

A peer-reviewed version of this preprint was published in PeerJ
on 13 May 2019.

View the peer-reviewed version (peerj.com/articles/cs-193), which is the
preferred citable publication unless you specifically need to cite this
preprint.

di Biase M, Bruntink M, van Deursen A, Bacchelli A. 2019. The effects of
change decomposition on code review—a controlled experiment. PeerJ
Computer Science 5:e193 https://doi.org/10.7717/peerj-cs.193

https://doi.org/10.7717/peerj-cs.193
https://doi.org/10.7717/peerj-cs.193

The effects of change decomposition on code review - a

controlled experiment

Marco di Biase Corresp., 1, 2 , Magiel Bruntink 2 , Arie van Deursen 1 , Alberto Bacchelli 3

1 Delft University of Technology, Delft, The Netherlands

2 Software Improvement Group, Amsterdam, The Netherlands

3 University of Zurich, Zurich, Switzerland

Corresponding Author: Marco di Biase

Email address: m.dibiase@tudelft.nl

Background. Code review is a cognitively demanding and time-consuming process. Previous qualitative

studies hinted at how decomposing change sets into multiple yet internally coherent ones would improve

the reviewing process. So far, no quantitative analysis of this hypothesis has been provided.

Aims. (1) Quantitatively measure the effects of change decomposition on the outcome of code review (in

terms of number of found defects, wrongly reported issues, suggested improvements, time, and

understanding); (2) Qualitatively analyze how subjects approach the review and navigate the code,

building knowledge and addressing existing issues, in large vs. decomposed changes.

Method. Controlled experiment using the pull-based development model involving 28 software

developers among professionals and graduate students.

Results. Change decomposition leads to fewer wrongly reported issues, influences how subjects

approach and conduct the review activity (by increasing context-seeking), yet impacts neither

understanding the change rationale nor the number of found defects.

Conclusions. Change decomposition reduces the noise for subsequent data analyses but also

significantly supports the tasks of the developers in charge of reviewing the changes. As such, commits

belonging to different concepts should be separated, adopting this as a best practice in software

engineering.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

The Effects of Change Decomposition on1

Code Review - A Controlled Experiment2

Marco di Biase1,2, Magiel Bruntink2, Arie van Deursen1, and Alberto3

Bacchelli34

1Delft University of Technology - Delft, The Netherlands5

2Software Improvement Group - Amsterdam, The Netherlands6

3University of Zurich - Zurich, Switzerland7

Corresponding author:8

Marco di Biase1
9

Email address: m.dibiase@tudelft.nl10

ABSTRACT11

Background. Code review is a cognitively demanding and time-consuming process. Previous qualitative

studies hinted at how decomposing change sets into multiple yet internally coherent ones would improve

the reviewing process. So far, no quantitative analysis of this hypothesis has been provided.

12

13

14

Aims. (1) Quantitatively measure the effects of change decomposition on the outcome of code review

(in terms of number of found defects, wrongly reported issues, suggested improvements, time, and

understanding); (2) Qualitatively analyze how subjects approach the review and navigate the code,

building knowledge and addressing existing issues, in large vs. decomposed changes.

15

16

17

18

Method. Controlled experiment using the pull-based development model involving 28 software developers

among professionals and graduate students.

19

20

Results. Change decomposition leads to fewer wrongly reported issues, influences how subjects ap-

proach and conduct the review activity (by increasing context-seeking), yet impacts neither understanding

the change rationale nor the number of found defects.

21

22

23

Conclusions. Change decomposition reduces the noise for subsequent data analyses but also sig-

nificantly supports the tasks of the developers in charge of reviewing the changes. As such, commits

belonging to different concepts should be separated, adopting this as a best practice in software engi-

neering.

24

25

26

27

1 INTRODUCTION28

Code review is the activity performed by software teams to check code quality, with the purpose of identi-29

fying issues and shortcomings (Bacchelli and Bird, 2013). Nowadays, reviews are mostly performed in an30

iterative, informal, change- and tool-based fashion, also known as Modern Code Review (MCR) (Cohen,31

2010). Both open-source and industry software teams employ MCR to check code changes before being32

integrated in their codebases (Rigby and Bird, 2013). Past research has provided evidence that MCR is33

associated with improved key software quality aspects, such as maintainability (Morales et al., 2015) and34

security (di Biase et al., 2016), as well as with less defects (McIntosh et al., 2016).35

Reviewing a source code change is a cognitively demanding process. Researchers provided evidence36

that understanding the code change under review is among the most challenging tasks for reviewers (Bac-37

chelli and Bird, 2013). In this light, past studies have argued that code changes that—at the same38

time—address multiple, possibly unrelated concerns (also known as noisy (Murphy-Hill et al., 2012)39

or tangled changes (Herzig and Zeller, 2013)) can hinder the review process (Herzig and Zeller, 2013;40

Kirinuki et al., 2014), by increasing the cognitive load for reviewers. Indeed, it is reasonable to think that41

grasping the rationale behind a change that spans multiple concepts in a system requires more effort than42

the same patch committed separately. Moreover, the noise could put a reviewer on a wrong track, thus43

leading to missing defects (false negatives) or to raising unfounded issues in sound code (false positives44

in this paper).45

Qualitative studies reported that professional developers perceive tangled code changes as problematic46

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

and asked for tools to automatically decompose them (Tao et al., 2012; Barnett et al., 2015). Accordingly,47

change untangling mechanisms have been proposed (Tao and Kim, 2015; Dias et al., 2015; Barnett et al.,48

2015).49

Although such tools are expectedly useful, the effects of change decomposition on review is an open50

research problem. Tao and Kim presented the earliest and most relevant results in this area (Tao and Kim,51

2015), showing that change decomposition allows practitioners to achieve their tasks better in a similar52

amount of time.53

In this paper, we continue on this research line and focus on evaluating the effects of change decom-54

position on code review. We aim at answering questions, such as: Is change decomposition beneficial for55

understanding the rationale of the change? Does it have an impact on the number/types of issues raised?56

Are there differences in time to review? Are there variations with respect to defect lifetime?57

To this end, we designed a controlled experiment focusing on pull requests, a widespread approach to58

submit and review changes (Gousios et al., 2015). Our work investigates whether the results from Tao and59

Kim (Tao and Kim, 2015) can be replicated, and extend the knowledge on the topic. With a Java system60

as a subject, we asked 28 software developers among professionals and graduate students to review a61

refactoring and a new feature (according to professional developers (Tao et al., 2012), these are the most62

difficult to review when tangled). We measure how the partitioning vs. non-partitioning of the changes63

impacts defects found, false positive issues, suggested improvements, time to review, and understanding64

the change rationale. We also perform qualitative observations on how subjects conduct the review and65

address defects or raise false positives, in the two scenarios.66

This paper makes the following contributions:67

• the design of an asynchronous controlled experiment to assess the benefits of change decomposition68

in code review using pull requests, available for replication (di Biase et al., 2018);69

• empirical evidence that change decomposition in the pull-based review environment leads to fewer70

false positives.71

The paper proceeds as follows: Section 2 illustrates the related work; Section 3 describes our research72

objectives; the design of our experiment is described in Section 4; threats to validity are discussed in73

