
How developers debug

Debugging software is an inevitable chore, often difficult and more time-consuming than

expected, giving it the nickname the “ dirty little secret of computer science.” Surprisingly,

we have little knowledge on how software engineers debug software problems in the real

world, whether they use dedicated debugging tools, and how knowledgeable they are

about debugging. This study aims to shed light on these aspects by following a mixed-

methods research approach. We conduct an online survey capturing how 176 developers

reflect on debugging. We augment this subjective survey data with objective observations

from how 458 developers use the debugger included in their Integrated Development

Environments (IDEs) by instrumenting the popular ECLIPSE and INTELLIJ IDEs with our

purpose-built plugin WATCHDOG 2.0. To better explain the insights and controversies

obtained from the previous steps, we followed up by conducting interviews with debugging

experts and regular debugging users. Our results indicate that the the IDE-provided

debugger is not used as often as expected, since “printf debugging” remains a feasible

choice for many programmers. Furthermore, both knowledge and use of advanced

debugging features are low. Our results call to strengthen hands-on debugging experience

in Computer Science curricula and can and have already influenced the design of modern

IDE debuggers.
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Abstract—Debugging software is an inevitable chore, often
difficult and more time-consuming than expected, giving it the
nickname the “dirty little secret of computer science.” Surpris-
ingly, we have little knowledge on how software engineers debug
software problems in the real world, whether they use dedicated
debugging tools, and how knowledgeable they are about debug-
ging. This study aims to shed light on these aspects by following a
mixed-methods research approach. We conduct an online survey
capturing how 176 developers reflect on debugging. We augment
this subjective survey data with objective observations from how
458 developers use the debugger included in their Integrated
Development Environments (IDEs) by instrumenting the popular
ECLIPSE and INTELLIJ IDEs with our purpose-built plugin
WATCHDOG 2.0. To better explain the insights and controversies
obtained from the previous steps, we followed up by conducting
interviews with debugging experts and regular debugging users.
Our results indicate that the the IDE-provided debugger is not
used as often as expected, since “printf debugging” remains
a feasible choice for many programmers. Furthermore, both
knowledge and use of advanced debugging features are low.
Our results call to strengthen hands-on debugging experience in
Computer Science curricula and can and have already influenced
the design of modern IDE debuggers.

Index Terms—Debugging, Testing, Eclipse, IntelliJ, WatchDog

I. INTRODUCTION

Debugging, the activity of identifying and fixing faults in
software [1], is a tedious but inevitable chore in almost every
software development project [2]. Not only is it inevitable, but
Zeller also states that it is difficult and, therefore, consumes
much time, often more than creating the bogus piece of
software in the first place [3]. During debugging, software
engineers need to relate an observed failure to its underlying
defect [4]. To complete this step efficiently, they need to have a
deep understanding and build a mental model of the software
system at hand. This is where modern debuggers come in:
they can aid software engineers in gathering information about
the system, but they still require them to select relevant
information and perform the reasoning.

While scientific literature is rich in terms of proposals
for new (automated) debugging approaches, e.g., [3], [5]–[8],
there is a gap in knowledge of how practitioners actually
debug. Debugging has thus remained the dirty little secret
of computer science [9]. How and how much do software
engineers debug at all? Do they use modern debuggers? Are
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Fig. 1. Overview of our general research design.

they familiar with their capabilities of IDE debuggers? And
which other tools and strategies of the trade do they know?

The lack of knowledge on developers’ debugging behavior
is in part due to an all too human characteristic: admitting,
demonstrating, and letting others do research on how one
approaches what are essentially one’s own faults is a difficult
situation for both developer and researcher. But, however
unpleasant, by continuing to keep debugging practices secret,
we miss an important opportunity for improvement of software
engineering and potentially a large cost driver of software:
failures, which developers were unable to prevent, cost the US
economy $59.5 billion a year according to a 2002 study [10].

Knowledge on how developers debug can help researchers
to invent more relevant prototypes and techniques, educators to
adjust their teaching on debugging, and tool creators to tailor
debuggers to the actual needs of developers. To help make
the art of debugging an open secret, we performed a large-
scale behavioral field study, specifically in the area of what
developers think about debugging and how they debug in their
Integrated Development Environment (IDEs). The following
questions steer our research:

RQ1 How do developers reflect on debugging?

RQ2 When and how long do developers debug?
RQ2.1 How much of their active IDE time do developers

spend on debugging (compared to other activities)?
RQ2.2 What is the (average) frequency and length of the

debugging sessions performed by developers?
RQ2.3 At what times do developers launch the IDE debugger?
RQ2.4 Do long files require more debugging?
RQ2.5 How is debugging effort distributed across classes?
RQ2.6 Do developers who test more have to debug less?
RQ2.7 Do experienced developers have to debug less?
RQ2.8 Do developers often step over the point of interest?

RQ3 How do individual debugger users and experts interpret
our findings from RQ1 and RQ2?
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Research Design

In order to answer these research questions, we employ
a multi-faceted research approach outlined in Figure 1. We
conducted an online survey to capture developers’ opinions
on debugging and obtain an overview of the state of the
practice 1©. Simultaneously, we began using our WATCHDOG
2.0 infrastructure to track developers’ fine-grained debugging
activities in the IDE 2©. After we compared both case studies,
we came up with a list of several, potentially conflicting obser-
vations that needed further explanation. To help us explain the
findings in depth, we conducted interviews with developers,
some of whom are actively developing debugging tools 3©.

