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Background

A trivial logic suggests that aging is a product of damage induced by natural processes in the 
organism like reactive oxygen species (Harman, 1956) or random somatic DNA mutations leading to 
cell and tissue dysfunction (Failla, 1958; Szilard, 1959). However, a causative relationship between 
damage and aging is not proved experimentally yet. The large size of the eukaryotic genome makes it 
difficult to assess the effect of DNA mutations on aging making yeasts as a suitable experimental 
model due to the well-characterized small yeast genome with significant conservation of proteins of the
DNA repair pathway between yeast and higher eukaryotes (Bitterman et al., 2003). However, 
experiments on yeasts do not prove that DNA mutations cause aging (Kaya et al., 2015). Indeed, living 
organisms are open systems adjusting to keep homeostasis and aging cannot be explained as a process 
of “wear and tear” as it goes in inanimate closed systems suffering under the second law of 
thermodynamics. The internal system of repair becomes ineffective during the course of an individual 
life presumably due to an evolutionary purpose (Mitteldorf, 2010).

Transposons and evolution of aging

Limited lifespan provides flexibility in the evolution of species but this statement was opposed 
because in the current mainstream evolutionary theory individual selection has a more significant 
weight in evolution. This statement based on an argument that selection conducted only on protein-
coding genes. In this case, it is not clear why evolution lets evolve genes that decrease the fitness of a 
single living being. For instance, the protein-coding genes comprise merely 1.5% of the human 
genome. However, about half of the human genome is composed of transposable elements 
(transposons). Barbara McClintock believed transposons help to promote evolution and adaptations of 
the organism (McClintock, 1984). Contrary, others consider transposons are parasitic genetic elements 
using bodies as their carriers for limitless expansion (Doolittle and Sapienza, 1980; Orgel and Crick, 
1980). Nowadays, we can see a multifaceted impact of transposons on the living organism. 
Transposons increase a range of phenotypic variability facilitating the adaptation of genomes to their 
environment (Evsikov and Marín de Evsikova, 2016). Also, transposons could induce the transition 
from unicellular to multi-cellular life in the past (Koonin, 2016) and cause reproductive isolation and 
speciation (Serrato-Capuchina and Matute, 2018). It reveals transposons as an important and influential
driving force of evolution leading to discussions that transposons may increase the significance of 
higher levels of selection (Brunet and Doolittle, 2015). If it is true, transposon-driven evolution 
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promotes fitness a whole species over an individual organism. It paradoxically merges two contrary 
opinions of beneficial and detrimental effects of transposons in the organism.

Retrotransposons cause genome instability

Transposons are divided into two broad classes: DNA transposons and retrotransposons different in 
the mechanism of action. DNA transposons act as a “cut-and-paste” tool without making additional 
copies of these genetic elements. Retrotransposons act as a “copy-and-paste” tool using reverse 
transcriptase for producing additional copies of this type of transposons. This mechanism made 
retrotransposons the largest class in the human genome. For instance, the activity of retrotransposons 
increase with age in nearly every aging model and considered to promote genome instability during 
aging (Moskalev et al., 2013). This phenomenon is accompanied by a decrease in repressive 
heterochromatin with aging that suppresses the expression and mobility of retrotransposons (Moskalev 
et al., 2013; Wood and Helfand, 2013). High activity of retrotransposons and decrease of 
heterochromatin is also observed in cancer cells (De Cecco et al., 2013). Genome instability is driven 
mostly by L1 retrotransposons by generating double-strand breaks (Belancio et al., 2010; Gasior et al., 
2006). 