Section 5; results are presented in Section 6; Section 7 reports the discussion based on the results; finally,74

Section 8 summarizes our study.75

2 RELATED WORK76

Several studies explored tangled changes and concern separation in code reviews. Tao and Kim in-77

vestigated the role of understanding code changes during the software development process, exploring78

practitioners’ needs (Tao et al., 2012). Their study outlined that grasping the rationale when dealing with79

the process of code review is indispensable. Moreover, to understand a composite change, it is useful80

to break it into smaller ones each concerning a single issue. Rigby et al. empirically studied the peer81

review process for six large, mature OSS projects, showing that small change size is essential to the more82

fine-grained style of peer review (Rigby et al., 2014). Kirinuki et al. provided evidence about problems83

with the presence of multiple concepts in a single code change (Kirinuki et al., 2014). They showed that84

these are unsuitable for merging code from different branches, and that tangled changes are different to85

review because practitioners have to seek the changes for the specified task in the commit.86

Regarding empirical controlled experiments on the topic of code reviews, the most relevant work is87

by Uwano et al. (2006). They used an eye-tracker to characterize the performance of subjects reviewing88

source code. Their experimentation environment enabled them to identify a pattern called scan, consisting89

of the reviewer reading the entire code before investigating the details of each line. In addition, their90

qualitative analysis found that participants who did not spend enough time during the scan took more91

time to find defects. Uwano’s experiment was replicated by Sharif et al. (2012). Their results indicated92

that the longer participants spent in the scan, the quicker they were able to find the defect. Conversely,93

review performance decreases when participants did not spend sufficient time on the scan, because they94

find irrelevant lines.95

Even if MCR is now a mainstream process, adopted in both open source and industrial projects, we96

found only two studies on change partitioning and its benefits for code review. The work by Barnett et al.97

(2015) analyzed the usefulness of an automatic technique for decomposing changesets. They found a98

2/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

positive association between change decomposition and the level of understanding of the changesets.99

According to their results, this would help time to review as the different contexts are separated. Tao and100

Kim (2015) proposed a heuristic-based approach to decompose changeset with multiple concepts. They101

conducted a user study with students investigating whether their untangling approach affected the time102

and the correctness in performing review-related tasks. Results were promising: Participants completed103

the tasks better with untangled changes in a similar amount of time. In spite of the innovative techniques104

they proposed to untangle code changes and in these promising results, the evaluation of effects of change105

decomposition was preliminary.106

In contrast, our research focuses on setting up and running an experiment to empirically assess the107

benefits of change decomposition for the process of code review, rather than evaluating the performances108

of an approach.109

3 MOTIVATION AND RESEARCH OBJECTIVES110

3.1 Experiment definition and context111

Our analysis of the literature showed that there is only preliminary empirical evidence on how code112

review decomposition affects its outcomes, its change understanding, time to completion, effectiveness113

(i.e., number of defects found), false positives (issues mistakenly identified as defect by the reviewer),114

and suggested improvements. This motivates us in setting up a controlled experiment, exploiting the115

popular pull-based development model, to assess the conjecture that a proper separation of concerns in116

code review is beneficial to the efficiency and effectiveness of the review.117

Pull requests feature asynchronous, tool-based activities in the bigger scope of pull-based software118

development (Gousios et al., 2014). The pull-based software process features a distributed environment119

where changes to a system are proposed through patch submissions that are pulled and merged locally,120

rather than being directly pushed to a central repository.121

Pull requests are the way contributors submit changes for review in GitHub. Change acceptance has122

to be granted by other team members called integrators (Gousios et al., 2015). They have the crucial role123

of managing and integrating contributions and are responsible for inspecting the changes for functional124

and non-functional requirements. 80% of integrators use pull requests as the means to review changes125

proposed to a system (Gousios et al., 2015).126

In the context of distributed software development and change integration, GitHub is one of the most127

popular code hosting sites with support for pull-based development. GitHub pull requests contain a branch128

from which changes are compared by an automatic discovery of commits to be merged. Changes are then129

reviewed online. If further changes are requested, the pull request can be updated with new commits to130

address the comments. The inspection can be repeated and, when the patch set fits the requirements, the131

pull request can be merged to the master branch.132

3.2 Research questions133

The motivation behind modern code review is to find defects and improve code quality (Bacchelli and134

Bird, 2013). We are interested in checking if reviewers are able to address defects (referred in this paper135

as effectiveness). Furthermore, we focus on comments pointing out false positives (wrongly reported136

defects), and suggested improvements (non-critical non-functional issues such as suggested refactorings).137

Suggested improvements highlight reviewer participation (McIntosh et al., 2014) and these comments are138

generally considered very useful (Bosu et al., 2015). Our first research question is:139

RQ1. Do tangled pull requests influence effectiveness (i.e., number of defects found), false positives,

and suggested improvements of reviewers, when compared to untangled pull requests?
140

141

Based on the first research question, we formulate the following null-hypotheses for (statistical) testing:

Tangled pull requests do not reduce:

H0e the effectiveness of the reviewers during peer-review

H0f the false positives detected by the reviewers during peer-review

H0c the suggested improvements written by the reviewers during peer-review

142

3/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

Given the structure and the settings of our experimentation, we can also measure the time spent on143

review activity and defect lifetime. Thus, our next research question is:144

RQ2. Do tangled pull requests influence the time necessary for a review and defect lifetime, when

compared to untangled pull requests?
145

146

For the second research question, we formulate the following null-hypotheses:

Tangled pull requests do not reduce:

H0t1 time to review

H0t2 defect lifetime

147

Further details on how we measure time and define defect lifetime are described in Section 4.7.148

In our study, we aim to measure whether change decomposition has an effect on understanding the149

rationale of the change under review. Understanding the rationale is the most important information need150

when analyzing a change, according to professional software developers (Tao et al., 2012). As such, the151

question we set to answer is:152

RQ3. Do tangled pull requests influence the reviewers’ understanding of the change rationale, when

compared to untangled ones?
153

154

For our third research question, we test the following null-hypotheses:

Tangled pull requests do not reduce:

H0u change-understanding of reviewers during peer-review

when compared to untangled pull requests

155

Finally, we qualitatively investigate how participants individually perform the review to understand156

how they address defects or potentially raise false positives. Our last research question is then:157

RQ4. What are the differences in patterns and features used between reviews of tangled and

untangled pull requests?
158

159

4 EXPERIMENTAL DESIGN AND METHOD160

In this section, we detail how we designed the experiment and the research method that we followed.161

4.1 Object system chosen for the experiment162

The system that was used for reviews in the experiment is JPacman, an open-source Java system available163

on GitHub1 that emulates a popular arcade game used at Delft University of Technology to teach software164

testing.165

The system has about 3,000 lines of code and was selected because a more complex and larger project166

would require participants to grasp the rationale of a more elaborate system. In addition, the training phase167

required for the experiment would imply hours of effort, increasing the consequent fatigue that participants168

might experience. In the end, the experiment targets assessing differences in review partitioning and is169

tailored for a process rather than a product.170

1https://github.com/SERG-Delft/jpacman-framework

4/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

4.2 Recruiting of the subject participants171

The study was conducted with 28 participants recruited by means of convenience sampling (Wohlin et al.,172

