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ABSTRACT10

In the constrained max k-cut problem on hypergraphs, we are given a weighted hypergraph H = (V,E),
an integer k and a set c of constraints. The goal is to divide the set V of vertices into k disjoint partitions
in such a way that the sum of the weights of the hyperedges having at least two endpoints in different
partitions is maximized and the partitions satisfy all the constraints in c. In this paper we present a
local search algorithm for the constrained max k-cut problem on hypergraphs and show that it has
approximation ratio 1− 1

k for a variety of constraints c, such as for the constraints defining the max Steiner
k-cut problem, the max multiway cut problem and the max k-cut problem. We also show that our local
search algorithm can be used on the max k-cut problem with given sizes of parts and on the capacitated
max k-cut problem, and it has approximation ratio 1− |Vmax|

|V | , where |Vmax| is the cardinality of the biggest
partition. In addition, we present a local search algorithm for the directed max k-cut problem that has
approximation ratio k−1

3k−2 .
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1 INTRODUCTION22

A weighted hypergraph H = (V,E) consist of a set V of nodes, a set E of hyperedges and a function w23

that assigns a non-negative weight to every edge. A hyperedge e consist of a non-empty set of nodes24

(called its endpoints). Graphs are special cases of hypergraphs where each hyperedge has exactly two25

nodes. The size of a hyperedge e is the number of nodes in e and the rank of a hypergraph H = (V,E) is26

the size of the hyperedge e ∈ E with the biggest cardinality.27

In the max k-cut problem on hypergraphs we are given a weighted hypergraph H = (V,E) and an28

integer k, and the goal is to partition V into k non-empty sets in such a way that the sum of the weights of29

the hyperedges having at least two endpoints in different partitions is maximized.30

In the related max multiway cut problem on hypergraphs, besides having a weighted hypergraph31

H = (V,E) and integer k, we are also given a set T = {t1, t2, . . . , tk} ⊆V of terminals and the goal is to32

divide V into k partitions so as to maximize the sum of the weights of the hyperedges having at least two33

endpoints in different partitions and such that each partition has exactly one terminal. Some other related34

problems are max Steiner k-cut, max cut with given sizes of parts (Ageev and Sviridenko, 1999) and35

capacitated max k-cut (Gaur et al., 2008).36

All above problems involve grouping the vertices of a weighted hypergraph H = (V,E) into k non-37

empty partitions that satisfy some additional set c of constraints and the goal is to maximize the sum of the38

weights of the hyperedges having at least two endpoints in different partitions. We call this problem the39

constrained max k-cut problem on hypergraphs. For the aforementioned problems the sets c of constraints40

that their solutions need to satisfy are as follows.41

∗The research of the third author was partially supported by the Natural Sciences and Engineering Research Council of Canada,
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• Max k-cut: No additional constraints, just divide V into k disjoint non-empty partitions.42

• Max multiway cut: Each partition must include one vertex from a given set T = {t1, t2, . . . , tk} ⊆V43

of terminals.44

• Max Steiner k-cut: Each partition must include at least one vertex from a given set T = {t1, t2, . . . , tl}⊆45

V of terminals, where l ≥ k. Note that this is a generalization of the max multiway cut problem.46

• Capacitated max k-cut problem: Given a set {s1,s2, . . . ,sk} of sizes, a valid partition V1, . . . ,Vk of47

V must satisfy |Vi| ≤ si, for all 1≤ i≤ k.48

• Max k-cut with given sizes of parts: Given a set {s1,s2, . . . ,sk} of sizes, a valid partition V1,V2, . . . ,Vk49

of V must satisfy |Vi| = si, for all 1 ≤ i ≤ k. This is a special case of the capacitated max k-cut50

problem.51

In this paper we present a general local search algorithm for the constrained max k-cut problem on52

hypergraphs that finds approximate solutions for all aforementioned problems. Our local search algorithm53

starts with an arbitrary feasible solution for the problem that partitions V into k disjoint sets. The algorithm54

then tries to improve the current solution by either moving one node from its current partition to another55

partition or by swapping two nodes from different partitions.56

Our algorithm can be modified so it can be used also on the directed max k-cut problem on hypergraphs.57

A directed hypergraph H = (V,E) consist of a set V of nodes and a set E of directed hyperedges. A58

directed hyperedge is an ordered pair (t,h) formed by two disjoint sets of nodes: t (the tail set) and h (the59

head set).60

Given a directed hypergraph H = (V,E) and a partition V1,V2, . . . ,Vk of V , the weight of the partition61

is the total weight of the hyperedges having at least one head in some partition i and at least one of their62

tails in some partition j, where i > j. In the directed max k-cut problem on hypergraphs, the goal is to63

find a maximum weight partition V1,V2, . . . ,Vk of V .64

The approximation ratio of our algorithm for max k-cut, max multiway cut and max Steiner k-cut65

is 1− 1
k . For the max k-cut problem with given sizes of parts and the capacitated max cut problem66

our algorithm has approximation ratio 1− |Vmax|
|V | , where |Vmax| is the size of the largest partition. The67

approximation ratio of our algorithm for the directed max k-cut problem on hypergraphs is k−1
3k−2 .68