Lamina-associated domains are involved in normal and premature aging

Interestingly, the repressive heterochromatin is associated with peripheral areas of the nucleus and 
overlapped with lamina-associated domains (LADs). LADs are featured by gene scarcity and the 
repetitive genome. The borders of LADs are marked with the insulator protein CTCF, CpG islands, 
gene promoters and high expression of genes (Guelen et al., 2008). Also, the movement of these LADs 
away from the nuclear periphery is associated with the increase of gene expression (Peric-Hupkes et 
al., 2010). Nuclear lamina serves an anchor for LADs connected with repressive heterochromatin 
(Gibcus and Dekker, 2013). Thus, the detachment of LADs due to degradation of lamin proteins leads 
to massive derepression of retrotransposons. This mechanism explains how defects in lamin proteins 
cause premature aging due to mutation of the lamin-coding LMNA gene in Hutchinson-Gilford 
progeria syndrome. The same process occurs during of normal aging. For example, cell nuclei from old
individuals acquire defects similar to those of Hutchinson-Gilford patient cells, including changes in 
histone modifications and increased DNA damage (Scaffidi and Misteli, 2006). Additionally, 
interactions with the nuclear lamina exhibit oscillating patterns regulating expression of circadian genes
(Zhao et al., 2015). 

Age-associated patterns in DNA and histone methylation

Loss of heterochromatin is also accompanied by the global loss of DNA methylation. Age-
associated demethylation is correlated with a certain type of retrotransposons: Alu and HERV-K 
(Jintaridth and Mutirangura, 2010). Replicative senescence in human cells exhibits patterns of global 
DNA hypomethylation and local hypermethylation. Hypomethylation occurs preferentially in LADs. 
Hypermethylation arises in CpG islands including tumorigenic loci, associated with key developmental
genes. Changes of hypermethylation in replicative senescence are similar to those in cancer 
(Cruickshanks et al., 2013). In contrast, patterns of hypomethylation are different for aging and cancer. 
Hypomethylation in H3K4me1 is observed preferentially in aging, while the loss of DNA methylation 
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in cancer was mostly associated with H3K9me3 marks (Pérez et al., 2018). H3K4me1 is a mark of the 
chromatin remodeling complex BAF linked to the activity of p53 (Local et al., 2018). Therefore, 
normal p53 activity determines its antitumorigenic effect. Hypermethylated promoters are associated 
with Polycomb repressive complexes (Widschwendter et al., 2007) targeting bivalent chromatin 
(Rakyan et al., 2010). Inflammation induces expression of Jmjd3 demethylase due to the presence of 
inflammatory cytokines. Jmjd3 targets H3K27me3 histone and represses PcG target genes associated 
with the polycomb repressive complex (De Santa et al., 2007). Interestingly, the epigenetic clocks 
based on DNA methylation demonstrate paradoxically high correlation with chronological age (above 
0.95) (Hannum et al., 2013; Horvath, 2013). Therefore, epigenetics is directly linked to aging 
processes. Epigenetic aging is also related to increased likelihood of cancer incidence through 
stabilizing stem cells features (Teschendorff et al., 2010). Moreover, epigenetic aging correlates with 
overall survival in several types of cancer (Lin and Wagner, 2015). Increased epigenetic age was 
associated with the increase of fatality and recurrence of cancer (Ren et al., 2018). 

Oxidative stress and hypomethylation

Hypermethylation triggered by changes in signaling pathways, while hypomethylation looks like a 
result of stochastic processes (Marttila et al., 2015). The stochastic nature of global hypomethylation is 
likely a consequence of oxidative stress. Although there is no causal relationship between aging and 
oxidative stress triggered by reactive oxygen species (ROS) (Doonan et al., 2008; Stuart et al., 2014), 
ROS may have a role in cellular signaling and cause DNA hypomethylation (Afanas’ev, 2013). This 
mechanism can be explained through oxidation of 5-methylcytosine that leads to loss of markers of 
DNA methylation (Valinluck and Sowers, 2007). The increase of ROS during aging is presumably 
induced with chronic inflammation and innate immune response. Increased ROS production often is 
associated with mild hypoxia (Pialoux et al., 2009). Hypoxia is induced by the STAT3 signaling 
pathway (Niu et al., 2008) that is vital in immune system response including also the mTOR signaling 
(Saleiro and Platanias, 2015).
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Figure 1. Interactions of signaling pathways mediated by antiviral response to endogenous retroviruses 
expression leads to genome instability, increased ROS production and epigenetic modification