2012) among experienced and professional software developers, PhD, and MSc students.2 They were173

drawn from a population sample that volunteered to participate. The voluntary nature of participation174

implies the consent to use data gathered in the context of this study. Software developers belong to three175

software companies, PhD students belong to three universities, and MSc students to different faculties176

despite being from the Delft University of Technology. We involved as many different roles as possible177

to have a larger sample for our study and increase its external validity. Using a questionnaire, we asked178

development experience, language-specific skills, and review experience as number of reviews per week.179

We also included a question that asked if a participant knew the source code of the game. Table 1 reports180

the results of the questionnaire, which are used to characterize our population and to identify key attributes181

of each subject participant.182

TABLE 1. DESCRIPTIVE DATA OF THE SUBJECT PARTICIPANTS

Group

of subjects

Role
FTE Experience

Reviews per week

total
with system

knowledge

per role per group

µ σ µ σ µ σ

Control

(tangled changes)

6 2 (33%) SW Developer 4.3 4.8 4.8 3.3

3.6 3.63 1 (33%) PhD Student 5.0 2.9 3.0 2.9

5 3 (60%) MSc Student 2.2 0.7 2.6 3.8

Treatment

(untangled changes)

6 2 (33%) SW Developer 4.8 2.9 3.3 3.4

4.0 6.43 1 (33%) PhD Student 6.0 6.6 2.0 0.8

5 3 (60%) MSc Student 2.2 1.1 6.0 9.0

4.3 Monitoring versus realism183

In line with the nature of pull-based software development and its peer review with pull requests, we184

designed the experimentation phase to be executed asynchronously. This implies that participants could185

run the experiment when and where they felt most comfortable, with no explicit constraints for place,186

time or equipment.187

With this choice, we purposefully gave up some degree of control to increase realism. Having a more188

strictly controlled experimental environment would not replicate the usual way of running such tasks (that189

is, asynchronous and informal). Besides, an experiment run synchronously in a laboratory would still190

raise some control challenges: It might be distracting for some participants, or even induce some follow191

the crowd behavior, thus leading to people rushing to finish their tasks.192

To regain some degree of control, participants ran all the tasks in a provided virtual machine available193

in our replication package (di Biase et al., 2018). Moreover, we recorded the screencast of the experiment,194

therefore not leaving space to misaligned results and mitigating issues of incorrect interpretation. Subjects195

were provided with instructions on how to use the virtual machine, but no time window was set.196

4.4 Independent variable, group assignment, and duration197

The independent variable of our study is change decomposition in pull requests. We split our subjects198

between a control group and a treatment group: The control group received one pull request containing199

a single commit with all the changes tied together; the treatment group received two pull requests with200

changes separated according to a logical decomposition.201

Participants were randomly assigned to either the control group or the treatment using strata based on202

experience as developers and previous knowledge. Previous research has shown that these factors have203

an impact on review outcome (Rigby et al., 2012; Bosu et al., 2015): Developers who previously made204

changes to files to be reviewed had a higher proportion of useful comments.205

All subjects were asked to run the experiment in a single session so that external distracting factors206

could be eliminated as much as possible. If a participant needed a pause, the pause is considered and207

excluded from the final result as we measure and monitor for periods of inactivity. We seek to reduce the208

impact of fatigue by limiting the expected time required for the experiment to an average of 60 minutes;209

2Delft University of Technology Human Research Committee approved our study with IRB approval #578. University of Zurich

authorized the research with IRB approval #2018-024.

5/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

this value is closer to the minimum rather than the median for similar experiments (Ko et al., 2015). As210

stated before, though, we did not suggest or force any strict limit on the duration of the experiment to the211

ends of replicating the code review informal scenario. No learning effect is present as every participant212

runned the experiment only once.213

4.5 Pilot experiments214

We ran two pilot experiments to assess the settings. The first subject (a developer with 5 FTE3 years of215

experience) took too long to complete the training and showed some issues with the virtual machine. Con-216

sequently, we restructured the training phase addressing the potential environment issues in the material217

provided to participants. The second subject (a MSc student with little experience) successfully completed218

the experiment in 50 minutes with no issues. Both pilot experiments were executed asynchronously in the219

same way as the actual experiment.220

4.6 Tasks of the experiment221

The participants were asked to conduct the following four tasks. Further details are available in the online222

appendix (di Biase et al., 2018).223

1 - Preparing the environment. Participants were given precise and detailed instructions on how to224

set-up the environment for running the experiment. These entailed installing the virtual machine, setting225

up the recording of the screen during the experiment, and troubleshooting common problems, such as226

network or screen resolution issues.227

2 - Training the participants. Before starting with the review phase, we first ensured that the participants228

were sufficiently familiar with the system. It is likely that the participants had never seen the codebase229

before: this situation would limit the realism of the subsequent review task.230

To train our participants we asked subjects to implement three different features in the system:231

1. Change the way the player moves on the board game, using different keys,232

2. check if the game board has null squares (a board is made of multiple squares) and perform this233

check when the board is created, and234

3. implement a new enemy in the game, with similar artificial intelligence to another enemy but235

different parameters.236

This learning by doing approach is expected to have higher effectiveness than providing training material237

to participants (Slavin, 1987). By definition, this approach is a method of instruction where the focus is238

on the role of feedback in learning. The desired features required change across the system’s codebase.239

The third feature to be implemented targeted the classes and components of the game that would be object240

of the review tasks. The choice of using this feature as the last one is to progressively increment the level241

of difficulty.242

No time window was given to participants, aiming for a more realistic scenario. As explicitly243

mentioned in the provided instructions, participants were allowed to use any source for retrieving244

information about something they did not know. This was permitted as the study does not want to assess245

skills in implementing some functionality in a programming language. The only limitation is that the246

participants must use the tools within the virtual machine.247

The virtual machine provided the participants with the Eclipse Java IDE. The setup already had the248

project imported in Eclipse’s workspace. We used a plugin in Eclipse, WatchDog (Beller et al., 2015), to249

monitor development activity. With this plugin, we measured how much time participants spent reading,250

typing, or using the IDE. The purpose was to quantify the time to understand code among participants251

and whether this relates to a different outcome in the following phases. Results for this phase are shown252

in Figure 1, which contains boxplots depicting the data. It shows that there is no significant difference253

between the two groups.254

3A full-time employee (FTE) works the equivalent of 40 hours a week. We consider 1 FTE-year when a person has worked the

equivalent of 40 hours a week for one year. For example, an individual working two years as a developer for 20 hours a week would

have 1 FTE-year experience.

6/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

IDE Active User Active Reading Writing

500

1000

1500

2000

2500

3000

3500

Se
co

nd
s

Control Timings
Treatment Timings

FIGURE 1. BOXPLOTS FOR TRAINING PHASE MEASUREMENTS. THE RESULTS HIGHLIGHT NO DIFFERENCES

BETWEEN THE TWO GROUPS.