Related Work: There has been a significant amount of research on max k-cut and related problems69

on graphs. Papadimitriou (1994) presented a local search algorithm for the unweighted max cut problem,70

a special case of the max k-cut problem when k = 2, and showed that the approximation ratio of his71

algorithm is 1
2 . This is a simple algorithm that starts with two arbitrary partitions and then repeatedly72

improves the solution by moving one node to the other partition. Goemans and Williamson (1995)73

introduced a randomized rounding approximation algorithm based on a semidefinite relaxation of the max74

cut problem with expected approximation ratio 0.8785. They later designed an algorithm for the max75

3-cut problem with approximation ratio 0.8360 (Goemans and Williamson, 2004). An algorithm with the76

same approximation ratio was presented by de Klerk et al. (2004).77

Vazirani (2001) designed a simple greedy (1− 1
k )-approximation algorithm for the max k-cut prob-78

lem. Frieze and Jerrum (1997) generalized the randomized approximation algorithm of Goemans and79

Williamson and designed a randomized algorithm for the max k-cut problem with expected approximation80

ratio 1− 1
k +2 ln k

k2 . Kann et al. (1997) show that no approximation algorithm for the max k-cut problem81

can have approximation ratio better than 1− 1
34k unless P = NP.82

Frieze and Jerrum (1997) also designed a randomized algorithm for the max bisection problem, where83

we have to partition V into two sets of equal size, and showed that the approximation ratio of their84

algorithm is 0.65. Ye (2001) improved on this result by designing an algorithm with approximation ratio85

0.699. Later, Halperin and Zwick (2002), Feige and Langberg (2006), Raghavendra and Tan (2012)86

designed algorithms with approximation ratios 0.7016, 0.7028 and 0.85 respectively, for the same problem.87

Finally, Austrin et al. (2013) improved the approximation ratio to 0.8776.88

Currently the best known approximation algorithm for max k-Section (in this problem |V1|= |V2|=89

. . .= |Vk|= |V |
k ) is by Andersson (1999) with approximation ratio 1− 1

k +Θ( 1
k3 ) based on semidefinite90

programming, generalizing the algorithm in (Frieze and Jerrum, 1997) for the max bisection problem.91

Liu et al. (2006) designed a greedy local search algorithm for the generalized max k-multiway cut92

problem with approximation ratio 1− 1
k . In the generalized max k-multiway cut problem besides having a93
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weighted graph G = (V,E) and integer k, we are also given p disjoint subsets Ui of V of size k. The goal94

is to divide V into k partitions such that each partition includes exactly one node from Ui for all 1≤ i≤ p.95

For the max cut problem with given sizes of parts Ageev and Sviridenko (1999) desiged a 1
2 -96

approximation algorithm using pipage rounding. Feige and Langberg (2001) designed a semi-definite97

programming-based algorithm with approximation ratio 1
2 + ε for the same problem for any ε > 0. For98

the capacitated max k-cut problem Wu and Zhu (2014) modified the local search algorithm by Gaur et al.99

(2008) and show that the approximation ratio of their algorithm is |Vmin|(k−1)
2(|Vmax|−1)+|Vmin|(k−1) , where |Vmin| and100

|Vmax| are sizes of the minimum and the maximum partitions returned by the algorithm. Our algorithm for101

the capacitated max k-cut problem has approximation ratio 1− |Vmax|
|V | ≥ 1− |Vmax|

|Vmax|+|Vmin|(k−1) . Therefore,102

our algorithm is better than the algorithm of Wu and Zhu when |Vmax| ≥ 2. Furthermore, our algorithm103

works on hypergraphs and not just on graphs.104

For the directed max cut problem Goemans and Williamson (1995) designed a 0.796-approximation105

algorithm that uses a semidefinite programming based technique. Feige and Goemans (1995) used a106

similar technique and improved the ratio to 0.859. Also, a 1
2 -approximation algorithm for the max directed107

cut problem with given sizes of parts was designed by Ageev et al. (2001) based on pipage rounding.108

For the max cut problem on hypergraphs Andersson and Engebretsen (1998) designed a 0.72-109

approximation algorithm. For the max k-cut problem on hypergraphs with given sizes of parts Ageev and110

Sviridenko (2000) designed an approximation algorithm based on pipage rounding with approximation111

ratio 1− (1− 1
r )

r− ( 1
r )

r, where r is the number of nodes in the smallest hyperedge. For the case when all112

the hyperedges have at least 3 nodes they gave a (1− 1
e )-approximation algorithm. If we compare our113

(1− |Vmax|
|V | )-approximation algorithim for the max k-cut problem with given sizes of parts on hypergraphs114

with that of Ageev and Sviridenko (2000), since 1− (1− 1
r )

r − ( 1
r )

r ≤ 0.7 our algorithm has better115

approximation ratio when |Vmax|< 3
10 |V |, where |Vmax| is the size of the biggest partition.116

Zhu and Guo (2011) used local search to design a k−1
∆+k−1 -approximation algorithm for the max k-cut117

problem on hypergraphs, where ∆ = min{ s(s−1)
2 , k(k−1)

2 } and s is the size of the largest hyperedge. They118

also gave a local search (1− 1
k )-approximation algorithm for the max k- cut problem on graphs. We note119

that our (1− 1
k )-approximation algorithm for hypergraphs has a much better approximation ratio than that120

of Zhu and Guo.121

2 THE LOCAL SEARCH ALGORITHM122

Given a hypergraph H = (V,E), let V1,V2, . . . ,Vk be an arbitrary partition of V into k non-empty sets. We
denote a hyperedge e as (u1,u2, . . . ,ure), where u1,u2, . . . ,ure are the endpoints of e. We define Hi to be
the set of hyperedges whose endpoints are all in partition Vi and Hi(u) to be the set of hyperedges from Hi
incident on u:

