

the Rayleigh scattering, rhos reflectances were used to build the dataset. The wavelength bands selected158

for this study were: 412, 469, 555, 645, 859, 1240 and 2130 nm. In the Pseudocode 1 the processing159

workflow is shown.160

Pseudocode 1 Scheme of data processing

1: database← empty

2: for all L0 datafiles do

3: L1A← modis L1A.py(L0 file)

4: GEO← modis GEO.py(L1A)

5: L1B← modis L1B.py(L1A, GEO)

6: L2← l2gen(L1B)

7: Reprojected← gpt.sh(L2)

8: Data← extract data.py(Reprojected)

9: append database(Data)

10: end for

11: return database

A database was built with the pixel data of each band for all selected dates. The dataset included 14161

different attributes and 4515 instances, of which 2306 corresponded to presence of Sargassum and 2209162

without. Additional features are shown in Table 1.163

Table 1. Dataset features

Dataset features

Number of Attributes 14

Data set Characteristics Multivariate

Attribute Characteristics Real

Associated Tasks Classification

Number of Attributes 14

Number of Instances 4515

Number of Clases 2

Number of Instances with Sargassum 2306

Number of Instances without Sargassum 2209

ERISNet a Deep Learning Network for Sargassum Detection164

ERISNet is a deep neural network designed to detect Sargassum along the coastline. ERISNet is inspired165

mainly on two types of architectures; Convolutional Neural Networks (CNN) and Recurrent Neural166

Networks (RNN). An issue present in virtually all models of Machine Learning is overfitting, therefore167

during the design of the proposed architecture, special attention was paid to maintaining the tradeoff168

between optimization and generalization of the network by using different mechanisms such as dropout,169

batch normalization and weight regularization.170

In Figure 3, the structure of the convolutional block is shown. This block it is formed by four171

components: Convolutional layer, RELU activation function, Batch Normalization, and Dropout operation.172

The objective of convolutional blocks is to efficiently extract characteristics or patterns from the173

input dataset. The main component of the block is a convolutional layer of 1D (dimension one). After174

�https://modis.gsfc.nasa.gov/data/dataprod/
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conducting numerous tests with different filters and sizes, the decision was made to use a total of [64, 128,175

128] filters with a size of [8, 5, 3].176

With the aim of avoiding the overfitting, three mechanisms were used: dropout regularization, weight177

regularization, and batch normalization. Dropout is one of the most effective and most commonly used178

regularization techniques for neural networks and is used to improve over-fit on neural networks. At each179

training stage, individual nodes are either dropped out of the net with probability 1− p or kept in the net180

with probability p, so that a reduced network is left; incoming and outgoing edges to a dropped-out node181

are also removed.182

Weight regularization is another common way to mitigate overfitting. This involved putting constraints183

on the complexity of a network by forcing its weights to take only small values, making the distribution184

of weight values more regular. There are two kinds of weight regularization: L1 and L2 regularization.185

L2 was used in the convolutional blocks of ERISNet. In L2 (see Equation 1) a “squared magnitude” of186

coefficient as penalty term to the loss function is added.187

L2(W ) = w2
1 +w2

2 + · · ·+w2
n (1)

The convolutional block uses a Batch Normalization operation to increase the network performance.188

Batch Normalization (BN), is a technique for improving the performance and stability of ANN, providing189

any layer in a neural network with inputs that are zero mean/unit variance (Ioffe and Szegedy, 2015).190

During the learning process, the type of initialization of weights could cause a digression to gradients,191

meaning the gradients have to compensate for the outliers, before learning the weights to produce the192

required outputs. BN regularizes this gradient by normalizing activations throughout the network. It193

prevents small changes to the parameters from amplifying into larger and suboptimal changes in activations194

in gradients.195

Another component that is part of ERISNet are the recurrent blocks, Figure 4. The main objective196

of these blocks is to provide memory to the ERISNet. Recurrent neural networks (RNN) are a special197

type of neural network widely used in problems of prediction in time series. Given their design, the RNN198

allows information to be remembered for long periods and facilitates the task of making future estimates199

using historical records. Unlike traditional neural networks, LSTM networks have neuron memory blocks200

that are connected through layers.These memory blocks facilitate the task of remembering values for long201

or short periods of time. Therefore, the stored value is not replaced iteratively in time, and the gradient202

term does not tend to disappear when the retro propagation is applied during the training process.203
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Finally, as in the case of convolutional blocks, recurring blocks also make use of batch normalization to204

improve network performance. As can be seen in Figure 5, ERISNet consists mainly of nine convolutional205

blocks and two recurring blocks.206
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Figure 5. ERISNet. Sargassum Deep Neural Network.