3 - Perform code review on proposed change(s). Participants were asked to review two changes255

made to the system:256

1. the implementation of the artificial intelligence for one of the enemies257

2. the refactoring of a method in all enemy classes (moving its logic to the parent class).258

These changes can be inspected in the online appendix (di Biase et al., 2018) and have been chosen to259

meet the same criteria used by Herzig et al. (2016) when choosing tangled changes. Changes proposed260

can be classified as refactoring and enhancement. Previous literature gave insight as to how these two261

kinds of changes, when tangled together, are the hardest to review (Tao et al., 2012). Although recent262

research proposed a theory for the optimal ordering of code changes in a review (Baum et al., 2017),263

we used the default ordering and presentation provided by GitHub, because it is the de-facto standard.264

Changesets were included in pull requests on private GitHub repositories so that participants performed265

the tasks in a real-world review environment. Pull requests had identical descriptions for both the control266

and the treatment, with no additional information except their descriptive title. While research showed267

that a short description may lead to poor review participation (Thongtanunam et al., 2017), this does not268

apply to our experiment as there is no interaction among subjects.269

Subjects were instructed to understand the change and check its functional correctness. We asked270

the participants to comment on the pull request(s) if they found any problem in the code, such as any271

functional error related to correctness and issues with code quality. The changes proposed had three272

different functional issues that were intentionally injected into the source code. Participants could see273

the source code of the whole project in case they needed more context, but only through GitHub’s274

browser-based UI.275

The size of the changeset was around 100 lines of code and it involved seven files. Gousios et al.276

showed that the number of total lines changed by pull requests is on average less than 500, with a median277

of 20 (Gousios et al., 2014). Thus, the number of lines of the changeset used in this study is between the278

median and the average.279

4 - Post-experiment questionnaire. In the last phase participants were asked to answer the questions280

shown in Table 4. Questions Q1 to Q4 were about change-understanding, while Q5 to Q12 involved281

subjects’ opinions about changeset comprehension and its correctness, rationale, understanding, etc. Q5 to282

Q12 were a summary of interesting aspects that developers need to grasp in a code change, as mentioned283

in the study of Tao et al. (2012). The answers must be provided in a Likert scale (Oppenheim, 2000)284

ranging from ‘Strongly disagree’ (1) to ‘Strongly agree’ (5).285

4.7 Outcome measurements286

Effectiveness, false positives, suggested improvements. Subjects were asked to comment a pull287

request in the pull request discussion or in-line comment in a commit belonging to that pull request.288

7/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

The number of comments addressing functional issues was counted as the effectiveness. At the same289

time, we also measured false positives (i.e., comments in pull request that do not address a real issue in290

the code) and suggested improvements (i.e., remarks on other non-critical non-functional issues). We291

distinguished suggested improvements and false positives from the comments that correctly addressed292

an issue because the three functional defects were intentionally put in the source code. Comments that293

did not directly and correctly tackle one of these three issues were classified either as false positives or294

suggested improvements. They were classified by the first author by looking at the description provided295

by the subject. A correctly identified issue needs to highlight the problem, and optionally provide a short296

description.297

Time. Having the screencast of the whole experiment, as well as using tools that give time measures,298

we gathered the following measurements:299

• Time for Task 2, in particular:300

– total time Eclipse is [opened/active]301

– total time the user is [active/reading/typing];302

as collected by WatchDog (Section 4.6).303

• Total net time for Task 3, defined as from when the subject opens a pull request until when (s)he304

completes the review, purged of eventual breaks.305

• Defect lifetime, defined as the period during which a defect continues to exist. It is measured306

from the moment the subject opens a pull request to when (s)he writes a comment that correctly307

identifies the issue. For the case of multiple comments on the same pull request, this is the time308

between finishing with one defect and addressing the next. A similar measure was previously used309

by Prechelt and Tichy (1998).310

All the above measures are collected in seconds elapsed.311

Change-understanding. In this experiment, change understanding was measured by means of a ques-312

tionnaire submitted to participants post review activity, as mentioned in Task 4 in Section 4.6. Questions313

are shown in Table 4 from Q1 to Q4. Its aim is to evaluate differences in change-understanding. A similar314

technique was used by Binkley et al. (2013).315

Final Survey. Lastly, participants were asked to give their opinion on statements targeting the perception316

of correctness, understanding, rationale, logical partitioning of the changeset, difficulty in navigating the317

changeset in the pull request, comprehensibility, and the structure of the changes. This phase, as well as318

the previous one, was included in Task 4, corresponding to questions Q5 to Q12 (Table 4). Results were319

given on a Likert scale from “Strongly disagree” (1) to “Strongly agree” (5) (Oppenheim, 2000), reported320

as mean, median and standard deviation over the two groups, and tested for statistical significance with321

the Mann-Whitney U-test.322

4.8 Research method for RQ4323

For our last research question, we aimed to build some initial hypotesis to explain the results from the324

previous research questions. We sought what actions and patterns led a reviewer in finding an issue or325

raising false positive, as well as other comments. This method was applied only to the review phase,326

without analyzing actions and patterns concerning the training phase. The method to map actions to327

concepts started by annotating the screencasts retrieved after the conclusion of the experimental phase.328

Subjects performed a series of actions that defined and characterized both the outcome and the execution329

of the review. The first author inserted notes regarding actions performed by participants to build a330

knowledge base of steps (i.e., participant opens fileName, participant uses GitHub search box with the331

keyword, etc.).332

Using the methodology for qualitative content analysis delineated by Schreier (2013), we firstly333

defined the coding frame. Our goal was to characterize the review activity based on patterns and behaviors.334

As previous studies already tackled this problem and came up with reliable categories, we used the335

investigations by Tao et al. (2012) and Sillito et al. (2006) as the base for our frame. We used the concepts336

from Tao et al. (2012) regarding Information needs for reasoning and assessing the change and Exploring337

the context and impact of the change, as well as the Initial focus points and Building on initial focus points338

steps from Sillito et al. (2006).339

8/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

To code the transcriptions, we used the deductive category application, resembling the data-driven340

content analysis technique by Mayring (2000). We read the material transcribed, checking whether a341

concept covers that action transcribed (e.g, participant opens file fileName so that (s)he is looking for342

context). We grouped actions covered by the same concept (e.g, a participant opens three files, but always343

for context purpose) and continued until we built a pattern that led to a specific outcome (i.e., addressing344

a defect or a false positive). We split the patterns according to their concept ordering such that those that345

led to more defects found or false positive issues were visible.346

5 THREATS TO VALIDITY AND LIMITATIONS347

Internal validity The sample size comprised in our experiment poses an inherent threat to the internal348

validity of our experiment. Furthermore, the design and asynchronous execution of the experimental349

phase creates uncertainty regarding possible external interactions. We could not control random changes350

in the experimental setting, and this translates to possible disturbancies coming from the surrounding351

environment, that could cause skewed results.352

Moreover, our experiment settings could not control if participants interacted among them, despite353

participants did not have any information about each other.354

Regarding the statistical regression (Wohlin et al., 2012), tests used in our study were not performed355

with the Bonferroni correction, following the advice by Perneger: “Adjustments are, at best, unnecessary356