Hi = {(u1,u2, ...,ure) | u1,u2, ...,ure ∈Vi, (u1,u2, ...,ure) ∈ E},and (1)

Hi(u) = {(u1,u2, ...,ure) | u j = u for some 1≤ j ≤ r, (u1,u2, ...,ure) ∈ Hi}. (2)

Let Hi j be the set of hyperedges that have one endpoint in Vi and all other endpoints in Vj, and let Hi j(u)123

be the set of hyperedges from Hi j incident on u. Note that in general Hi j 6= H ji. Our algorithm for the124

constrained max k-cut problem on hypergraphs is described below.125

126

Algorithm Local Search(H,w,c)127

Input: Hypergraph H = (V,E), weight function w : E→ Z+, constraints c.128

Output: A partition of the set V satisfying c.129

1. Start with an arbitrary partition, V1, ..., Vk that satisfies the constraints c.130

2. If there is a node u ∈Vi such that there is a partition Vl , i 6= l for which131

∑e∈Hi(u) w(e)> ∑e∈Hil(u) w(e)132

and moving u to Vl creates a partition that satisfies the constraints in c, then move u from Vi to Vl .133
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3. If there are nodes u ∈Vi and v ∈Vl , i 6= l for which134

∑e∈Hi(u) w(e)+∑e∈Hl(v) w(e)> ∑e∈Hil(u) w(e)+∑e∈Hli(v) w(e)135

and moving u to Vl and v to Vi creates a partition that satisfies the constraints in c, then move u to Vl136

and v to Vi.137

4. If a node u as specified in Step 2 exists or if nodes u, v as specified in Step 3 exist then repeat Steps138

2 and 3, otherwise output the partition V1,V2, . . . ,Vk.139

Schaffer and Yannakakis (1991) proved that given a weighted graph, the problem of finding a partition140

of its vertices so the weight of the cut cannot be increased by moving a vertex from one side to the other141

(same operation as described in Step 2 of our algorithm) is polynomial time local search (PLS)-complete.142

The class PLS-complete introduced by Johnson et al. (1988) is formed by those problems for which a143

polynomial time local search algorithm for one implies such an algorithm for all of them. Therefore, it is144

unlikely that our local search algorithm has polynomial running time.145

The running time of our local search algorithm is dominated by the time complexity of Step 2 and146

Step 3 and by the number of times that Step 2 and Step 3 are repeated. Step 2 can be easily implemented147

to run in O(k|V |(|V ||E|+ f (c))) time, where the time needed to verify if a partition of V satisfies the148

constraints in c is f (c), and Step 3 can be implemented to run in O(|V |2(|V ||E|+ f (c))) time. The number149

of iterations of Steps 2 and 3 is at most ∑e∈E w(e) since at each step of the algorithm the weight of the150

solution increases by at least one unit, but this is not polynomial in the size of the input. Using the result151

by Orlin et al. (2004) we can transform our algorithm into an ε-local search algorithm for any ε > 0 with152

approximation ratio (1− ε) times the approximation ratio of the local search algorithm. The running time153

of the ε- local search algorithm is O(|V |4(|V ||E|+ f (c))), which is polynomial for any constant value154

ε > 0 when f (c) is polynomial. We note that f (c) is polynomial for all problems mentioned above. In the155

sequel we will analyze the performance of the local search algorithm knowing that we can modify it to156

achieve polynomial running time at the expense of a small loss in the quality of the approximation ratio.157

3 MAX K-CUT, MAX MULTIWAY CUT, AND MAX STEINER K-CUT PROB-158

LEMS159

In this section we analyze the local search algorithm described in the previous section and compute its160

approximation ratio for the max k-cut, the max multiway cut, and the max Steiner k-cut problems on161

hypergraphs.162

Let P = (V1,V2, ...,Vk) be the partition computed by the local search algorithm. We define E ′ as the
set of hyperedges that have at least two endpoints in different partitions:

E ′ = {(u1,u2, ...,ure) | partition containing ui 6= partition containing u j, (u1,u2, ...,ure) ∈ E}. (3)

Then the cost S of the local optimum solution computed by our algorithm is,

S = ∑
e∈E ′

w(e). (4)

Note that the only hyperedges that do not contribute to S are those whose endpoints are all in the163

same partition. Since P is a local optimal solution, for any nodes u ∈Vi and v ∈Vl , Vl 6=Vi, according to164

the conditions stated in Steps 2 and 3 of the local search algorithm either one or both of the following165

inequalities hold:166

• ∑
e∈Hi(u)

w(e)≤ ∑
e∈Hil(u)

w(e). (5)

The above inequality holds if u can be moved to Vl while satisfying the set c of constraints.167

• ∑
e∈Hi(u)

w(e)+ ∑
e∈Hl(v)

w(e)≤ ∑
e∈Hil(u)

w(e)+ ∑
e∈Hli(v)

w(e). (6)
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The above inequality holds if u and v can swap partitions while satisfying the set c of constraints.168