ERISNet was designed using the programming language Python version 3.7.0 and the library Keras207

2.2.4 with TensorFlow 1.10.0 as backend.208

TensorFlow is an open source library developed by the Google Brain Team for numerical calculation209

using data flow graphing programming. The nodes in the graph represent mathematical operations, while210

the connections or links in the graph represent the multidimensional data sets (tensors). Tensorflow has211

various automatic learning algorithms and other tools that make it ideal for the development of new212

methods. Keras is a Python library that provides a clean and simple way to create Deep Learning models213

on top of other libraries such as TensorFlow, Theano or CNTK.214

All the architectures presented in this work were developed and trained using a Lenovo Workstation215

with Intel Xeon EP processor, 64 GB of RAM, NVidia Quadro K5000 GPU running the Linux operating216

system Ubuntu 18.04 64 bits.217

RESULTS218

Statistical analysis with the information of bands was performed to evaluate the behavior of the current219

dataset. Next, two algorithms extracted from the literature based on neural networks and machine learning220

are investigated; these algorithms have shown good results when applied to classification problems similar221

to that of the present research. Finally, a comparative table is presented with the results of ERISNet and222

the other competitors.223

Basic Statistical Analysis224

When each of the corrected bands (rhos and rhot) of the generated data with and without Sargassum225

were averaged, small differences were observed. Only the averages corresponding to bands 859 and226

1240 nm were higher in the case of the presence of Sargassum. Therefore, a powerful algorithm-tool is227

needed to efficiently classify the small differences among the values of each pixel and thus classify the228

presence/absence of Sargassum. A basic statistical analysis of data, shows why 859 and 1240 nm are the229

bands which FAI index uses. Table 2 shows the means in the case of rhos bands.230

Table 2. Mean of the rhos band

rhos 412 rhos 469 rhos 555 rhos 645 rhos 859 rhos 1240 rhos 2130

Without Sargassum 0.131517 0.13489 0.141123 0.124477 0.227052 0.207291 0.085164

With Sargassum 0.114489 0.12090 0.133097 0.116607 0.247237 0.233480 0.084166

We have chosen a survey (Wang et al., 2017) showing a wide comparison between different classifica-231

tion algorithms by using more than 40 different classic datasets. In those studies, authors propose three232

new classification algorithms based on machine learning techniques and neural networks showing a good233

accuracy for the different datasets.234

In order to compare the performance of the proposed methodology, we have chosen two effective235

algorithms presented in 2017 by Wang et al. In Figures 6 and 8 the two neural networks architectures236

used for the comparison are shown.237
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Multilayer Perceptron238

The multilayer perceptron (MLP) it is defined as the base algorithm for comparison with the rest of the239

proposals. As it can be seen in Figure 6, the MLP used is composed of an input layer, three intermediate240

or hidden layers, and the output layer. Each of the intermediate layers is composed of 500 neurons that241

use the rectified linear unit (RELU) as an activation function. To improve the generalization of the neural242

network, a ”dropout” function with values of [0.2 0.2 0.3] respectively has been inserted at the end of243

each of the intermediate layers. Dropout, applied to a layer, consists of randomly dropping out (setting to244

zero) a number of output features of the layer during training. Finally, the network has a softmax layer245

which is widely used in the Multiclass single-layer classification. Formally, each of the blocks of the246

hidden layers it is described as shown in Equation 2.247

x̃ = f(dropout,p)(x)

y =W · x̃+b (2)

h = RELU(y)
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Figure 6. Multilayer perceptron (MLP)

The MLP was used to perform the classification of the whole dataset (4515 MODIS pixels). The248

dataset was divided in two groups: a training and test group each with approximately the same amount of249

data (see table 4). The learning process was carried out during 3000 epochs, presenting 100 data points in250

each one (batch size). In Figure 7, the result of the learning and test process is shown. On the one hand,251

the continuous line shows that the MLP has a good degree of optimization (close to 100%), which is to be252

expected given the learning capacity of this type of network. On the other hand, the dashed line shows the253

result of the testing process. During the testing process, a set of data which was never used throughout254

the training process was presented to the MLP in order to see the generalization capacity. As shown, the255

MLP has a good level of generalization, correctly classifying 83.76% of the test points. There is a wide256

difference between the optimization and generalization curves, which is usually an indicator of overfitting.257
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Figure 7. Multilayer perceptron accuracy
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Fully Convolutional Network258