and, at worst, deleterious to sound statistical inference” (Perneger, 1998).357

Construct validity Relatively to the restricted generalizability across constructs (Wohlin et al., 2012),358

in our experiment we uniquely aim to measure the values presented in Section 4.7. The treatment might359

influence direct values we measure, but it could potentially cause negative effects on concepts that our360

study does not capture. Additionally, we acknowledge threats regarding the time measures taken by361

the first author regarding RQ2. Clearly, manual measures are suboptimal, that were adopted to avoid362

participants having to perform such measures themselves.363

When running an experiment, participants might try to guess what is the purpose of the experimentation364

phase. Therefore, we could not control their behavior based on the guesses that either positively or365

negatively affected the outcome.366

Finally, we acknowledge threats to construct validity when designing the questionnaires used for RQ3,367

despite designed using standard ways and scales (Oppenheim, 2000).368

External validity Threats to external validity for this experiment concern the selection of participants to369

the experimentation phase. Volunteers selected with convenience sampling could have an impact on the370

generalizability of results, which we tried to mitigate by sampling multiple roles for the task. If the group371

is very heterogeneous, there is a risk that the variation due to individual differences is larger than due to372

the treatment (Cook and Campbell, 1979).373

Furthermore, we acknowlegde and discuss the possible threat regarding the system selection for the374

experimental phase. Naturally, the system used is not fully representative of a real-world scenario. Our375

choice, however, as explained in Section 4.1, aims to reduce the training phase effort required from376

participants and to encourage the completion of the experiment.377

Finally, our experiment was designed considering only a single programming language, using the378

pull-based methodology to review and accept the changes proposed using GitHub as platform. Therefore,379

threats for our experiment are related to mono-operation and mono-method bias (Wohlin et al., 2012).380

6 RESULTS381

RQ1. Effectiveness, false positives, and suggestions382

For our first research question, descriptive statistics about results are shown in Table 2. It contains data383

about effectiveness of participants (i.e., correct number of issues addressed), false positives, and number384

of suggested improvements. Given the sample size, we applied a non-parametric test and performed a385

Mann-Whitney U-test to test for differences between the control and the treatment group. This test, unlike386

a t-test, does not require the assumption of a normal distribution of the samples. Results of the statistical387

test are intended to be significant for a confidence level of 95%.388

9/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

Results indicate a significant difference between the control and the treatment group regarding the389

number of false positives, with a p-value of 0.03. On the contrary, there is no statistically significant390

difference regarding the number of defects found (effectiveness) and number of suggested improvements.391

TABLE 2. RQ1 - NUMBER OF DEFECTS FOUND (EFFECTIVENESS), FALSE POSITIVES AND SUGGESTED

IMPROVEMENTS – STATISTICALLY SIGNIFICANT P-VALUES IN BOLDFACE.

Group # of subjects Total Median Mean σ Confidence Interval 95% p-value

Effectiveness (defects found)
Control 14 20 1.0 1.42 0.72 (0, 2.85)

0.6
Treatment 14 17 1.0 1.21 0.77 (-0.30, 2.72)

False Positives
Control 14 6 0 0.42 0.5 (-0.54, 1.40)

0.03
Treatment 14 1 0 0.07 0.25 (-0.43, 0.57)

Suggested Improvements
Control 14 7 0 0.5 0.62 (-1.22, 1.22)

0.4
Treatment 14 19 1.0 1.36 1.84 (-2.17, 5.03)

The example of a false positive is when one of the subjects of the control group writes: “This doesn’t392

sound correct to me. Might want to fix the for, as the variable varName is never used”. This is not a393

defect, as varName is used to check how many times the for-statement has to be executed, despite not394

being used inside the statement. This is also written in a code comment. Another false positive example is395

provided from a participant in the control group who, reading the refactoring proposed by the changeset396

under review, writes: “The method methodName is used only in Class ClassName, so fix this”. This397

is not a defect as the same methodName is used by the other classes in the hierarchy. As such, we can398

reject only the null hypothesis H0f regarding the false positives, while we cannot provide statistically399

significant evidence about the other two variables tested in H0e and H0c.400

The statistical significance alone for the false positives does not provide a measure to the actual401

impact of the treatment. To measure the effect size of the factor over the dependent variable we chose402

the Cliff’s Delta (Cliff, 1993), a non-parametric measure for effect size. The calculation is given by403

comparing each of the scores in one group to each of the scores in the other, with the following formula:404

δ = #(x1>x2)−#(x1<x2)
n1n2

where x1,x2 are values for the two groups and n1,n2 are their sample size. For data405

with skewed marginal distribution it is a more robust measure if compared to Cohen standardized effect406

size (Cohen, 1992). The computed value shows a positive (i.e., tangled pull requests lead to more false407

positives) effect size (δ = 0.36), revealing a medium effect. The effect size is considered negligible for408

|δ |< 0.147, small for |δ |< 0.33, medium for |δ |< 0.474, large otherwise (Romano et al., 2006).409

Result 1: Untangled pull requests (treatment) lead to fewer false positives with a statistically

significant, medium size effect.

Given the presence of suggested improvements in our results, we found that the control group writes410

in total seven, while the participants in the treatment write nineteen. This difference is interesting, calling411

for further classification of the suggestions. For the control group, participants wrote respectively three412

improvements regarding code readability, two concerning functional checks, one regarding understanding413

of source code and one regarding other code issues. For the treatment group, we classified five suggestions414

for code readability, eight for functional checks and seven for maintainability. Although subjects have been415

explicitly given the goal to find and comment exclusively functional issues (Section 4.6), they wrote these416

suggestions spontaneously. The suggested improvements are included in the online appendix (di Biase417

et al., 2018) along with their classification.418

RQ2. Review time and defect lifetime419

To answer RQ2, we measured and analyzed the time subjects took to review the pull requests, as well420

as the amount of time they used to fix each of the issues present. Descriptive statistics about results for421

our second research question are shown in Table 3. It contains data about the time participants used to422

review the patch, completed by the measurements of how much they took to fix respectively two of the423

three issues present in the changeset. All measures are in seconds. We exclude data relatively to the third424

defect as only one participant detected it. To perform the data analysis, we used the same statistical means425

described for the previous research question. When computing the review net time used by the subjects,426

results show an insignificant difference, thus we are not able to reject null-hypothesis H0t1. This indicates427

10/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

that the average case of the treatment group takes the same time to deliver the review, despite having two428

pull requests to deal with instead of one. However, analyzing results regarding the defect lifetime we also429

see no significant difference and cannot reject H0t2. Data show that the mean time to address the first430

issue is about 14% faster in the treatment group if compared with the control. This is because subjects431

have to deal with less code that concerns a single concept, rather than having to extrapolate context432

information from a tangled change. At the same time the treatment group is taking longer (median) to433

address the second defect. We believe that this is due to the presence of two pull requests, and as such, the434

context switch has an overhead effect on that. From the screencast recordings we found no reviewer using435

multi-screen setup, therefore subjects had to close a pull-request and then review the next, where they436

need to gain knowledge on different code changes.437

Result 2: Our experiment was not able to provide evidence for a difference in net review time

between untangled pull requests (treatment) and the tangled one (control); this despite the additional

overhead of dealing with two separate pull requests in the treatment group.