To make the analysis of the algorithm uniform when applied to any one of the 3 problems considered169

in this section, for each partition Vi, i = 1,2, . . . ,k, we try to choose a node pi so that inequality (6) holds170

for all pairs of nodes pi, pl , i 6= l: We choose (i) pi = ti ∈ T for the max multiway cut problem, (ii) pi171

does not exist for the max k-cut problem, and (iii) pi = t ′i for the max Steiner k-cut problem, where t ′i is a172

terminal from Vi. Note that inequality (5) holds for all nodes Vi \ pi, 1≤ i≤ k, for all three problems.173

Consider partitions Vl 6=Vi. If we add inequality (5) for all nodes in Vi \ pi we get,

∑
u∈Vi\pi

∑
e∈Hi(u)

w(e)≤ ∑
u∈Vi\pi

∑
e∈Hil(u)

w(e). (7)

Observe that in the term ∑u∈Vi\pi ∑e∈Hi(u) w(e) the weight of each hyperedge e ∈ Hi is counted re
times, except the weight of the hyperedges e incident on the terminals pi whose weights are counted
re−1 times. In addition, ∑u∈Vi\pi ∑e∈Hil(u) w(e) includes the weight of all the hyperedges in Hil except
those incident on terminal pi. Since re ≥ 2 for each hyperedge e, we can rewrite inequality (7) as follows,

2 ∑
e∈Hi

w(e)− ∑
e∈Hi(pi)

w(e)≤ ∑
e∈Hi

re w(e)− ∑
e∈Hi(pi)

w(e)≤ ∑
e∈Hil

w(e)− ∑
e∈Hil(pi)

w(e). (8)

Where Hi(pi) and Hil(pi) are empty if pi does not exist. Adding the above inequality over all partitions
Vl 6=Vi we get,

2(k−1) ∑
e∈Hi

w(e)− ∑
1≤l≤k

l 6=i

∑
e∈Hi(pi)

w(e)≤ ∑
1≤l≤k

l 6=i

∑
e∈Hil

w(e)− ∑
1≤l≤k

l 6=i

∑
e∈Hil(pi)

w(e). (9)

Adding this last inequality over all partitions Vi we get,

2(k−1) ∑
1≤i≤k

∑
e∈Hi

w(e)− ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hi(pi)

w(e)≤ ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hil

w(e)− ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hil(pi)

w(e).

(10)

Since (6) holds for all the nodes pi then,

∑
e∈Hi(pi)

w(e)+ ∑
e∈Hl(pl)

w(e)≤ ∑
e∈Hil(pi)

w(e)+ ∑
e∈Hli(pl)

w(e), for each 1≤ i 6= l ≤ k. (11)

We now add up this last inequality over all i, l = 1, ..,k, i 6= l, to get

∑
1≤i≤k

∑
1≤l≤k

l 6=i

(
∑

e∈Hi(pi)

w(e)+ ∑
e∈Hl(pl)

w(e)

)
≤ ∑

1≤i≤k
∑

1≤l≤k
l 6=i

(
∑

e∈Hil(pi)

w(e)+ ∑
e∈Hli(pl)

w(e)

)
. (12)

We can rewrite the above inequality as follows,

2 ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hi(pi)

w(e)≤ 2 ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hil(pi)

w(e). (13)

Dividing the above inequality by 2 and adding it to (10), we get

2(k−1) ∑
1≤i≤k

∑
e∈Hi

w(e)≤ ∑
1≤i≤k

∑
1≤l≤k

l 6=i

∑
e∈Hil

w(e). (14)

Since ∑1≤i≤k ∑1≤l≤k
l 6=i

∑e∈Hil
w(e)≤ 2S, then by (14)

∑
1≤i≤k

∑
e∈Hi

w(e)≤ 1
k−1

S. (15)
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Since an optimum solution can at most include the weights of all the edges, the cost O of an optimum
solution can be bounded by

O≤ S+ ∑
1≤i≤k

∑
e∈Hi

w(e)≤
(

1+
1

k−1

)
S. (16)

Therefore,

S
O
≥ 1− 1

k
. (17)

THEOREM 1. There is a (1− 1
k )-approximation algorithm for the max k-cut, max multiway cut, and174

max Steiner k-cut problems on hypergraphs.175

4 MAX CAPACITATED K-CUT PROBLEM AND MAX K-CUT PROBLEM WITH176

GIVEN SIZES OF PARTS177

In this section we analyse our local search algorithm for the max capacitated k-cut problem and the max178

k-cut problem with given sizes of parts and show that its approximation ratio is 1− |Vmax|
|V | , where |Vmax| is179

the size of the biggest partition returned by the algorithm.180

We proceed similarly as in Section 3. Since P = (V1,V2, . . . ,Vk) is a local optimal solution, for any181

nodes u ∈Vi and v ∈Vl , Vl 6=Vi, either one or both of inequalities (5) and (6) must hold. Observe that182

in the max k-cut problem with given sizes of parts only swaps are allowed, therefore only inequality (6)183

is true for all the nodes. On the other hand, in the capacitated max k-cut problem the condition in Step184

2 of the algorithm is true for a node u ∈ Vi only if there is a partition Vl 6= Vi of size |Vl |< sl and such185

that ∑e∈Hi(u) w(e)> ∑e∈Hil(u) w(e). Since swaps are allowed for all pairs of nodes in the capacitated max186

k-cut problem inequality (6) is true for all of them; hence in the analysis we will only use this inequality.187