Chronic inflammation, ROS, and epigenetics

The fact that increased ROS production is induced by inflammation and cause global 
hypomethylation with age is consistent with facts when accelerated epigenetic age is associated with 
activation pro-inflammatory and interferon pathways (Irvin et al., 2018; Levine et al., 2018). Moreover,
patterns of methylation associated with mortality during aging reveal a genetic regulatory network 
focused on NF-kB (Jylhävä et al., 2016). Indeed, inhibition of NF-κB reduces oxidative stress and 
delayed cellular senescence leads to a suggestion that inflammation is considered as a culprit of 
senescence (Osorio et al., 2012; Salminen et al., 2008; Tilstra et al., 2012). NF-κB inhibits 
gonadotropin-releasing hormone (GnRH) in the hypothalamus (Zhang et al., 2013) reducing the 
production of sex hormones and triggering reproductive fading. Moreover, NF-κB p65 subunit 
represses the Nrf2-antioxidant response element (ARE) pathway (Liu et al., 2008). Thus, inflammation 
increases ROS production through suppression of anti-oxidant pathways and inducing hypoxia. 
Activation of NF-κB reduces the activity of p53 and increases the likelihood of cancer (Gudkov et al., 
2011). 
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Figure 2. Endogenous retroviruses promotes NF-kB upregulation leads to excessive cell proliferation 
and tumorigenesis.

Autophagy and energy metabolism

Cellular senescence is determined by interactions of the p53 and mTOR signaling. The mTOR 
signaling pathway is vital to accumulate energy-storing substances that are necessary for intensive 
growth and cell proliferation. However, the p53 signaling pathway prevents cell dedifferentiation and 
proliferation leading to cell overload with redundant metabolites and impaired cell self-cleaning. Thus, 
the mTOR-induced autophagy inhibition promotes cellular senescence in p53-arrested cells 
(Korotchkina et al., 2010). Moreover, innate immune response induces PI3K-Akt-mTOR signaling 
pathway that is a major regulator of macrophages (Covarrubias et al., 2015). Therefore, the innate 
immune response is important in modulation the mTOR pathway. Also, mTOR activation during aging 
contributes to a lower induction of autophagy (Romero et al., 2016). Autophagy plays a major role in 
tackling cellular junk. Aspects of autophagy include lipid metabolism through lipophagy (Singh and 
Cuervo, 2012; Singh et al., 2009), removing dysfunctional mitochondria (Sarparanta et al., 2017) and 
also eliminating damaged portions of the endoplasmic reticulum (Bernales et al., 2007). The mTOR 
signaling pathway regulates many fundamental metabolic and physiological processes, including lipid 
metabolism. mTOR is a central regulator of lipid metabolism, regulating not only lipogenesis and 
lipolysis but also adipogenesis (Lamming and Sabatini, 2013). Pro-inflammatory cytokine TNF-alpha 
leads to increased insulin resistance (Hotamisligil, 1999), and induces mTOR (Ozes et al., 2001). 
Senescence-associated β-galactosidase (SA-β-gal)-stained cells is linked with mTOR activity (Sung et 
al., 2018). mTOR activation is mediated through TLR activation  (Schmitz et al., 2008). For example, 
toll-like receptors 4 (TLR4) affects lipid uptake and foam cell formation through mTOR (Banerjee et 
al., 2018) and inflammation-induced foam cell formation results in atherosclerosis (Angelovich et al., 
2015). 
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Extracellular matrix and stem cells 