TABLE 3. RQ2 - REVIEW TIME, FIRST AND SECOND DEFECT LIFETIME - MEASUREMENTS IN SECONDS

ELAPSED

Group # of subjects Median Mean σ Conf. Interval 95% p-value

Review net time
Control (Tangled changes) 14 831 853 385 (99, 1607)

0.66
Treatment (Untangled changes) 14 759 802 337 (140, 1463)

1st defect lifetime
Control 11 304 349 174 (8, 691)

0.79
Treatment 11 297 301 109 (86, 516)

2nd defect lifetime
Control 6 222 263 149 (-28, 555)

0.17
Treatment 6 375 388 122 (148, 657)

RQ3. Understanding The Change’s Rationale438

For our third research question, we seek to measure whether subjects are affected by the dependent439

variable in their understanding of the rationale of the change. Rationale understanding questions are Q1 to440

Q4 (Table 4) and Figure 2 reports the results. Higher scores for Q1, Q2, and Q4 mean better understanding,441

whereas for Q3 a lower score signifies a correct understanding. As for the previous research questions,442

we test our hypothesis with a non-parametrical statistical test. Given the result we cannot reject the null443

hypothesis H0u of tangled pull requests reducing change understanding. Participants are in fact able to444

answer the questions correctly, independent of their experimental group.445

After the review, our experimentation also provided a final survey (Q5 to Q12 in Table 4) that446

participants filled in at the end. Results shown in Figure 2 indicate that subjects judge equally the447

changeset (Q5), found no difficulty in understanding the changeset (Q6), agree on having understood the448

rationale behind the changeset (Q7). This results shows that our experiment cannot provide evidence of449

differences in change understanding between the two groups.450

Participants did not find the changeset hard to navigate (Q9), and believe that the changeset was451

comprehensible (Q11). Answers to questions Q9 and Q11 are surprising to us, as we would expect452

dissimilar results for code navigation and comprehension. In fact, change decomposition should allow453

subjects to navigate code easier, as well as improve source comprehension.454

On the other hand, subjects from the control and treatment group judge differently when asked if the455

changeset was partitioned according to a logical separation of concerns (Q8), if the relationships among456

the changes were well structured (Q10) and if the changes were spanning too many features (Q12). These457

answers are in line with what we would expect, given the different structure of the code to be reviewed.458

The answers are different with a statististical significance for Q8, Q10 and Q12.459

Result 3: Our experiment was not able to provide evidence of a difference in understanding the

rationale of the changeset between the experimental groups. Subjects reviewing the untangled pull

requests (treatment) recognize the benefits of untangled pull requests, as they evaluate the changeset

as being (1) better divided according to a logical separation of concerns, (2) better structured, and

(3) not spanning too many features.

11/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

TABLE 4. RQ3 - POST-EXPERIMENT QUESTIONNAIRE.

QUESTIONS WITH * HAVE p < 0.05

Questions on understanding the rationale of the changeset

The purpose of this changeset entails ...

Q1 ... changing a method for the enemy AI

Q2 ... the refactoring of some methods

Q3 ... changing the game UI panel

Q4 ... changing some method signature

Questions on participant’s perception on the changeset

Q5 The changeset was functionally correct

Q6 I found no difficulty in understanding the changeset

Q7 The rationale of this changeset was perfectly clear

Q8 * The changeset [showed] a logical separation of concerns

Q9 Navigating the changeset was hard

Q10 * The relations among the changes were well structured

Q11 The changeset was comprehensible

Q12 * Code changes were spanning too many features

C

C

C

C

4

8

4

7

3

4

7

4

8

4

6

3

1

2

1

2

1

1

4

5

1

2

8

9

1

2

1

1

2

3

3

1 166

6 5 3

1 2 3 6 2

1 4 9

1 3 6 4

2 2 2 5 3

1 10 2 1

1 3 6 4

2 4 7 1

1 7 6

1 7 2 4

2 3 8 1

8 2

1 11 1

1 3 2 6 2

3 9 1

4

Strongly Disagree Disagree Agree Strongly Agree

1

1

Q1

Neither

Questions on understanding the rationale of the changeset

Control (tangled changes)

Treatment (untangled changes)

00510 5 10

Q2
C

T

Q3
C

T

Q4
C

T

Questions on participant9s perception on the changeset

Q5
C

T

Q6
C

T

Q7
C

T

Q8*
C

T

Q9
T

Q10*
T

Q11
T

2
Q12*

T

FIGURE 2. RQ3 - ANSWERS TO QUESTIONS IN TABLE 4.

QUESTIONS WITH * HAVE p < 0.05

12/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

TABLE 5. RQ4 - CONCEPTS FROM LITERATURE AND THEIR MAPPED KEYWORD

Concept Mapped keyword

What is the rationale behind this code change? (Tao et al., 2012) Rationale

Is this change correct? Does it work as expected? (Tao et al., 2012) Correctness

Who references the changed classes/methods/fields? (Tao et al., 2012) Context

How does the caller method adapt to the change of its callees? (Tao et al., 2012) Caller/Callee

Is there a precedent or exemplar for this? (Sillito et al., 2006) Similar/Precedent

RQ4. Tangled vs. Untangled review patterns460

For our last research question, we seek to identify differences in patterns and features during review,461

and their association to quantitative results. We derived such patterns from Tao et al. (2012) and Sillito462

et al. (2006). These two studies are relevant as they investigated the role of understanding code during463

the software development process. Tao et al. (2012) laid out a series of information needs derived from464

state-of-the-art research in software engineering, while Sillito et al. (2006) focused on questions asked by465

professional experienced developers while working on implementing a change. The mapping found in the466

screencasts is shown in Table 5.467

Table 6 contains the qualitative characterization, ordered by the sum of defects found. Values in each468

row correspond to how many times a participant in either group used that pattern to address a defect or469

point to a false positive.470

TABLE 6. RQ4 - PATTERNS IN REVIEW TO ADDRESS A DEFECT OR LEADING TO A FALSE POSITIVE

Pattern Control Treatment

ID 1st concept 2nd concept 3rd concept Defect FP Defect FP

P1 Rationale Correctness 8 3 4 0

P2 Rationale Context Correctness 4 0 5 0

P3 Context Rationale Correctness 3 2 3 0

P4 Context Correctness Caller/Callee 1 0 2 0

P5 Context Correctness 2 1 0 0

P6 Correctness Context 0 0 2 0

P7 Rationale Correctness Context 0 0 1 0

P8 Correctness Context Caller/Callee 1 0 0 0

P9 Correctness Context Similar/Precedent 1 0 0 1

Results indicate that pattern P1 is the one that led to most issues being addressed in the control group471

(eight), but at the same time is the most imprecise one (three false positives). We conjecture that this is472

related to the lack of context-seeking concept. Patterns P1 and P3 have most false positives addressed in473

the control group. In the treatment group, pattern P2 led to more issues being addressed (five), followed474

by the previously mentioned P1 (four).475

Analyzing the transcribed screencasts, we note an overall trend of reviewing code changes in the476

control group, exploring the changeset using less context exploration than in the treatment. Among the477

participants belonging to the treatment, we witnessed a much more structured way of conducting the478

review. The overall behavior is that of getting the context of the single change, looking for the files479

involved, called, or referenced by the changeset, in order to grasp the rationale. All of the subjects except480

three repeated this step multiple times to explore a chain of method calls, or to seek for more context481

in that same file opening it in GitHub. We consider this the main reason to explain that untangled pull482

requests lead to more precise (fewer false positives) results.483

Result 4: Our experiment revealed that review patterns for untangled pull requests (treatment) show

more context-seeking steps, in which the participants open more referenced/related classes to review

the changeset.