II. BACKGROUND

This section describes related work and research tools.

A. Related Work

In this section, we give an overview of debugging tools and
show how existing research relates to this paper.
Debugging Tools. When referring to “debuggers,” most pro-
grammers usually mean symbolic debuggers like GDB [11].
Such debuggers allow them to specify points in the program
where the execution should be suspended, called breakpoints.
A typical symbolic debugger supports different types of break-
points, such as line, method, or more advanced exception or
class prepare breakpoints, and options to further refine the
moment when the program should be suspended [12]. Exam-
ples include specifying a condition (conditional breakpoint) or
a hit count for program execution to suspend. A suspension
policy defines whether the entire program or just one thread
should be suspended once a breakpoint is hit.

Once the program is suspended, developers can use sym-
bolic debuggers to watch or inspect variables, work through
the call stack, line-wise step through the code, or evaluate
arbitrary expressions [11], [12]. Originating from command
line symbolic debuggers like GDB, several graphical symbolic
debuggers appeared, e.g. DDD [13]. Most symbolic debugging
features have today been integrated in the debuggers shipped
as part of Integrated Development Environments (IDEs) like
ECLIPSE and INTELLIJ. This study focuses on such IDE
debuggers and how developers use them.
Debugging Process. Researchers have developed systematic
process descriptions of debugging and come up with recom-
mendations to reduce the time programmers have to spend
on finding and fixing a defect that causes a program failure.
We want to also find out whether developers explicitly or
implicitly use such debugging strategies inspired by the sci-
entific method; for example, Zeller’s TRAFFIC approach [3]
comprises seven steps that cover every action in the debugging
process, from the discovery of a problem until the correction
of the defect. Three of those steps regard “the by far most time
consuming” Find-Focus-Isolate loop, as developers often need
to follow them iteratively to find the root cause of a failure.
Therefore, much research has gone into techniques to, at least
partially, automate this loop to reduce debugging effort.

Debugging Techniques. Arguably the most researched debug-
ging technique is delta debugging, which can be used to sys-
tematically narrow down possible failure causes by comparing
a successful and an erroneous program execution [14]. Other
types of debugging technique include slicing [3], focusing on
anomalies [3], mining dynamic call graphs [15], statistical de-
bugging [16], spectra-based fault localization [5], angelic de-
bugging [6], data structure repair [8], relative debugging [17],
automatic breakpoint generation [18] and automatic program
fixing using contracts [7]. Finally, several combinations of
the techniques exist [19]–[23]. Orso presents a detailed ex-
planation and evaluation of some of these automated debug-
ging techniques [24]. However, because automated debugging
techniques have apparently not yet reached the mainstream
debugging practices of developers and are not part of the IDE
debuggers in our study, we do not discuss them further.
Empirical Debugging Evidence. To the best of our knowl-
edge, only a handful of research efforts exist that empirically
evaluated how developers debug. Siegmund et al. studied the
debugging practices of professional software developers [4],
the research effort that is perhaps closest to ours, but different
in study population and methodology. They followed eight
software developers across four different companies through
think-aloud protocols and short interviews. Their results indi-
cate that none of the developers had any debugging-specific
education or training. Furthermore, “all developers use[d] a
simplified scientific method,” which consists of formulating
and verifying hypotheses as described in TRAFFIC [3]. “All
participants [were] proficient in using symbolic debuggers”
and preferred them over print statements. None of the devel-
opers were aware of back-in-time debuggers [25], which allow
to step back in the execution history and not only forward,
the automated techniques described above, or more advanced
symbolic debugging features, like conditional breakpoints.

Subsequently, Siegmund et al. created an online survey on
“debugging tools, workload, approach and education” [26].
Based on the answers of 303 respondents, they found that
“debugging education is still uncommon, but more [...] courses
started including it recently.” Furthermore, most participants
only use “older debugging tools such as printf, assertions
and symbolic debuggers.” Concurrency issues and external
libraries often seem to be the root causes of the hardest bugs.

Piorkowski et al. studied qualitatively how programmers
forage for information [27], [28]. They found that developers
spent half of their debugging time foraging for information.
This complements our study as it also shows what parts of the
IDE are often used for finding information during debugging
which might impact the debugging features developers use.

B. Related Tools

Swarm Debugging. Petrillo et al. developed the Swarm Debug
Infrastructure (SDI), which “provides [Eclipse] tools for col-
lecting, sharing, and retrieving debugging data” [29]. Devel-
opers can utilize the collective swarm intelligence of previous
debug sessions to “navigate sequences of invocation methods”
and “find suitable breakpoints.” Petrillo et al. evaluated SDI
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in a controlled experiment, in which 10 developers were
asked to debug into three faults of a program. Developers
toggled only one or two breakpoints per fault and there
were no correlations between numbers of breakpoints and
developers’ expertise and task complexity. Instead, developers
followed diverging debugging patterns. Our approach to RQ2
is technically similar to SDI in that we instrument ECLIPSE.
To broaden generalizability, we also support a second IDE,
INTELLIJ, and performed a longitudinal field study of how
dozens of developers debug in the wild.

