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The cannabis industry has gained momentum and global acceptance recently, culminating

in the legalization of adult use at the federal level in Canada, a first among G20 countries.

Inherent to legalization, a highly regulated regime has emerged, mostly centered on end

user safety, restriction of access to youth, and diversion of market shares away from the

black market and organized crime. The lack of authentication of cannabis varieties

remains as an issue often unaddressed by the regulators, although this has the potential

to seriously hamper research and the medical application of cannabis derived products.

Here, we extend upon previous work that aims to classify cannabis accessions based on

their dominant terpene profiles, focusing on four main informative terpenes, beta-

myrcene, terpinolene, limonene and beta-caryophyllene. We identify three major terpene

groups and present a simple genetic-based tool to bridge the variety identification gap and

to enable the prediction of terpenoid expression in vegetative cannabis. This genetic tool

offers promise to sorting out the strain name game that has been ongoing, thus providing

greater transparency in the industry and contributing to an enhanced understanding of

cannabis medicine for the end user.
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ABSTRACT14

The cannabis industry has gained momentum and global acceptance recently culminating in the legaliza-

tion of adult use at the federal level in Canada, a first among G20 countries. Inherent to legalization, a

highly regulated regime has emerged, mostly centered on end user safety, restriction of access to youth,

and diversion of market shares away from the black market and organized crime. The lack of authentica-

tion of cannabis varieties remains as an issue often unaddressed by the regulators, although this has

the potential to seriously hamper research and the medical application of cannabis derived products.

Here, we extend upon previous work that aims to classify cannabis accessions based on their dominant

terpene profiles, focusing on four main informative terpenes, beta-myrcene, terpinolene, limonene and

beta-caryophyllene. We identify three major terpene groups and present a simple genetic-based tool to

bridge the variety identification gap and to enable the prediction of terpenoid expression in vegetative

cannabis. This genetic tool offers promise to sorting out the strain name game that has been ongoing,

thus providing greater transparency in the industry and contributing to an enhanced understanding of

cannabis medicine for the end user.
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INTRODUCTION28

State-mandated cannabis testing regulations have resulted in large databases from the analysis of chemical29

composition of thousands of individual cannabis flower samples from several artificially restricted30

geographical regions (e.g. Nevada (Speck Michael and I), California: (1), (Russo Ethan B. and M.)). A31

great advantage of these detailed chemical databases is that they can serve as the basis for the development32

of a chemotaxonomic classification scheme outside of current cultivar naming by strain. Of the roughly 14033

identified terpenoids in cannabis, between 17 to 19 are the most useful in defining a cannabis chemotype34

(e.g.(Hazekamp and Fischedick)) and perhaps as few as three could suffice to provide discrimination of35

chemotypes in drug-type (type 1) cannabis (Speck Michael and I). Using chemometrics on cannabinoid36

and terpenoid expression data to segregate accessions into clusters provides the initial model on which to37

base targeted sequencing based on co-segregation of genetic markers associated with terpene expression.38

Correlating the expression of diagnostic terpenes with variation at genetic loci thus offers the opportunity39

to identify informative mutations or single nucleotide polymorphisms (SNPs) in the cannabis genome that40

are associated with terpenoid expression (3). In contrast to chemotypic data analyses, genetic markers41

can be assayed at the vegetative stage, and in a real-time cost-effective manner using several variations42

of the polymerase chain reaction (PCR), perhaps as early as the seedling stage. In the present study,43

we aim to apply a previously developed cannabis clustering model which suggests that type I cannabis44
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accessions segregate into three major classes based on their dominant terpene expression in finished flower45

(Speck Michael and I): type 1A (beta-myrcene), type 1B (terpinolene, gamma-terpenine) and type 1C46

(limonene, beta-caryophyllene). After validating this chemotypic model in a large dataset of 5,909 samples47

from Nevada, we selected a subset of 70 samples for which we generated genotyping-by-sequencing48

data. We show that we can reduce the number of informative markers to 18 highly informative SNPs,49

allowing the prediction of terpene class and individual accession identity. We further validated this in50

silico approach to PCR based assays for end-point genotyping.51

METHODS52

Chemotyping of large scale population samples53

Cannabinoid and terpenoid analyses followed the approach described in Orser et al. (2018) (Speck Michael and I)54

and was extended to a total of 5,909 individual samples. Briefly, Cannabinoid certified reference stan-55

dards for THCA, CBDA, delta-9 THC, CBD, tetrahydrocannabinolic acid (THCV), cannabidivarin56