13/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

7 DISCUSSION484

7.1 Implications for Researchers485

In past studies, researchers found that developers call for tool and research support for decomposing a486

composite change (Tao et al., 2012). For this reason, we were surprised that our experiment was not able487

to highlight differences in terms of reviewers’ effectiveness (number of defects found) and reviewers’488

understanding of the change rationale, when the subjects were presented with smaller, self-contained489

changes. Further research with additional participants is needed to corroborate our findings.490

If we exclude latent problems with the experiment design that we did not account for, this result may491

indicate that reviewers are still able to conduct their work properly, even when presented with tangled492

changes. However, the results may change in different contexts. For example, the cognitive load for493

reviewers may be higher with tangled changes, thus the negative effects in terms of effectiveness could be494

visible when a reviewer has to assess a large number of changes every day, as it happens with integrators495

of popular projects in GitHub (Gousios et al., 2015). Moreover, the changes we considered are of average496

size and difficulty, yet results may be impacted by larger changes and/or more complex tasks. Finally,497

participants were not core developers of the considered software system; it is possible that core developers498

would be more surprised by tangled changes, find them more convoluted or less “natural,” thus rejecting499

them (Hellendoorn et al., 2015). We did not investigate these scenarios further, but studies can be designed500

and carried out to determine whether and how these aspects influence the results of the code review effort.501

Given the remarks and comments of professional developers on tangled changes (Tao et al., 2012),502

we were also surprised that the experiment did not highlight any differences in the net review time503

between the treatment groups. Barring experimental design issues, this result can be explained by504

the additional context switch, which does not happen in the tangled pull request (control) because the505

changes are done in the same files. An alternative explanation could be that the reviewers with the506

untangled pull requests (treatment) spent more time “wondering around” and pinpointing small issues507

because they found the important defects quicker; this would be in line with the cognitive bias known as508

Parkinson’s Law (Parkinson and Osborn, 1957) (all the available time is consumed). However, time to509

find the first and second defects (3) is the same for both experimental groups thus voiding this hypothesis.510

Moreover, similarly to us, Tao and Kim also did not find difference with respect to time to completion in511

their preliminary user study (Tao and Kim, 2015). Further studies should be designed to replicate our512

experiment and, if results are confirmed, to derive a theory on why there is no reduction in review time.513

Our initial hypothesis on why time does not decrease with untangled code changes is that reviewers514

of untangled changes (control) may be more willing to build a more appropriate context for the change.515

This behavior seems to be backed up by our qualitative analysis (Section 6), through the context-seeking516

actions that we witnessed for the treatment group. If our hypothesis is not refused by further research,517

this could indicate that untangled changes may lead to a more thorough low-level understanding of the518

codebase. Despite we did not measure this in the current study, it may explain the lower number of519

false positives with untangled changes. Finally, untangled changes may lead to better transfer of code520

knowledge, one of the positive effects of code review (Bacchelli and Bird, 2013).521

7.2 Recommendation for Practitioners522

Our experiment is not able to show no negative effects when changes are presented as separate, untangled523

changesets, despite the fact that reviewers have to deal with two pull requests instead of one, with524

the subsequent added overhead and a more prominent context switch. With untangled changesets, our525

experiment highligthed an increased number of suggested improvements, more context-seeking actions526

(which, it is reasonable to assume, increase the knowledge transfer created by the review), and a lower527

number of wrongly reported issues.528

For the aforementioned reasons, we support the recommendation that change authors prepare self-529

contained, untangled changeset when they need a review. In fact, untangled changesets are not detrimental530

to code review (despite the overhead of having more pull-requests to review), but we found evidence of531

positive effects. We expect the untangling of code changes to be minimal in terms of cognitive effort and532

time for the author. This practice, in fact, is supported by answers Q8, Q10, Q12 to the questionnaire and533

by comments written by reviewers in the control group (i.e., “Please make different commit for these two534

features”, “I would prefer having two pull requests instead of one if you are fixing two issues”).535

14/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

8 CONCLUSION536

The goal of the study presented in this paper is to investigate the effects of change decomposition on mod-537

ern code review (Cohen, 2010), particularly in the context of the pull-based development model (Gousios538

et al., 2014).539

We involved 28 subjects, who performed a review of pull request(s) pertaining to (1) a refactoring540

and (2) the addition of a new feature in a Java system. The control group received a single pull request541

with both changes tangled together, while the treatment group received two pull requests (one per type of542

change). We compared control and treatment groups in terms of effectiveness (number of defects found),543

number of false positives (wrongly reported issues), number of suggested improvements, time to complete544

the review(s), and level of understanding the rationale of the change. Our investigation involved also a545

qualitative analysis of the review performed by subjects involved in our study.546

Our results suggests that untangled changes (treatment group) lead to:547

1. fewer reported false positives defects,548

2. more suggested improvements for the changeset,549

3. same time to review (despite the overhead of two different pull requests),550

4. same level of understanding the rationale behind the change,551

5. and more context-seeking patterns during review.552

Our results support the case that committing changes belonging to different concepts separately should553

be an adopted best practice in contemporary software engineering. In fact, untangled changes not only554

reduce the noise for subsequent data analyses (Herzig et al., 2016), but also support the tasks of the555

developers in charge of reviewing the changes by increasing context-seeking patterns.556

ACKNOWLEDGMENTS557

The authors would like to thank all participants of the experiment and the pilot. We furthermore thank the558

fellow researchers who gave critical suggestion to help strengthening the methodology of our study.559

REFERENCES560

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of modern code review. In561

Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pages 712–721,562

Piscataway, NJ, USA. IEEE Press.563

Barnett, M., Bird, C., Brunet, J., and Lahiri, S. (2015). Helping developers help themselves: Automatic564

decomposition of code review changesets. In Proceedings of the 37th International Conference on565

Software Engineering - Volume 1, ICSE ’15, pages 134–144, Piscataway, NJ, USA. IEEE Press.566

Baum, T., Schneider, K., and Bacchelli, A. (2017). On the optimal order of reading source code changes567

for review. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),568

pages 329–340.569

Beller, M., Gousios, G., Panichella, A., and Zaidman, A. (2015). When, how, and why developers (do570

not) test in their ides. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software571

Engineering, ESEC/FSE 2015, pages 179–190, New York, NY, USA. ACM.572

Binkley, D., Davis, M., Lawrie, D., Maletic, J., Morrell, C., and Sharif, B. (2013). The impact of identifier573

style on effort and comprehension. Empirical Software Engineering, 18(2):219–276.574