III. DEBUGGING SURVEY

In this section, we describe our online survey.

A. Research Methods

Survey Design. To investigate developers’ self-assessed
knowledge on debugging for RQ1, we set up a survey.1

It consists of 13 short questions (SQ1-SQ13) organized in
four sections; the first gathers general information about the
respondents, such as programming experience and favorite
IDE. The second asks if and how respondents use the IDE-
provided debugging infrastructure. Developers who do not use
it were asked for the reason why, while others got questions
on specific debugging features, thus assessing how well the
respondent knows and uses several types of breakpoints.
In addition, we asked questions about other debugging fea-
tures ranging from stepping through code to more advanced
features like editing at run time (hot swapping). The third
part, presented to all respondents, assessed the importance of
codified tests in the debugging process; we gauged whether the
participant uses tests for reproducing bugs, checking progress,
or to verify possible bug fixes. SQ13 was an open, non-
mandatory question on participants’ opinion to the statement
“the best invention in debugging still was printf debugging.”
We included it because research on survey design has shown
that posing a concrete, controversial statement that evokes
strong opinions leads to more insightful answers [30]. Before
publicly releasing the survey, we made several iterations and
ran it across six externals.
Card Sort. To gain an overview of the topics that concern
developers, we performed an open card sort [31] on SQ13.
The first two authors individually built and then mutually
agreed on a set of tags from a sub-sample of responses. After
labeling all responses (possibly with multiple labels), the third
author sampled 20% of responses, tagged them independently
and we converged our tag sets to arrive at a homogeneous
classification of all answers.
Dependency Analysis. To gain insights into the correlation
between survey answers, we performed statistical tests. For
SQ7-12, we had to convert each categorical answer to an
ordinal scale using a linear integer transformation on its rank.
This was sound because our predefined answer options have
a naturally ranked order (“I don’t know” = 1, “I know” =
2, . . . ). We then computed a pair-wise Pearson Chi-Squared

1https://goo.gl/AFLojW

(χ2) test of independence [32], as we are dealing with
categorical variables. If variables depended on each other
(α = 0.05), we calculated the strength of their relationship with
a Spearman rank-order correlation test for non-parametric
distributions [33]. For interpreting the results of dependency
analyses ρ , we use Hopkins’ guidelines [34]. They assume
no correlation for 0 ≤ |ρ| < 0.3, a weak correlation for
0.3 ≤ |ρ| < 0.5, a moderate correlation for 0.5 ≤ |ρ| < 0.7
and a strong correlation for 0.7≤ |ρ| ≤ 1.
Recruitment of Subjects. To attract respondents (SR), we
spread the link to the survey through social media, especially
Twitter, and via an in-IDE WATCHDOG registration dialog,
advertising a raffle with three 15 Euro Amazon vouchers.
Study Subjects. We attracted 176 software developers who
completed our survey. The majority of them have at least three
years of experience in software development, with a third over
10 years (< 1 year: 2.8%, 1-2 years: 6.8%, 3-6: 31.8%, 7-10:
21.6%, > 10 years 36.9%). 84.1% indicated that they use Java,
followed by 55.1% for JavaScript and 39.2% for Python. The
languages PHP, C, C++ and C# were each selected by around
25% of participants, followed by R (16.5%), Swift (6.3%)
and Objective-C (5.1%). Finally, 44 developers indicated the
use of another language (24 different in total), of which Scala
(11) and Ruby (8) prevail. The most used IDEs are Eclipse
(31.8%), IntelliJ (30.7%), and Visual Studio (11.9%).

B. Results

Analysis of Survey Answers. In our first question, 143 de-
velopers (81.3%) indicated that they use the IDE-provided
debugging infrastructure, 15 (8.5%) indicated that they do not,
and 18 developers (10.2%) that their selected IDE does not
have a debugger. Besides using the IDE debugger, respondents
indicated they examine log files (72.2%), followed closely by
using print statements (71.6%). Other answers included the use
of an external program (21.0%), or additional other techniques
(30.1%). 19 developers indicated the use of a complementary
method, of which adding or running tests and using web
development tools built into the browser were mentioned most
(both four times).
SO1: Most developers use the IDE-provided debugging in-
frastructure in conjunction with log files and print statements.

Of the 15 developers not using the debugging infrastructure,
8 think that print statements and 6 that techniques other
than print statements are more effective or efficient, 6 use an
external program they find more effective or efficient, while 4
do not know how to use the debugger.
SO2: Developers not using the IDE-provided debugging
infrastructure find external programs, tests, print statements,
or other techniques more effective or efficient.