Adding inequality (6) for all u ∈Vi we get,

∑
e∈Hi

rew(e)+ |Vi| ∑
e∈Hl(v)

w(e)≤ ∑
e∈Hil

w(e)+ |Vi| ∑
e∈Hli(v)

w(e). (18)

Notice that the first term in the left side of this inequality is ∑e∈Hi rew(e) because each hyperedge e in188

Hi is counted exactly re times in ∑u∈Vi ∑e∈Hi(u) w(e) and the first term in the right side of the inequality is189

∑e∈Hil
w(e) since each hyperedge in Hil is counted exactly one time in ∑u∈Vi ∑e∈Hil(u) w(e). Next, we sum190

inequality (18) for all v ∈Vl to get191

|Vl | ∑
e∈Hi

rew(e)+ |Vi| ∑
e∈Hl

rew(e)≤ |Vl | ∑
e∈Hil

w(e)+ |Vi| ∑
e∈Hli

w(e). (19)

Since re ≥ 2 for each hyperedge then,

2|Vl | ∑
e∈Hi

w(e)+2|Vi| ∑
e∈Hl

w(e)≤ |Vl | ∑
e∈Hi

rew(e)+ |Vi| ∑
e∈Hl

rew(e)≤ |Vl | ∑
e∈Hil

w(e)+ |Vi| ∑
e∈Hli

w(e). (20)

We sum this inequality for all i, l = 1,2, . . . ,k, i 6= l:

∑
1≤i≤k

∑
1≤l≤k

i 6=l

2(|Vl | ∑
e∈Hi

w(e)+ |Vi| ∑
e∈Hl

w(e))≤ ∑
1≤i≤k

∑
1≤l≤k

i6=l

(|Vl | ∑
e∈Hil

w(e)+ |Vi| ∑
e∈Hli

w(e)). (21)

The left side of the above inequality can be simplified as follows,

∑
1≤i≤k

∑
1≤l≤k

i 6=l

2(|Vl | ∑
e∈Hi

w(e)+ |Vi| ∑
e∈Hl

w(e)) = 2 ∑
1≤i≤k

∑
e∈Hi

w(e) ∑
1≤l≤k

i 6=l

|Vl |+

2 ∑
1≤l≤k

∑
e∈Hl

w(e) ∑
1≤i≤k

i6=l

|Vi|= 2 ∑
1≤i≤k

(|V |− |Vi|) ∑
e∈Hi

w(e)+

2 ∑
1≤l≤k

(|V |− |Vl |) ∑
e∈Hl

w(e) = 4 ∑
1≤i≤k

(|V |− |Vi|) ∑
e∈Hi

w(e).
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Similarly, the right side of inequality (21) can be simplified as follows,

∑
1≤i≤k

∑
1≤l≤k

i6=l

(|Vl | ∑
e∈Hil

w(e)+ |Vi| ∑
e∈Hli

w(e)) = ∑
1≤i≤k

∑
1≤l≤k

i 6=l

|Vl | ∑
e∈Hil

w(e)+

∑
1≤l≤k

∑
1≤i≤k

i6=l

|Vi| ∑
e∈Hli

w(e) = 2 ∑
1≤i≤k

∑
1≤l≤k

i6=l

|Vi| ∑
e∈Hil

w(e).

Therefore, we can re-write inequality (21) as follows,

2 ∑
1≤i≤k

(|V |− |Vi|) ∑
e∈Hi

w(e)≤ ∑
1≤i≤k

∑
1≤l≤k

i 6=l

|Vi| ∑
e∈Hil

w(e). (22)

Let |Vmax|= max{|Vi|, i = 1,2, . . . ,k}, then

2(|V |− |Vmax|) ∑
1≤i≤k

∑
e∈Hi

w(e)≤ |Vmax| ∑
1≤i≤k

∑
1≤l≤k

i 6=l

∑
e∈Hil

w(e)≤ 2|Vmax| S (23)

Therefore,

∑
1≤i≤k

∑
e∈Hi

w(e)≤ |Vmax|
|V |− |Vmax|

S. (24)

Since,

O≤ S+ ∑
1≤i≤k

∑
e∈Hi

w(e)≤ (1+
|Vmax|

|V |− |Vmax|
)S, (25)

then,

S
O
≥ 1

1+ |Vmax|
|V |−|Vmax|

= 1− |Vmax|
|V |

(26)

THEOREM 2. There is a (1− |Vmax|
|V | )-approximation algorithm for the max capacitated k-cut problem192

and max k-cut problem with given sizes of parts on hypergraphs.193

Corollary 1. There is a 1−|Vmax|
2|V |−|Vmax| -approximation algorithm for the max capacitated k-cut problem and194

the max k-cut problem with given sizes of parts restricted to hypergraphs where every hyperedge has at195

least 3 endpoints.196

Proof. Note that if every hyperedge has at least three endpoints then inequality (23) becomes 2(|V |−197

|Vmax|)∑1≤i≤k ∑e∈Hi ≤ |Vmax|S and thus in this case S
O ≥ 1− |Vmax|

2|V |−|Vmax| .198

5 DIRECTED MAX K-CUT PROBLEM199

A directed hypergraph H = (V,E) consist of set V of nodes and set E of hyperedges. Each hyperedge200