Convolutional Neuronal Networks have shown a good performance in classification problems. The259

fundamental difference between a multilayer perceptron and a convolution layer is that MLP layers learn260

global patterns in their input feature space whereas convolution layers learn local patterns. The basic261

block of the FCN is composed of a set of filters that are responsible for the extraction of features from the262

dataset. RELU has been used as an activation function. At the end of the block, the FCN incorporates a263

new block called Batch normalization (BN). Batch normalization reduces the amount by which the hidden264

unit values shift around (covariance shift). To increase the stability of a neural network, BN normalizes265

the output of a previous activation layer by subtracting the batch mean and dividing by the batch standard266

deviation, getting ten times or more improvement in the training speed.267

In Figure 8, the FCN used is composed of three convolutional blocks: the first block of the network is268

composed of 128 filters with 8 elements each, the second layer is composed by 256 filters with 5 elements269

each, and the last block is composed of 128 filters with 3 elements each. The objective of this network is270

to extract from each of the blocks attributes of the data, from general the particular, thus resulting in a271

good representation of the information contained in the data. With this representation of the data, it is272

possible to correctly classify information into different classes. Each of the blocks of the hidden layers273

are formally described by Equation 3.274

y =W ⊗ x+b

s = BN(y) (3)

h = RELU(s)
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Figure 8. Fully Convolutional Network (FCN)

Like the MLP, the FCN was used to perform the classification of the whole dataset. With the aim of275

making a comparison on equal terms, both the dataset and the training parameters used for this model were276

the same as those presented in the MLP. Figure 9 shows the result of the FCN training and testing process.277

Similarly to the MLP, the FCN had a fairly high level of optimization and the power of generalization278

showed good results, correctly classifying the 86.38% of the data points. However, the difference between279

generalization and optimization suggest the possible presence of overfitting in the network once again.280

0 500 1000 1500 2000 2500 3000

Epochs

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Training

Validation

Figure 9. Full convolutional network accuracy
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ERISNet Validation281

At present there are multiple validation methods for neural networks where cross-validation is the282

most accepted. Cross validation is a statistical method used to estimate the skill of machine learning283

models. The cross-validation can be divided mainly into two groups: Exhaustive cross-validation and284

Non exhaustive cross-validation. Among the methods of Exhaustive cross-validation, the following stand285

out: Leave one out cross-validation (LOOCV), Exhaustive cross validation, Leave out of cross validation,286

while Non exhaustive cross validation highlights: k-fold cross-validation, Holdout method and Repeated287

random sub sampling validation.288

Due to the characteristics and size of the dataset used, k-fold was chosen as the cross-validation289

method of the ERISNet with k = 5. Figure 10 shows the k-fold validation scheme for k = 5. As observed,290

the data set was divided into k parts of which k−1 parts were used as a training set, while the remaining291

part was used as a validation set. In Equation 4, the results of the cross-validation are shown. ci expresses292

the number of correct classes within the dataset while ei corresponds to the number of classes correctly293

classified by the model.294

Training Training Training Training Testing

Training Training Training TrainingTesting

Training Training Training TrainingTesting

Training TrainingTraining TrainingTesting

TrainingTraining Training TrainingTesting

Figure 10. k-fold validation scheme

MPCEk =
1

k

k

∑
i=1

ei

ci

(4)

ERISNet was trained, tested, and compared with the rest of its competitors. As in the previous cases,295

the same criteria were used, that is, the total data set was used by using k-fold cross validation. The296

algorithm was trained during 3000 epochs with a batch size of 100 data points, the same seed of random297

numbers used by MLP and FCN was also used. As can be seen in Figure 11, unlike what happened in the298

case of the MLP and the FCN, the difference between the capacity of optimization and generalization of299

the network was lower, suggesting that there was no overfitting in the network during the training process.300

It is important to mention that the level of optimization of the network was less than its competitors,301

which suggests that if the network is trained during a higher number of epochs this could improve and the302

generalization could be higher. After the network training, ERISNet obtained a 90.08% success for the303

classification test points, implying an increase of 7% with respect to the MLP and 4.1% with respect to304

the FNC.305

Figure 12 shows a comparison on the generalization of the MLP, the FCN, and ERISNet. As illustrated,306

the behaviors of the MLP and the FCN are very similar. However, ERISNet presented an increase in307

the generalization capacity. Based on all the previous tests, it is concluded that the proposed ERISNet308

algorithm is capable of classifying more precisely new points than other studies. In Table 3, a summary of309

the test results is shown.310

Table 3. Accuracy results

Mean Accuracy Best accuracy

ERISNet 87.23 % 90.08 %

FCN 84.42 % 86.38 %

MLP 83.51 % 83.76 %
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Figure 11. ERISNet network accuracy
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Figure 12. Comparison of the results: MLP vs FCN vs ERISNet