The 143 developers using an IDE debugger were asked
more detailed questions on whether they know and use specific
debugging features. The Likert scale plots in Figure 2 show
that most developers are familiar with line, exception, method
and field breakpoints, while temporary line breakpoints and
class prepare breakpoints are known by fewer developers.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2743v1 | CC BY 4.0 Open Access | rec: 23 Jan 2017, publ: 23 Jan 2017

https://goo.gl/AFLojW


1%

17%

28%

24%

45%

75%

90%

57%

48%

45%

31%

6%

9%

25%

24%

31%

24%

20%

Line breakpoint

Temporary line breakpoint

Class prepare breakpoint

Method breakpoint

Exception breakpoint

Field watchpoint

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

17%

34%

68%

57%

23%

13%

25%

43%

19%

Specifying a condition

Specifying a hit/pass count

Setting the suspend policy

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

1%

2%

3%

6%

14%

12%

19%

90%

90%

80%

73%

60%

60%

47%

10%

8%

16%

20%

26%

28%

34%

Stepping through the code

Inspecting variable values

Inspecting the call stack

Defining watches

Evaluating expressions

Modifying variable values

Editing code at runtime

100 50 0 50 100

Percentage

Response I don’t know I know I know and I use

Fig. 2. Answer distribution in SQ7-9 on breakpoint types, breakpoint options,
and debugging features (n = 143).
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Fig. 3. Answer distribution in SQ10-12 on unit tests (n = 176).

The vast majority of developers also uses line breakpoints,
but other breakpoint types are used by less than half of the
respondents; Class prepare breakpoints are used by almost
none.
SO3: Line breakpoints are used by the vast majority of
developers. More advanced types are unknown to most.

Figure 2 indicates that the majority of developers specify
conditions on breakpoints. However, specifying the hit count
or setting a suspend policy are both known and used less.
SO4: Most developers answered to be familiar with break-
point conditions, but not with hit counts and suspend policies.

The results in Figure 2 show that over 80% of the developers
seem to know all major debugging features found in modern
IDEs, strengthening Siegmund’s findings [4]. The more ad-
vanced features, like defining watches or a suspend policy,
seem to be known and used less.

Figure 3 visualizes the use of codified tests throughout the
debugging process based on all 176 responses. It indicates
that tests are often used at the start and end of the debugging
process, for reproducing bugs and verifying bug fixes, respec-
tively, and slightly less throughout the debugging process.
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Fig. 4. Correlation analysis of SQ1, SQ7-12 (n = 143).

SO5: Survey answers indicate testing is an integral part of
the debugging process, especially at the beginning and end.

Dependency Analysis. Examining our survey answers for de-
pendencies allows us to understand how certain answer relate,
for example whether and how strongly programmer experience
correlates with the use of debugger features like breakpoints,
watches or the use of testing to guide debugging.

Figure 4 visualizes the results of both computation on the
n = 143 survey responses that indicated to use the debugger.
The more intense the color and the flatter the ellipses, the
higher is the strength of the correlation, also reported numer-
ically below the diagonal. Empty cells correspond to non-
significant results of the χ2 test. We applied no Bonferroni
correction as its use is highly controversial [35], especially
for overview purposes.

Based on the results in Figure 4, we find that there is no
correlation between the use of an IDE debugger or (unit) tests
for debugging and experience in software development. There
is a weak correlation between experience and specifying hit
counts and a moderate correlation between experience and the
usage of watches during debugging.
SO6: Experience has limited to no impact on the usage of
the IDE-provided debugging infrastructure and tests.

We also find that there is a moderate correlation between the
use of tests at the beginning and end of the debugging process
to reproduce and verify bug fixes, and a weak to moderate
correlation between using tests at the beginning or end and
throughout the process for checking progress.
SO7: Developers who use tests for reproducing bugs are
likely to use them for checking progress and very likely to
use them for verifying bug fixes as well.

Figure 4 shows many other correlations between the knowl-
edge and use of several debugging features. Most notably,
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Fig. 5. Intuitive representation of the tag network extracted from SQ13.

there is a quite strong correlation between the following three
features: line breakpoint, stepping through code and inspecting
variable values.
SO8: Developers that use line breakpoints also step through
the code and inspect variable values during debugging.

Card Sorting. In total, 108 respondents gave a response to the
statement that “the best invention in debugging still was printf
debugging.” In the open card sorting process, we identified
34 different tags. To understand important topics and their
co-occurrence, we use an intuitive graph-based representation
of the tag structure. Vertices correspond to the tags and
undirected, weighted edges to the strength of relation between
two tags. The size of the vertices in is determined by the
occurrence frequency of the tag, while the weight of the
edges is determined by the relative number of co-occurrences.
To ease the interpreting the graph, (1) we normalized the
weights of the edges based on the occurrence frequencies
of its end points, (2) we filtered out all edges with a low
normalized weight and (3) we removed vertices that did not
have any outgoing or incoming edge. The resulting graph in
Figure 5 allows us an intuitive understanding and overview of
responses and how they relate to each other, without having to
read hundreds of responses [36].2 The tags ‘debugger jittery’,
‘debugger overhead’ and ‘debugger interference’ mean that
respondents think debuggers have too much impact on the
thinking process, performance or program execution, respec-
tively. ‘First printf’ means that developers first use printf
debugging and ‘before debugger’ indicates that developers use
some other technique(s) before using the debugger.