e = (u1,u2, . . . ,ure) ∈ E has a set te of tails and, a set he of heads and a weight w(e). We call a hyperedges201

e, a B-arc if e has only one head he and a F-arc if e has only one tail te. A BF-hypergraph is a directed202

hypergraph in which all the hyperedges are B-arcs or F-arcs. In this section we deal with BF-hypergraphs,203

so in the sequel hypergraph means BF-hypergraph.204

Given a directed hypergraph H = (V,E) and a partition V1,V2, . . . ,Vk of V , the weight of the partition205

is the total weight of the hyperedges having at least one head in some partition i and at least one of their206

tails in some partition j, where i > j. In the directed max k-cut problem on hypergraphs, the goal is to207

find a maximum weight partition P =V1,V2, . . . ,Vk of V .208

In Figure 1 a hypergraph H = (V,E) with 8 vertices and 5 hyperedges is shown. The sets of tails and209

heads for each hyperedge are as follows, te1 = {v1}, he1 = {v2}, te2 = {v4}, he2 = {v2,v3}, te3 = {v1},210

he3 = {v5}, te4 = {v4}, he4 = {v6,v7,v8}, te5 = {v5} and he5 = {v4,v8}. Let 3, 4, 1, 5, 1 be the weights211
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of hyperedges e1, e2, e3, e4 and e5 respectively. Consider partition P = V1,V2,V3. The weight of this212

partition is 1+5+1=7.213

e1

e2

e4

e5

v1

v2

v3

v5

v4

v6

v7

v8

e2

e3

e4

e5 e4

V1 V2 V3

Figure 1. Example of a directed Hypergraph.

Given a hypergraph H = (V,E), and a partition P =V1,V2, . . . ,Vk of V we define sets Hi, Hi(u), Ti(u),
as follows,

Hi = {(u1,u2, . . . ,ure) | u1,u2, . . . ,ure ∈Vi, (u1,u2, . . . ,ure) ∈ E},

Hi(u) = {e = (u1,u2, . . . ,ure) | (u1,u2, . . . ,ure) ∈ Hi, u ∈ he},

Ti(u) = {e = (u1,u2, . . . ,ure) | (u1,u2, . . . ,ure) ∈ Hi, u ∈ te}.

We define additional sets of hyperedges Ti j and Hi j as follows.214

• Ti j, i < j, is a set of B-arcs and F-arcs that contribute to the weight of the partition P such that if we215

move one of the tails of any of these hyperedges from Vi to Vj then that hyperedge will no longer216

contribute to the weight of the partition. The hyperedges of Ti j have the following properties:217

(i) each B-arc e in Ti j has exactly one tail in Vi and every other tail in
⋃

j≤q≤k Vq, and its head is218

in Vj,219

(ii) each F-arc e in Ti j has its tail in Vi, at least one head in Vj and no head in
(⋃

j<q≤k Vq
)
.220

Let Ti j(u), u ∈Vi, be the set of hyperedges e from Ti j for which u ∈ te.221

• Hi j, i > j, is a set of B-arcs and F-arcs that contribute to the weight of partition P such that if222

we move one of the heads of any of these hyperedges from partition Vi to partition Vj then that223

hyperedge will no longer contribute to the weight of P. The hyperedges of Hi j have the following224

properties:225

(i) each B-arc e in Hi j has its head in Vi, no tail in
⋃

1≤q< j Vq, and at least one tail in Vj,226

(ii) each F-arc e in Hi j has exactly one head in Vi and all other heads in
⋃

1≤q≤ j Vq, and its tail in227

Vj.228

Let Hi j(u), u ∈Vi, be the set of hyperedges e from Hi j, where u ∈ he.229

Our algorithm for the directed max k-cut problem is described below.230

231

Algorithm Max DICUT (H,w)232

Input: Directed hypergraph H = (V,E), hyperedge weight function w : E→ Z+.233

Output: A partition of the set V.234
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1. Start with an arbitrary partition, V1, ..., Vk, where Vi 6= /0 for i = 1,2, . . . ,k.235

2. If there is a node u ∈Vi and a partition Vl , i < l, such that236

∑
e∈Hi(u)

w(e)> ∑
i< j≤l

∑
e∈Ti j(u)

w(e),

then move u from Vi to Vl .237

3. If there is a node u ∈Vi and a partition Vl , i > l, such that238

∑
e∈Ti(u)

w(e)> ∑
l≤ j<i

∑
e∈Hi j(u)

w(e),

then move u from Vi to Vl .239

4. If a node u as specified in Step 2 or Step 3 exists then repeat Step 2 and Step 3. Otherwise,240

compare the cost of the solution induced by the ordered partition P =V1,V2, . . . ,Vk and the241

cost of the solution induced by the reverse partition Pr =Vk,Vk−1, . . . ,V1 and return the242

partition with the bigger cost.