Chronic inflammation may also determine the remodeling of extracellular matrix and visual aging in
the skin through the action of matrix metalloproteinases (MMPs). NF-kB activity up-regulates MMP-
1,-3 and -9 (Bond et al., 2001). Matrix metalloproteinases cause extracellular matrix remodeling  
(Stamenkovic, 2003) through degeneration of its structural components mostly collagen. Extracellular 
matrix has fundamental importance in regulating epidermal stem cells maintenance, proper 
mobilization, and differentiation (Chermnykh et al., 2018). Extracellular matrix controls both 
embryonic and adult stem cell behavior (Ahmed and ffrench-Constant, 2016). Down-regulation of stem
cell maintenance due to chronic inflammation leads to stem cells depletion (Rosengardten et al., 2011). 
Therefore, stem cells depletion during aging may be explained due to inflammation-mediated 
extracellular matrix remodeling through MMPs.

Inflammation-mediated degeneration

Chronic inflammation during aging also promotes catabolic processes leading to complex body 
degeneration. Pro-inflammatory cytokines TNF-alpha and IL-1 induce inflammation-mediated 
osteoporosis (Lacativa and Farias, 2010). Chronic inflammation causes frailty (Fulop et al., 2015). 
Sarcopenia also is associated with chronic inflammation through an inflammatory marker – C-reactive 
protein (Bano et al., 2017). Circulating levels of another pro-inflammatory cytokine IL-6 determines 
the decrease of muscle mass during cancer (Carson and Baltgalvis, 2010). Frailty, sarcopenia, and 
immunosenescence appear to share common inflammatory drivers (Wilson et al., 2017). 

Chronic inflammation interactions with endogenous retroviruses

The effect of chronic inflammation induced by innate immune response explains epigenetic 
alterations, increased ROS production, mild hypoxia and genome instability due to retrotransposons 
derepression. Among retrotransposons, production of viral proteins by endogenous retroviruses provide
a clue for the innate immune response system. Viral proteins can be detected by toll-like receptors 
(TLRs) that recognize pathogen-associated molecular patterns (PAMPs) leading to activation of the 
NF-κB and interferon pathways (Kawasaki and Kawai, 2014). Endogenous retroviruses are suppressed 
during embryogenesis by KRAB-ZFP proteins. Hypermethylation of a Cluster of KRAB-ZFP genes on 
Chromosome 19 in cancer (Lleras et al., 2011) reveals a role of endogenous retroviruses in cancer and 
aging because both have similar patterns of hypermethylation. For example, activation of HERV-K 
envelope protein is essential for tumorigenesis and metastasis of breast cancer cells (Zhou et al., 2016) 
due to stimulation of the innate immune system by endogenous viruses and therefore initiating the 
autoimmune response (Nexø et al., 2016). Transmembrane unit in the envelope of endogenous viruses 
also induces immunosuppression to evade the adaptive immune response promoting inability of 
adaptive immune system to suppress tumors  (Morozov et al., 2013). HERV-K viral proteins may be 
biomarkers and/or tumor-associated antigens (Li et al., 2017). In contrary, the transcription of HERV-K 
was observed in normal human cell physiology (Schmitt et al., 2015). This collision may be explained 
through mutual antagonism between NF-kB and steroid hormones (McKay and Cidlowski, 1998). In a 
healthy organism, normal level of steroid hormones prevents inflammation induced by viral particles 
from endogenous viruses. 
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Figure 3. Endogenous retroviruses may provide senescent phenotype by inducing chronic inflammation