As Figure 5 indicates, there was a strong dichotomy between
survey respondents: Some enthusiastically agreed with our
statement (“Totally agree!”, SR13, SR23), while others rejected
it, stating that “[p]eople saying that never learned how to
use a debugger” (SR54). Many respondents were also in-
between, seeing benefits and drawbacks, like SR10: “Print
is often most flexible but often least efficient.” Developers

2We explicitly avoided statistical tests. Given open-ended survey answers
as the source, the meaning of such tests is unclear at best, or can convey a
false sense of statistical preciseness and completeness at worst.

indicated to use printf debugging as an ad-hoc, universal
technique that is easy to do and often the first step in a
possibly longer debugging strategy. However, sometimes it
is not enough, as a combination of techniques is required.
Developers mostly seemed to agree that IDE debuggers are
methodologically superior to print statements. However, their
answers also pointed to problems with IDE debuggers: they
are sometimes too jittery, provide too many features and are
not suited for concurrent debugging as they interfere too
much. Moreover, their complicated UI can get in the way of
working (fast). Instead of pintf debugging, developers seemed
to prefer a live IDE with a console that has a read-eval-loop
(REPL). Summarizing this discussion nicely, SR75 concluded
that “printf is travelling by foot, a GUI debugger is travelling
[by] plane. You can go to more places by foot, but you can
only go that far.”

IV. IDE FIELD STUDY

In this section, we describe our WATCHDOG field study.

A. Study Methods

Data Collection. To investigate the debugging habits of devel-
opers in the IDE, we extended our existing WATCHDOG [37]–
[39] infrastructure to also track developers’ debugging behav-
ior for RQ2, resulting in WATCHDOG 2.0 for both ECLIPSE
and INTELLIJ. The original WATCHDOG was used to verify
common expectations and beliefs about testing [37], [38].
WATCHDOG is technically centered around the concept of
intervals that capture the start and end of common devel-
opment activities like reading and writing code as well as
running JUNIT tests. We extended its interval concept to cover
debugging sessions and introduce singular debugging events
like breakpoint additions, changes and removals.
Analysis Methods. To analyze the data collected with
WATCHDOG 2.0, we integrated the new debugging anal-
yses into the existing analysis pipeline of WATCHDOG.
This pipeline extracts the data from WATCHDOG’s MONGO
database and loads it into R for further analysis. The analysis
methods we used for some of these research questions require
some more explanation.

For RQ2.3, we assessed the intervals that occur right before
a debugging session is started. We chose a time period of
16 seconds as there is an inactivity timeout of 16 seconds
in WATCHDOG, meaning that activity-based intervals like
reading or typing intervals are automatically closed after this
period of inactivity to account for e.g., coffee breaks.

For RQ2.4 and RQ2.5, we consider a file “under debugging”
if we receive reading or typing intervals during a debugging
interval on it, i.e. for all the files the user steps through, reads,
or otherwise modifies during a debugging session.
Study Subjects. Since the release of WATCHDOG 2.0 on 22
April 2016, we collected user data for a period over two
months, until 28 June 2016. In this period, we received
1,155,189 intervals, from 458 users in 603 projects. Of these,
3,142 were debug intervals from 132 developers. In total,
we recorded 18,156 hours in which the IDE was open,
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which amounts to 10.3 observed developer years based on the
2015 average working hours for OECD countries [40]. We
also collected 54,738 debugging events from 192 users, 218
projects and 723 IDE sessions. In total, we recorded both at
least one debug interval and one event for 108 users. Table I
presents the number of occurrences of the different event types.

B. Results

As Table I indicate, only 132 of the 458 users (28.8%)
started a debugging session during the data collection period,
with no significant difference between ECLIPSE (28.9%) and
INTELLIJ (27.6%) users. Moreover, only 108 study subjects
(23.6%) have used the debugger and at least one of its features
(transferred both intervals and events).
WO1: The vast majority of WATCHDOG 2.0 users is not
using the IDE-provided debugging infrastructure.

The results in Table I indicate that line breakpoints are by
far the most used breakpoint type. The other, more advanced,
types account for less than 7% of all breakpoints set during
the collection period. Furthermore, line breakpoints are used
by most developers using the debugging infrastructure, while
the other types of breakpoints are used by only 7.6− 20.5%
of these developers.
WO2: Line breakpoints are used most and by most develop-
ers, other breakpoint types are used much less and by much
less developers.

The breakpoint change type frequencies in Table I indicate
that almost all of these changes are related to the enablement
or disablement of the breakpoints. The other change types ac-
count for only 10.9% of all breakpoint changes. Furthermore,
the number of users that generated these events range from 1
(0.8%) to 12 (9.1%). Moreover, the events related to specifying
a hit count on the breakpoint have not been recorded at all
during the collection period.
WO3: Breakpoint options are not used by most WATCHDOG
2.0 users; the most frequently used option is changing their
enablement.

Table I shows that most of the recorded events are related
to the evolution of breakpoints, hitting them during debugging
and stepping through the source code. The more advanced de-
bugging features like defining watches and modifying variable
values have been used much less. Furthermore, the same holds
for the number of users generating these events: the majority
of users have added and/or removed breakpoints and stepped
through the code, while only 2.3− 15.2% modified variable
values, evaluated expressions and/or defined watches.
WO4: Setting breakpoints and stepping through code is done
most, other debugging features are used by far less.

For RQ2.1, we first computed the total duration of all inter-
vals of a particular type and based it on the total duration of
‘IDE open’ intervals (18,156.9 hours, 100%) in the collection
period. We recorded 25.2 hours of running unit tests (0.14%),
721.5 hours of debugging intervals (3.97%), 2,568.8 hours of

reading (14.15%), and 1,228.6 hours of typing (6.77%). More
generic interval types include e.g. ‘WatchDog open’ (0.12%)
and ‘IDE active’ (28.92%). Next, we analyzed the duration and
percentages on a per user basis. For the users with at least
one debug interval, the descriptive statistics of the resulting
duration and percentages are shown in Table II. This table
also shows the corresponding values for reading, typing and
JUNIT intervals.