Using the local search property specified in Step 2 of the algorithm, for each node u∈Vi, i, l ∈ {1,2, . . . ,k}
and i < l we have,

∑
e∈Hi(u)

w(e)≤ ∑
e∈Ti j(u)

w(e). (27)

Adding up inequality (27) for all nodes in Vi we get,

∑
u∈Vi

∑
e∈Hi(u)

w(e)≤ ∑
u∈Vi

∑
i< j≤l

∑
e∈Ti j(u)

w(e). (28)

Observe that each hyperedge e in the term ∑u∈Vi ∑e∈Hi(u) w(e) is counted |he|, times therefore ∑e∈Hi w(e)≤
∑e∈Hi |he|w(e) = ∑u∈Vi ∑e∈Hi(u) w(e). In the term ∑u∈Vi ∑i< j≤l ∑e∈Ti j(u) w(e) each hyperedge e is counted
once because in this expression e is counted only when u ∈ te∩Vi and from the definition of Ti j(u) we
know that u must be a tail of e, at least one head of e must be in Vj and no head of e can be in Vq for
j < q≤ k. Therefore, inequality (28) can be simplified as follows,

∑
e∈Hi

w(e)≤ ∑
i< j≤l

∑
e∈Ti j

w(e). (29)

Adding (29) over all 1≤ i < l ≤ k, we get

∑
1≤i≤k

∑
i<l≤k

∑
e∈Hi

w(e)≤ ∑
1≤i≤k

∑
i<l≤k

∑
i< j≤l

∑
e∈Ti j

w(e). (30)

Similarly, using the local search property specified in Step 3 of the algorithm, for each node u ∈Vi, i, l ∈
{1,2, . . . ,k} and l < i, we have,

∑
e∈Ti(u)

w(e)≤ ∑
l≤ j<i

∑
e∈Hi j(u)

w(e). (31)

Adding up inequality (31) for all nodes in Vi we get,

∑
u∈Vi

∑
e∈Ti(u)

w(e)≤ ∑
u∈Vi

∑
l≤ j<i

∑
e∈Hi j(u)

w(e). (32)

Observe that by a similar argument as above ∑e∈Ti w(e) ≤ ∑u∈Vi ∑e∈Ti(u) w(e). Also, in the term243

∑u∈Vi ∑l≤ j<i ∑e∈Hi j(u) w(e) in the right side of (32) each hyperedge e is counted once. To see this244

consider the following two cases: If e is a B-arc then e has its head in Vi, at least one tail in Vj and no245

tail in
⋃

1≤q< j Vq; hence, in the right side of (32) e is counted only once when j is the smallest index of a246

partition containing a tail of e. If e is an F-arc then it has exactly one head in Vi, its tail in Vj and all other247

heads in ∪1≤q≤ jVq; therefore, in the right side of (32) e is only counted once when j is the index of the248

partition containing the tail of e.249
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Therefore, inequality (32) can be simplified as follows,

∑
e∈Hi

w(e)≤ ∑
l≤ j<i

∑
e∈Hi j

w(e). (33)

Adding inequality (33) over all 1≤ l < i≤ k, we get

∑
1≤i≤k

∑
1≤l<i

∑
e∈Hi

w(e)≤ ∑
1≤i≤k

∑
1≤l<i

∑
l≤ j<i

∑
e∈Hi j

w(e). (34)

Now we add inequalities (30) and (34):

∑
1≤i≤k

∑
1≤l≤k

i6=l

∑
e∈Hi

w(e)≤ ∑
1≤i≤k

∑
i<l≤k

∑
i< j≤l

∑
e∈Ti j

w(e)+ ∑
1≤i≤k

∑
1≤l<i

∑
l≤ j<i

∑
e∈Hi j

w(e).
(35)

Each term ∑e∈Ti j w(e) is counted k− j+1 times in ∑1≤i≤k ∑i<l≤k ∑i< j≤l ∑e∈Ti j w(e) because for each
pair i, j, i < j, the value of l must be such that j ≤ l and l ≤ k; since there are k− j+1 such values, the
term ∑e∈Ti j appears k− j+1 times. Similarly, the term ∑e∈Hi j w(e), 1≤ j < i≤ k, is counted j times in
∑1≤i≤k ∑1≤l<i ∑l≤ j<i ∑e∈Hi j w(e), because for each pair i, j, i < j, the value of l must be such that l ≥ 1
and l ≤ j; since there are j such values, the term ∑e∈Hi j w(e) appears j times. Therefore, we can rewrite
the right hand side of (35) as follows,

∑
1≤i≤k

∑
i<l≤k

∑
i< j≤l

∑
e∈Ti j

w(e)+ ∑
1≤i≤k

∑
1≤l<i

∑
l≤ j<i

∑
e∈Hi j

w(e) =

∑
1≤i≤k

∑
i< j≤k

(k− j+1) ∑
e∈Ti j

w(e)+ ∑
1≤i≤k

∑
1≤ j<i

j ∑
e∈Hi j

w(e).
(36)

Observe that in the term ∑1≤i≤k ∑1≤ j<i j ∑e∈Hi j w(e) if we replace i with j and j with i then we get,

∑
1≤i≤k

∑
1≤ j<i

j ∑
e∈Hi j

w(e) = ∑
1≤ j≤k

∑
1≤i< j

i ∑
e∈H ji

w(e). (37)

Note that in the term ∑1≤ j≤k ∑1≤i< j i∑e∈H ji w(e), i can get values from 1 to k−1 and j can get values
from i+1 to k, therefore,

∑
1≤ j≤k

∑
1≤i< j

i ∑
e∈H ji

w(e) = ∑
1≤i<k

∑
i< j≤k

i ∑
e∈H ji

w(e) = ∑
1≤i≤k

∑
i< j≤k

i ∑
e∈H ji

w(e). (38)