Bosu, A., Greiler, M., and Bird, C. (2015). Characteristics of useful code reviews: An empirical study575

at microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages576

146–156.577

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological578

Bulletin, 114(3):494.579

Cohen, J. (1992). Statistical power analysis. Current directions in psychological science, 1(3):98–101.580

Cohen, J. (2010). Modern code review. In Oram, A. and Wilson, G., editors, Making Software, chapter 18,581

pages 329–338. O’Reilly.582

Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation: Design and analysis for field settings,583

volume 3. Rand McNally Chicago.584

15/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

di Biase, M., Bruntink, M., and Bacchelli, A. (2016). A Security Perspective on Code Review: The585

Case of Chromium. In 16th IEEE International Working Conference on Source Code Analysis and586

Manipulation, SCAM 2016, Raleigh, NC, USA, October 2-3, 2016, pages 21–30. IEEE Press.587

di Biase, M., Bruntink, M., van Deursen, A., and Bacchelli, A. (2018). The Effects588

of Change Decomposition on Code Review - A Controlled Experiment - Online appendix.589

https://data.4tu.nl/repository/uuid:826f7051-35f6-4696-b648-8e56d3ea5931.590

Dias, M., Bacchelli, A., Gousios, G., Cassou, D., and Ducasse, S. (2015). Untangling fine-grained code591

changes. In Proceedings of the 22nd International Conference on Software Analysis, Evolution, and592

Reengineering, SANER 2015, pages 341–350. IEEE Computer Society.593

Gousios, G., Pinzger, M., and van Deursen, A. (2014). An exploratory study of the pull-based software594

development model. Proceedings of the 36th International Conference on Software Engineering - ICSE595

2014, (May 2014):345–355.596

Gousios, G., Zaidman, A., Storey, M., and van Deursen, A. (2015). Work practices and challenges597

in pull-based development: The integrator’s perspective. In Proceedings of the 37th International598

Conference on Software Engineering - Volume 1, ICSE ’15, pages 358–368, Piscataway, NJ, USA.599

IEEE Press.600

Hellendoorn, V. J., Devanbu, P. T., and Bacchelli, A. (2015). Will they like this? Evaluating code601

contributions with language models. In Proceedings of the 12th Working Conference on Mining602

Software Repositories, pages 157–167. IEEE Press.603

Herzig, K., Just, S., and Zeller, A. (2016). The impact of tangled code changes on defect prediction604

models. Empirical Software Engineering, 21(2):303–336.605

Herzig, K. and Zeller, A. (2013). The impact of tangled code changes. In Mining Software Repositories606

(MSR), 2013 10th IEEE Working Conference on, pages 121–130. IEEE.607

Kirinuki, H., Higo, Y., Hotta, K., and Kusumoto, S. (2014). Hey! are you committing tangled changes?608

In Proceedings of the 22nd International Conference on Program Comprehension, ICPC 2014, pages609

262–265, New York, NY, USA. ACM.610

Ko, A., LaToza, T., and Burnett, M. (2015). A practical guide to controlled experiments of software611

engineering tools with human participants. Empirical Software Engineering, 20(1):110–141.612

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research.613

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. (2014). The impact of code review coverage and code614

review participation on software quality: A case study of the qt, vtk, and itk projects. In Proceedings of615

the 11th Working Conference on Mining Software Repositories, MSR 2014, pages 192–201, New York,616

NY, USA. ACM.617

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2016). An empirical study of the impact of618

modern code review practices on software quality. Empirical Software Engineering, 21(5):2146–2189.619

Morales, R., McIntosh, S., and Khomh, F. (2015). Do code review practices impact design quality? A620

case study of the Qt, Vtk, and Itk projects. In Proceedings of the 22nd International Conference on621

Software Analysis, Evolution and Reengineering, SANER 2015, pages 171–180. IEEE.622

Murphy-Hill, E., Parnin, C., and Black, A. (2012). How we refactor, and how we know it. IEEE623

Transactions on Software Engineering, 38(1):5–18.624

Oppenheim, A. (2000). Questionnaire design, interviewing and attitude measurement. Bloomsbury625

Publishing.626

Parkinson, C. N. and Osborn, R. C. (1957). Parkinson’s law, and other studies in administration,627

volume 24. Houghton Mifflin Boston.628

Perneger, T. V. (1998). What’s wrong with bonferroni adjustments. British Medical Journal,629

316(7139):1236.630

Prechelt, L. and Tichy, W. (1998). A controlled experiment to assess the benefits of procedure argument631

type checking. IEEE Transactions on Software Engineering, 24(4):302–312.632

Rigby, P., Cleary, B., Painchaud, F., Storey, M., and German, D. (2012). Contemporary peer review in633

action: Lessons from open source development. IEEE software, 29(6):56–61.634

Rigby, P., German, D., Cowen, L., and Storey, M. (2014). Peer Review on Open-Source Software Projects.635

ACM Transactions on Software Engineering and Methodology, 23(4):1–33.636

Rigby, P. C. and Bird, C. (2013). Convergent contemporary software peer review practices. In Proceedings637

of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 202–212.638

ACM.639

16/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

Romano, J., Kromrey, J., Coraggio, J., and Skowronek, J. (2006). Appropriate statistics for ordinal level640

data: Should we really be using t-test and cohen’sd for evaluating group differences on the nsse and641

other surveys. In Annual Meeting of the Florida Association of Institutional Research, pages 1–33.642

Schreier, M. (2013). Qualitative content analysis. In The SAGE handbook of qualitative data analysis,643

pages 170–183. SAGE.644

Sharif, B., Falcone, M., and Maletic, J. (2012). An eye-tracking study on the role of scan time in finding645

source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications,646

pages 381–384. ACM.647

Sillito, J., Murphy, G., and De Volder, K. (2006). Questions programmers ask during software evolution648

tasks. In Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of software649

engineering, pages 23–34. ACM.650

Slavin, R. (1987). Mastery learning reconsidered. Review of educational research, 57(2):175–213.651

Tao, Y., Dang, Y., Xie, T., Zhang, D., and Kim, S. (2012). How do software engineers understand code652

changes?: An exploratory study in industry. In Proceedings of the ACM SIGSOFT 20th International653

Symposium on the Foundations of Software Engineering, FSE ’12, pages 1–11, New York, NY, USA.654

ACM.655

Tao, Y. and Kim, S. (2015). Partitioning composite code changes to facilitate code review. In Proceedings656

of the 12th Working Conference on Mining Software Repositories, pages 180–190. IEEE.657

Thongtanunam, P., McIntosh, S., Hassan, A. E., and Iida, H. (2017). Review participation in modern code658

review. Empirical Software Engineering, 22(2):768–817.659

Uwano, H., Nakamura, M., Monden, A., and Matsumoto, K. (2006). Analyzing individual performance660

of source code review using reviewers’ eye movement. In Proceedings of the 2006 symposium on Eye661

tracking research & applications, pages 133–140. ACM.662

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012). Experimentation in663

software engineering. Springer Science & Business Media.664

17/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27438v1 | CC BY 4.0 Open Access | rec: 19 Dec 2018, publ: 19 Dec 2018