From the results in Table II and the fact that the total
recorded active IDE time was 5250.7 hours, we conclude
that debugging consumes 13.7% of the total active in-IDE
development time, while reading or writing code and running
tests take 48.6%, 23.4% and 0.5%, respectively.
WO5: Debugging consumes, on average, less than 14% of
the in-IDE development time.

For RQ2.2 we are interested in knowing the frequency and
length of debugging sessions. We first analyzed the number
of debug intervals per user for the 132 developers that have
used the debugger during the collection period. The resulting
numbers range from a single debug interval to 598 debugging
intervals, with an average of 23.8 and a median of 4 debug
intervals per user. Next, we analyzed the duration of the 3,142
debug intervals and found values ranging from 3 milliseconds
to 90.8 hours, with an average and median duration of 13.8
minutes and 42.3 seconds, respectively. About half of the
users using the IDE-provided debugging infrastructure have
launched the debugger four times or less during the two
months of data collection, 21% launched their debugger more
than 20 times.
WO6: About 20% of the developers are responsible for over
80% of the debugging intervals in our sample.

Furthermore, about half of the debugging sessions take at
most 40 seconds, while about 12% of them last more than 10
minutes.
WO7: Most debugging sessions consume less than 10 min-
utes.

To find an answer to RQ2.3, we assessed the intervals
that occur immediately before a debugging session starts. The
resulting frequencies and their percentages of all intervals
occurring before any debug interval are: 46 (0.48%) for
running unit tests, 119 (1.24%) for other debug intervals,
4,991 (51.94%) for reading and 1,802 (18.75%) for typing
intervals. About 70% of the debugging sessions start after
reading or writing code; only 0.5% of them after a failing
or passing test run.
WO8: Most debugging sessions start after reading or chang-
ing the code, not after running tests.

For RQ2.4, we researched whether there is a correlation be-
tween the file size of a class (in source lines of code [41]), and
the number of times it is used for debugging. At ρ =−0.75,
we find a strong negative correlation. We also investigated the
relation between the file sizes and the duration of the debug
intervals in which they are opened and found no significant
correlation (ρ = 0.19).
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TABLE I
FREQUENCY TABLES OF RECEIVED EVENTS AS WELL AS THE BREAKPOINT TYPES AND OPTIONS SEEN IN THEM.

Breakpoint type Frequency Breakpoint change type Frequency Event type Frequency Event type Frequency

Class prepare 99 Change condition 3 Add breakpoint 4544 Resume client 8292
Exception 37 Disable condition 1 Change breakpoint 247 Suspend by breakpoint 13276
Field 78 Enable condition 19 Remove breakpoint 4362 Suspend by client 16
Line 4229 Disable 180 Define watch 343 Step into 3480
Method 77 Enable 40 Evaluate expression 101 Step over 19543
Undefined 24 Change suspend policy 4 Inspect variable 179 Step out 351

Modify variable value 4
Σ 4544 Σ 247 Σ 54738

TABLE II
DESCRIPTIVE USAGE STATISTICS FOR KEY INTERVAL TYPES.

Variable Unit Min 25% Median Mean 75% Max Histogram

Debugging Hours (%) 0.00 (0.00%) 0.03 (0.06%) 0.30 (0.49%) 5.47 (2.50%) 1.42 (2.36%) 333.70 (30.81%)

Reading Hours (%) 0.00 (0.02%) 0.14 (1.65%) 0.60 (3.22%) 5.70 (4.89%) 2.07 (5.68%) 591.10 (52.71%)

Typing Hours (%) 0.00 (0.01%) 0.21 (1.46%) 1.01 (3.59%) 2.95 (4.84%) 2.78 (6.87%) 63.87 (28.25%)

Running JUNIT tests Hours (%) 0.00 (0.00%) 0.00 (0.00%) 0.01 (0.01%) 0.68 (0.21%) 0.56 (0.16%) 9.19 (2.13%)

WO9: Smaller classes are debugged more than larger classes.

For RQ2.5 we aggregate and compared the number of
classes in single debug intervals to: 1) the total number of
classes we observed with WATCHDOG for this project (also
through other intervals such as reading, writing, or running
tests); and 2) the number of different classes that have been
debugged during any debug interval of the project.

For 1), we found that on average only 4.83% (median:
1.66%) of all project classes we observed in WATCHDOG
intervals were ever debugged. The value ranges from 0.22% to
100%, where the 100% cases possibly stem from toy projects
with only one or two classes. For 2), the results range from
0.81% to 100% with an average of 14.47% (median: 4.55%).
Both results seem to indicate that debugging is focused on
a relatively small set of classes in the project. In 75% of
debugging sessions, at most 5% of the project’s classes are
debugged.
WO10: In most cases less than 5% of the project’s classes
are debugged in a single debug session.

In RQ2.6, we first investigated the relation between the total
duration of running unit tests and debug intervals per user.
We only considered the 25 developers with at least one debug
interval and one unit test execution. At ρ = 0.58, we find a
moderate correlation between the two durations.
WO11: Developers who spend more time executing tests are
likely to proportionally debug more.