The second equality in (38) is true since, if i = k there is no value j such that i < j≤ k. Let Ei j = Ti j∪H ji,
for each i < j. Using (37) and (38) in the right hand side of (36) we get,

∑
1≤i≤k

∑
i< j≤k

(k− j+1) ∑
e∈Ti j

w(e)+ ∑
1≤i≤k

∑
1≤ j<i

j ∑
e∈Hi j

w(e) =

∑
1≤i≤k

∑
i< j≤k

(k− j+1) ∑
e∈Ti j

w(e)+ ∑
1≤i≤k

∑
i< j≤k

i ∑
e∈H ji

w(e)≤

∑
1≤i≤k

∑
i< j≤k

(k− j+1) ∑
e∈Ei j

w(e)+ ∑
1≤i≤k

∑
i< j≤k

i ∑
e∈Ei j

w(e) =

∑
1≤i≤k

∑
i< j≤k

(k+ i− j+1) ∑
e∈Ei j

w(e)≤ k ∑
1≤i≤k

∑
i< j≤k

∑
e∈Ei j

w(e).

(39)

The last inequality holds because i < j. Now we show that all sets Ei j, for all 1≤ i < j ≤ k, are disjoint.250

Suppose that there are sets Ei j and Elq, Ei j 6= Elq, 1≤ i < j ≤ k and 1≤ l < q≤ k, such that Ei j∩Elq 6= /0.251

• Let Ei j and Elq share a B-arc e. Recall that by the definition of B-arcs, e has one head. Without252

loss of generality assume l < i. Since Ei j = Ti j ∪H ji, by the definition of Ti j and H ji if e ∈ Ei j253

then e has its head in Vj, at least one tail in Vi, and no tails in
⋃

1≤t<i Vt (observe that if e ∈ Ti j254

then e has exactly one tail in Vi and all other tails are in
⋃

j≤t≤k Vt , and since i < j then there is no255

tail in
⋃

1≤t<i Vt). Similarly if e ∈ Elq, then e should have its head in Vq, and since e has only one256

head then it must be that Vj =Vq; furthermore e has at least one tail in Vl , however since l < i this257

contradicts the fact that e has no tails in
⋃

1≤t<i Vt .258
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• Now suppose that Ei j and Elq share a F-arc e. Recall that F-arcs have only one tail. Without loss of259

generality assume that j < q. Since Ei j = Ti j ∪H ji, by the definition of Ti j and H ji if e ∈ Ei j then it260

has its tail in Vi, at least one head in Vj and no head in
⋃

j<t≤k Vt . Similarly if e ∈ Elq, e has its tail261

in Vl and since e has only one tail then Vi = Vl ; moreover e has at least one head in Vq, however262

since j < q and e cannot have any heads in
⋃

j<t≤k Vt this is a contradiction.263

Let Ai j, i < j be the set of hyperedges that have at least one tail in Vi and at least one head in Vj; note that
Ei j ⊆ Ai j for each i < j. The weight of the local optimal partition P is the weight of all the hyperedges
in
⋃

1≤i< j≤k Ai j, and since Ei j ⊆ Ai j then
⋃

1≤i< j≤k Ei j ⊆
⋃

1≤i< j≤k Ai j. Given a set C of hyperedges, let
w(C) denote the weight of the hyperedges of C. Then w(

⋃
1≤i< j≤k Ei j) ≤ w(

⋃
1≤i< j≤k Ai j) = S, where

S is the weight of the local optimal solution. Since all the sets Ei j, 1 ≤ i, j ≤ k, are disjoint then
w(
⋃

1≤i< j≤k Ei j) = ∑1≤i≤k ∑i< j≤k ∑e∈Ei j w(e), and so the right side of the last inequality in (39) can be
bounded as follows,

k ∑
1≤i≤k

∑
i< j≤k

∑
e∈Ei j

w(e)≤ kS. (40)

We can simplify the left side of inequality (35):

∑
1≤i≤k

∑
1≤l≤k

i6=l

∑
e∈Hi

w(e) = (k−1) ∑
1≤i≤k

∑
e∈Hi

w(e)
(41)

Therefore, by inequalities (35), (36), (39), (40) and (41) we have,

(k−1) ∑
1≤i≤k

∑
e∈Hi

w(e)≤ kS, or ∑
1≤i≤k

∑
e∈Hi

w(e)≤ k
k−1

S. (42)

Let B be the set of hyperedges in E−SL−
⋃

1≤i≤k
⋃

e∈Hi
e, where SL is the set of hyperedges that contribute

to the weight of the local optimal solution. Let Sr be the set of hyperedges that contribute to the weight of
the reverse partition Pr =Vk,Vk−1, . . . ,V1 as described in Step 4 of the algorithm. Note that because of the
last step of the algorithm, S≥ w(Sr), and since w(B)≤ w(Sr) then w(B)≤ S. Let O be the weight of an
optimal solution. Adding w(B)+S to left side of inequality (42) and 2S to the right side we get,

O≤ w(B)+S+ ∑
1≤i≤k

∑
e∈Hi

w(e)≤ 2S+
k

k−1
S. (43)

Therefore,

k−1
3k−2

≤ S
O
. (44)

THEOREM 3. There is a k−1
3k−2 -approximation algorithm for the directed max k-cut problem on hyper-264

graphs.265
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