(CBDV), cannabigerol (CBG), cannabigerolic acid (CBGA), cannabichromene (CBC), delta-8 THC, and57

cannabinol (CBN) were obtained from Cayman Chemical (Ann Arbor, MI) as 1.0 mg/mL solutions in58

methanol. Certified reference standards of the following terpenoids used in this study were obtained59

from Restek (Bellefonte, PA): caryophyllene-oxide, bisabolol, alpha-pinene, beta-myrcene, beta-pinene,60

gamma-terpinene, limonene, beta-caryophyllene, humulene, trans-nerolidol, gerinol, camphene, guaiol,61

D-3-carene, p-cymene, eucalyptol, terpinolene, ocimene, p-cymene. Cannabinoid analysis was under-62

taken using HPLC-DAD using an Agilent Technologies 1260 UPLC system (Santa Clara CA) equipped63

with a G4212A DAD, G1316C temperature-controlled column compartment, G4226A autosampler,64

and G4204A quaternary pump. Terpenoid analyses was undertaken using Headspace GC-MS on an65

Agilent 7890B GC/7697A Headspace/5977A mass spectrophotometer equipped with a DB-624UI, 30m x66

0.25mm ID x 1.40 um (cat. 122-1334UI) and Agilent 5181-8818 split/splitless liner, following Orser et al.67

(2018)(Speck Michael and I).68

Genotyping-by-sequencing69

A subset of 70 samples belonging to all three terpene classes was sent to Medicinal Genomics Corporation70

(MGC; Woburn, MA) for genotyping-by-sequencing (GBS) using a Reduced Representation Shotgun71

(RRS) sequencing with NspI restriction digestion and libraries run on an Illumina’s R© short read sequencer72

and assembled by MGC into individual VCF files. The output yielded a total of 180,000 SNPs per73

accessions. The data was filtered for MAF between 0.1 and 0.9 and with a minimum depth of 30x, no74

missing data and assembled into a single VCF file containing a total of 1,408 SNPs using the R package75

vcfR 1.6.0 (Knaus and Grünwald).76

Statistical Analyses77

The genotypic file containing 1,408 SNPs was loaded into the R package adegenet 2.1.1 (4) using the78

vcf2genind function. The clustering inferred using the chemotypic data was imposed on the genetic dataset79

by defining it as a covariate to the analyses. Discriminant analyses of principal component (DAPC(5))80

when the applied to the dataset using the predefined clusters and the resulting plot was visualized using81

the scatter and compoplot functions, returning scatterplots and membership probabilities to individual82

clusters. In order to evaluate the contribution of alleles to a given principal component and reduce the83

number of SNP markers to a minimal, we extracted the loadings from the DAPC using the loadingplot84

function. We selected a total of 38 SNPs from the 1,408 SNP dataset for further validation.85

Validation of highly informative SNPs86

The version of the cannabis reference genome assembly used in this study (Cansat3, Purple Kush; (10))87

consists of over 135’164 scaffolds and is highly incongruous. As such, we sought to validate the in silico88

generated dataset from RRS sequencing with a low throughput, in house approach. We designed primer89

pairs for the 38 SNPs and used an end-point genotyping approach based on the KASP assay chemistry90

(LGC Genomics, Beverley, MA), a competitive allele-specific PCR that enables bi-allelic scoring of SNPs91

and insertions and deletions (Indels) at specific loci based on dual FRET (Fluorescent Resonance Energy92

Transfer). We extracted DNA from sixty-nine (69) individuals which were previously genotyped using93

the GBS pipeline were typed at all 38 SNPs using the Sensativex DNA extraction kit (MGC, WOburn,94

MA) following the manufacturer’s instructions. The reactions were undertaken in 10ul volume on a95
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Figure 1. (A) Principal Component Analyses of dataset from Orser et al., 2018(Speck Michael and I),

outlining the three clusters corresponding to chemotypes: 1A, myrcene dominant, 1B Limonene and

caryophyllene dominant, 1C Terpenolene dominant. Mean plots for (B) Terpenolene, (C) Limonene, (D)

myrcene and (E) caryophyllene.