Next, we studied the relation between the amount of time the
user spends inside test classes and the debugging time. For the
248 developers with at least one debug interval or one opened
test class, we find no correlation at ρ =−0.08. Furthermore,
we find no significant correlation (ρ = 0.23) when focusing
on the 84 users with both at least one debug interval and one
opened test class.
WO12: Developers who read or modify test classes longer
are not significantly likely to debug less.

For answering RQ2.7, we first computed the total duration
of all debug intervals per user. Then, we performed a Spearman
rank-order correlation test using these values and the program-
ming experience the user entered during WATCHDOG 2.0’s
registration process by applying a linear integer transformation
(see Section III-B). For the 58 users that have entered their
experience and generated at least one debug interval, this
resulted in a weak correlation (ρ = 0.38).
WO13: More experienced developers are likely to spend
slightly more time in the IDE debugger.

During our research into debugging, we sometimes heard
anecdotal reports of frustrated developers stepping over the
point of interest while debugging. To this end, we sought
objective data to support how severe of a problem it really
is by looking for possible cases of stepping over the point
of interest for RQ2.8, which means that the developer steps
one time too many and has to start debugging all over again.
For this we created a set of debug intervals that satisfy the
following two conditions: 1) the last event occurring within
the debug interval is a stepping event; and 2) the interval is
followed by another debug interval in the same IDE session.
Then we created several subsets of this debug intervals by
imposing a maximum time period between two consecutive
debug intervals. Figure 6 shows the possible cases of stepping
over the point of interest for the subsets with a maximum time
period of 15 minutes.

The trend line in Figure 6 shows that the amount of new
possible cases of stepping over the point of interest starts to
decrease significantly after about four minutes. At this point,
about 150 possible overshoot cases can be identified, which
corresponds to 4.8% of the debugging intervals.
WO14: Developers might step over the point of interest and
have to start over again in 5% of debugging sessions.
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Fig. 6. Possible cases of stepping over the point of interest per maximum
time period between consecutive debug intervals.

TABLE III
INTERVIEWED DEVELOPERS AND DEBUGGING EXPERTS

ID Occupation Dev. Experience Country Area

I1 Freelancer > 20 years Germany Rich Client Platforms
I2 Developer ≥ 15 years India E-commerce
I3 Developer 11 years USA Real-Time Systems
I4 Developer 10 years UK Data Scraping

E1 3 Eclipse Debugging Projects Leads Switzerland, India Eclipse Development
E2 Professor > 20 years Greece Software Engineering
E3 Debugger Developer 18 years Russia IDE Development

V. INTERVIEWS

In this section, we describe how we conducted developer
interviews for RQ3 and merge and discuss results from RQ1
and RQ2.

A. Study Methods

Interview Design & Method. To validate and obtain a deeper
understanding of our findings from RQ1 and RQ2 and to
mitigate apparent controversies, we performed two sets of
interviews. First, we sampled a set of “regular developers”
from our survey population to gain insights into what hinders
the use of debuggers, why printf debugging is still widely used,
and whether they regularly step over the line of interest. Then
we ran the combined observations from survey, objective IDE
measurement, and anecdotal interview insights across three
sets of debugging experts. A question sheet helped us steer
the semi-structured interviews, which we conducted remotely
via Skype and took from 36 minutes to one hour and seven
minutes. Subsequently, we transcribed the interviews to text
and extracted insightful quotes.
Study Subjects. Table III gives an overview of our study pop-
ulation of nine interviewees. In one case (E3), we performed
the interview asynchronously via email.

B. Results

This section juxtaposes survey (RQ1) and IDE study (RQ2)
results and discusses them by the help of the qualitative
insights we obtain from RQ3.

Use of the IDE Debugger. In WO1, we found that two thirds
of the WATCHDOG 2.0 users were not using the IDE-provided
debugger in our observation period, an obvious contradiction
to SO1, in which 80% of respondents claimed to use it. There
might be several reasons for the discrepancy: 1) The study
populations are different, and the survey respondents were
likely self-selecting on their interest in debugging, resulting in
a higher than real use of the debugger. 2) As often observed in
user studies, most relevant data stems from a relatively small
percentage of users. 3) WATCHDOG users were free to start
and stop using the plugin at any time in the observation period.
Hence, for some users the actual observation period might be
much shorter, perhaps coinciding with not having to debug a
problem. 4) Almost equally many developers conceded to use
printf statements for debugging. We have anecdotal evidence
from RQ3 that they might use them even more: When we asked
I3 about printf debugging, he was very negative about it. Later
in the interview, he still conceded to use printf “very rarely.”
We believe a similar case might hold for many WATCHDOG
users. As we cannot capture printf debugging or debugging
outside the IDE with WATCHDOG, our finding does not mean
two thirds of developers did not debug. 5) The phenomenon of
a discrepancy between survey answers and observed behavior
is not new. We observed it similarly with developers claiming
to test, and then not nearly testing as much in reality [37]. As
a consequence, we emphasize our previous finding that survey
answers always be cross-validated by other methods.
Printf Debugging. From RQ1 and RQ2, it seemed that devel-
opers were well-informed about printf debugging and that it
is a conscious choice if they employ it, often the beginning
of a longer debugging process. Interviewees praised printf as
a universal tool that one can always resort back to, helpful
when learning a new language ecosystem, in which one is not
yet familiar with the tools of the trade. About left-over print
statements that escape to production, I2 was “not worried at
all, because we have a rigorous code review process.” While
frequently used, developers are also aware of its shortcomings,
saying that “you are half-assing [sic!] your way toward either
telemetry or toward tracing” and “that it is insufficient for con-
current programs, primarily because the [output] interleave[s]
in strange ways” (I3).
Use of Debugging Features. SO3 and SO4 indicated that most
developers use line breakpoints, but do not use more advanced
breakpoint types like class prepare breakpoints. While many
developers knew and used conditional breakpoints, they were
widely ignorant of hit counts and more advanced functions of
the debugger. WO2 to WO4 support this result, finding that
conditional breakpoints are indeed the second most feature
in the IDE debugger. A similar result is visible in other
debugging features like stepping through code. In both cases
we found that these features get used less as they become more
advanced. However, the observed numbers on the use of these
features are much lower than the claimed usage visualized in
Figure 2. For example, while 60% of the survey respondents
indicated to define watches during debugging, only 15.2% of
the WATCHDOG 2.0 users that use the debugger have defined
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a watch. Through our interviews with the debugging experts,
we identify three possible causes for this.