DISCUSSION311

This is the first study on Sargassum detection along the coastline of the Caribbean Sea. Therefore, there312

are no algorithms or methodologies that allow us to make a direct comparison between our proposal and313

other studies. However, as a first step, we have calculated the FAI index to the dataset used in the present314

study.315

FAI Index316

Figure 13 shows the boxplot diagram for the FAI index results. A clear statistical difference can be317

observed between both datasets. It can be seen that the median of the pixels FAI in the presence of318

Sargassum is slightly higher than the median of the pixels without Sargassum. The median of the pixels319

without Sargassum is closer to zero.320

It is important to note that 50% of the data without Sargassum are less compact than that of those321

with Sargassum, which implies a greater distribution of the values within this 50%. The largest difference322

appears in the lower whiskers of the Sargassum boxplot. This difference indicates the FAI value for those323

points reflects a greater bias with respect to those points without the presence of Sargassum. Table 4324

shows the results for the calculation of the traditional statistical values made to the FAI index on the data325

set.326

Sargassum detection is a complex issue, for that reason dataset had to be built with official information327

of dates, sites and with field work. Our dataset is significative to provide remote sensing information328

about Sargassum, until now not available for this region. Hence, it is possible to apply the dataset in329

other methodologies or for training other algorithms. Thus to compare the classification performance of330

ERISNet, were chosen two effective algorithms (Wang et al., 2017). As shown in Figure 12, ERISNet331

obtained the best performance.332
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Table 4. FAI index for the dataset

FAI Sargassum FAI without Sargassum

pixels 2306 2209

mean 0.088595 0.072789

std 0.109495 0.081089

min -0.845114 -0.845114

25% 0.001938 0.000794

50% 0.087812 0.051965

75% 0.164528 0.134386

max 0.317351 0.315139

Sargassum detection along the coastline is a challenge for conventional techniques used in remote333

sensing. The presence/absence of Sargassum on satellite imagery along the coastline is not as clear as in334

the open sea, because there are several land sea ecosystems. Under these conditions the high classification335

performance of ERISNet allows to observe the small differences between the values of the bands used for336

the classification and to determine the presence or absence of Sargassum in each pixel with a maximum337

accuracy of 90.08%. This is highlighted for an ANN, since increase 1% unit in the classification requires338

high performance design and implementation.339

Traditionally, detection of suspended matter in open waters is accomplished through satellite products340

or through well established indexes (Hu, 2009; Hu et al., 2015, 2016; Cuevas et al., 2018). Therefore, the341

present study is innovative, since it has a high classification accuracy of pixels with presence/absence of342

Sargassum, using as input data the corrected bands rhos and rhot. The present research showed that under343

conditions of high concentration of Sargassum, as those presented along the coast of Quintana Roo in344

2015 and 2018, it was possible to detect Sargassum with MODIS data.345

Although the coast of the Mexican Caribbean has high economic and ecological importance, there is346

no a monitoring system that contributes to make decisions against threats of massive arrival of Sargassum.347

Therefore, the present work is very relevant for this region, because offers the basis for an early warning348

system design.349

ERISNet could be applied to other coastal areas of the Caribbean region, thereby we propose to design350

an artificial neural network capable to detect Sargassum in open waters and to build new training datasets351

based on satellite products and well established vegetation indexes.352

CONCLUSIONS353

Based on CNN and RNN architectures, ERISNet was developed specifically to detect Sargassum along354

the coastline of Quintana Roo, Mexico. To the best of our knowledge, this is the first method using355

Deep Learning to detect pelagic Sargassum along the coastline that considers not only floating but also356

accumulated Sargassum. Based on Aqua-MODIS swath imagery and well-known sites and dates with357

and without Sargassum along the coastline of Quintana Roo, a dataset was built to train and test all the358

algorithms used in this study. After the learning process, ERISNet achieved a maximum 90.08% of359

probability in the classification of pixels with and without Sargassum. Additionally, using the dataset for360
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the present study the FAI index was calculated. The measures of central tendency of the FAI index for361

data with and without Sargassum are clearly different. However that index does not offer a percentage362

efficiency value pixel-by-pixel. Hence, ERISNet goes further as it offers a quantitative value of its own363

performance.364

Several studies have evaluated the threats that coastal ecosystems of southern Quintana Roo have365

suffered in the last decades (Alvarez-Filip et al., 2013; Arias-González et al., 2017). However, there is366

little information that analyzes habitat degradation by Sargassum, as it is a relatively new stressor adding367

to the threats that already exist in the Caribbean. Therefore, an early detection system to alert about368

massive Sargassum arrivals is undoubtedly a challenge for the research of vulnerable coastal zones in the369

Caribbean, and for the understanding of the threats to these coastal ecosystems.370
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