Bio-Rad CFX96 (Bio-Rad, Hercules, CA), with the following cycling parameters: 94C 15 minutes, 94C96

20 seconds, 61C, 60 seconds touchdown protocol (drop - 0.6C / per cycle) until achieving a final annealing97

temperature of 55C, 94C 20 seconds, 55C 60 seconds for 26 cycles, followed by a read step at 37C. Allele98

calling was undertaken using the Bio-Rad software, only unambiguous calls were retained.99

RESULTS AND DISCUSSION100

Chemotyping and clustering101

The chemotypic data demonstrated that cannabinoid data was not discriminatory of inferred groups, but102

instead, the terpenoid data, particularly the top four terpenes, beta-myrcene, beta-caryophyllene, limonene,103

and terpinolene were highly predictive of cluster membership in the large chemotypic dataset (Figure. 1).104

Of interest, the ubiquitous nature of beta-myrcene in both type 1A and type 1C accessions make it that105

discrimination between these two groups requires the addition of beta-caryophyllene to clearly separate106

type 1C from type 1A accessions (Figure. 1).107

Genotyping, prediction of terpene classes and variety identity108

Genotyping by sequencing rendered a total of 1,409 SNPs with no missing data in the 70 accessions. The109

DAPC approach returned a total of 38 SNPs that were highly informative and results in similar clustering110

as the full dataset (https://figshare.com/s/7b21cd6ed6505a8db1e0). These SNPs were developed into111

KASP assays and the 38 primer pairs were typed in 69 individuals for which DNA was available. 6 primer112

pairs failed to provide consistent amplification and were thus discarded. An additional 14 loci were found113

to differ between the GBS and KASP assays and were found to be monomorphic in all samples typed114

with KASP, as such these were also discarded from the dataset. The remaining 18 SNPs produced reliable115

amplification, proved to be polymorphic in the population at hand and was concordant with the in silico116

data generated by GBS.117

The 18 polymorphic SNPs were used to repeat the DAPC clustering and rendered very similar118

membership assignment to that of the full dataset with 1,409 SNPs (Figure 2). In addition to faithful119

prediction of terpene class, this data also provides an individual barcode that can be used to verify the120

identity of a given accession. Given that the 18 markers can each have two possible alleles, there is121

a total of 262,144 possible combinations of alleles, meaning that this system can accommodate over122

250’000 unique varieties. No two accessions in the dataset contained identical multi-locus genotypes,123

but three pairs of accessions with identical names were found to have divergent multi-locus genotypes124

and incidentally also fell into different terpene classes (Strawberry Lemonade, Super Blue Dream and125
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Figure 2. (A) Output from DAPC outlining the three clusters corresponding to chemotypes: 1A,

myrcene dominant, 1B Limonene and caryophyllene dominant, 1C Terpenolene dominant. (B)

Membership probability demonstrating congruence between 1409 and 18SNP dataset in terms of

assignment to chemotypes.

Sour Tsunami; supplementary Figure 1). Which accession represent the original and which represents the126

boot-legged version remains to be established by the cultivators.127

The clustering of cannabis varieties using chemotypes is gaining in popularity and recent studies128

in isolated markets such as New Mexico are emerging and providing strongly congruent data to that129

presented here (e.g. (7)). While we show that one can reduce the number of terpenes analyzed to a group130

of four terpenes, the equipment, skill sets, calibration and other technical requirement may hamper the131

application of chemotyping to cannabis clustering. The growing medium and environmental conditions132

are also expected to influence quantity and quality of terpene expression, as such rendering chemotypic133

data as indirect measures of a genetically determined trait. Here we aim to bridge this gap by proposing134

the use of genetic markers in the form of optimized single nucleotide polymorphisms that can be typed in135

house with relatively inexpensive qPCR systems (e.g. Chai-bio openQpcr). These assays can be used to136

predict the chemotype of a cannabis plant in its vegetative state, without requiring to wait for flowering to137

be initiated or completed. An ancillary advantage of this approach is it provides an individual barcode138

in the form of a multi-locus genotype that can be used to identify and confirm the identify of cannabis139

accession. So long and thanks for all the fish.140
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Figure 1(on next page)

PCA on chemotypes

(A) Principal Component Analyses of dataset from Orser et al., 2018, outlining the three

clusters corresponding to chemotypes: 1A, myrcene dominant, 1B Limonene and

caryophyllene dominant, 1C Terpenolene dominant. Mean plots for (B) Terpenolene, (C)

Limonene, (D) myrcene and (E) caryophyllene.
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Figure 2(on next page)

DAPC on genotypes

(A) Output from DAPC outlining the three clusters corresponding to chemotypes: 1A, myrcene

dominant, 1B Limonene and caryophyllene dominant, 1C Terpenolene dominant. (B)

Membership probability demonstrating congruence between 1409 and 18SNP dataset in

terms of assignment to chemotypes.
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