Dynamics of endogenous retroviruses and the endocrine system

Endogenous retroviruses induce the innate immune system and prolonged chronic inflammation  
(Hurst and Magiorkinis, 2015). Human endogenous retroviruses could trigger an innate immune 
response by producing viral particles that are similar the pathogen-associated molecular patterns 
(PAMPs) of exogenous viruses (Tang et al., 2012). Viral proteins stimulate the production of pro-
inflammatory cytokines (IL-1β, IL-6, and TNF-alpha) (Ariza and Williams, 2011; Rolland et al., 2006; 
Saito et al., 2017). These pro-inflammatory cytokines can induce NF-κB, which could then bind to the 
LTR regulatory elements of HERVs. This was exhibited for HERV-W (Mameli et al., 2007) and HERV-
K (Manghera and Douville, 2013). This establishes a positive feedback loop between NF-kB and 
HERV-K and HERV-W expression that drives inflammation. HERV-K could additionally be induced by
sex hormones (estrogen, progesterone, testosterone) (Manghera and Douville, 2013) linking HERV-K 
activity with the developmental program. The burst of sex hormones during maturation leads to 
inducing of HERV-K transcription activity. However, age-associated chronic inflammation is not 
developed immediately due to sex hormones which suppress the NF-kB signaling pathway (McKay 
and Cidlowski, 1998). The equilibrium between NF-kB and sex hormones prevents the deleterious 
effect of HERV-K because endogenous retroviruses lack lytic ability. Endogenous retroviruses are able 
to harm organism mostly through activation of innate immune response and then promoting chronic 
inflammation. It is demonstrated by the dynamics of the transcriptional levels of HERVs during the 
lifespan  (Balestrieri et al., 2015). Median transcription level of HERV-K in childhood is negligible but 
dramatically elevates during puberty. The HERV-K transcription activity slightly decreases in young 
adults, but then constantly rises with age. The HERV-W activity drops in young adults and drastically 
surges in the middle-aged and slightly decreases in the elderly people (Balestrieri et al., 2015). Age-
associated changes in the activity of HERVs explains why individual development is linked to aging 
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processes because growth retardation and late maturation lead to increased lifespan prompting an idea 
of the developmental origin of aging (de Magalhães, 2012). The rising activity of endogenous 
retroviruses cause chronic inflammation and suppresses sex hormones production through 
inflammation of hypothalamus (Zhang et al., 2013). 

Aging affects mostly the outer membrane Toll-like receptors (TLR) (Bailey et al., 2019; Dunston 
and Griffiths, 2010). Thus, envelope viral proteins should leave a cell and activate the innate immunity 
receptors. A constant small amount of endogenous retroviruses is enough to provide persistent chronic 
inflammation. The most probable candidate is HERV-K108 because it conserves its functionality 
(Dewannieux et al., 2005). This virus also antagonize with HERV-K109 the Tetherin activity decreasing
the defense against exogenous viruses (Lemaître et al., 2014). Other probable candidates are ERVK-19,
and also ERVK-25, ERVK-7 (HERV-K102), ERVK-24 (HERV-K101) with more truncated proteins.

Figure 4. Mutual antagonism of pro-inflammatory pathways and sex hormones provides the delayed 
deleterious effect of endogenous retroviruses.

Conclusion

The detrimental program of aging is likely created during the transposon-driven evolution. Viral 
particles of endogenous retroviruses induce the innate immune response. This innate immune response 
is not accompanied by the adaptive immune response due to the ability of endogenous retroviruses to 
evade this type of immune response. The signaling pathways involved in innate immune response 
provide a clue how chronic inflammation induces senescence and age-associated diseases. Most aging-
associated effects like DNA mutations and increased ROS production may be considered as attempts of
adaptive systems of the organism to overcome intrinsic stress stimulus. However, the organism cannot 
overcome this stress stimulus because endogenous retroviruses are already a part of the genome. 
Activation of endogenous retroviruses occurs during maturation but their deleterious effect is displayed
only after some period of time when endogenous retroviruses are able to suppress sex hormone 
production through an impact on the endocrine system. Sex hormones suppress chronic inflammation 
in young adults and alterations in the endocrine system drive aging process. The most active class of 
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human endogenous retroviruses is HERV-K (HML-2) that has binding sites for NF-kB and sex 
hormones. HERV-K108 and several other HERV-K(HML-2)  retroviruses are the most probable culprit 
of aging.
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