1) More advanced debugging features are seldom required.
I1 and I2 said that specifying conditions or hit counts is often
“fuzzy” (is it going to happen on the 16th, 17th, or 18th time?)
and that once one knows the condition, one almost automati-
cally understands the problem, and then there is no need for
the conditional breakpoint anymore. Moreover, “the types of
problems where you need a conditional breakpoint happen
very, very rarely” (I2). For example, when we presented the
breakpoint export feature of ECLIPSE to I2, he replied “oh, I
did not know such a feature exists.” Others said it is a “very
esoteric thing” and that they have used it “maybe once or
twice” (I3). This strengthens our intuition that debugging is
a process that is usually not shared with the outside and that
breakpoints are “like a one-shot. Ideally I wouldn’t like them
to be, but then I just set them anew” (I4).

2) The debugger is difficult to use. Another reason given by
interviewees, even though seasoned engineers, was that “the
debugger is a complicated beast” (I2) and that “debuggers that
are available now are certainly not friendly tools and they don’t
lend toward self-exploration.” Given our results on the use of
features, we asked interviewees whether it might simply be
enough to reduce the feature set. Both developers and E1 to
E3 emphatically declined, arguing that “once you get into these
crazy cases, they are really useful” (I2).

3) There is a lack of knowledge on how to use the debugger.
When we asked developers where their knowledge of debug-
ging comes from, many said that “big chunks are self-taught”
and “[I] picked up various bits and pieces on the Internet” (I4).
Even I3, the only interviewee who indicated that “debugging
was explicitly covered [in my undergraduate],” said it is “partly
self taught, partly [...] through key mentorships.” Making a
case for hands-on teaching, he elaborated that “one of the
engineers that mentored me [...] was some kind of wizard
with gdb. I think when you meet someone who knows a very
powerful tool it’s very impressive and their speed to resolving
something is much faster but it takes a lot of time to get
to that point.” Since we measured experience to have limited
to no impact on (which) debugging features developers used
(SO6), this hints at a lack of education on debugging that is
pervasive from beginners and Computer Science students to
experts. New Computer Science curricula that put debugging
upfront could be an effective way to steer against it.
Time Effort for Debugging. Our study results WO5 to WO7
point to the fact that debugging in most cases is a short, “get-
it-done” (I1) type of activity that, with only 14% of active IDE
time (WO5) we found to consume significantly less than the
30− 90% for testing and debugging reported by Beizer [42]
and than the estimations by our interviewees, who gave a range
of 20% to 60% of their active work time. One reason why
our measured range is so much lower is that developers (and
humans in general) seem to have a tendency to overestimate
the duration of unpleasant tasks, as we previously observed
with testing [37]. Another might be that developers included
debugging tasks such as printf and the use of external tools,

which we cannot measure. We need more studies to quantify
this initial surprising finding.
Use of Tests for Debugging. In the survey, most respondents
think (unit) testing is an integral part of the debugging process,
especially for reproducing bugs at the beginning of the process
(SO7). However, there is mixed evidence on this in RQ2,
as shown by WO8, WO11 and WO12. On the one hand,
failing tests do not seem to be a trigger for the start of
debugging sessions. On the other hand, running tests in the
IDE seems to be correlated with debugging more, while
reading or modifying tests is not. Two factors can play a role:
Developers who are more quality concerned, execute their tests
more often and therefore also debug more. This is contrary to
intuition and the answers of some of our interviewees, who
claimed that as testing goes up, the debugging effort should
decrease (E2): “debugging is born of unknowns, and effective
testing reduces these” (I3). An explanatory finding might be
that the creation of tests itself adds code and complexity that
might need to be debugged. We need more studies to research
this surprising discovery.
Stepping Over the Point of Interest. We found that in less
than about 5% of the debugging sessions the developer might
have stepped over the point of interest and had to start
debugging anew (WO14). This indicates that there is a limited,
but existent gap in current debuggers process that might be
filled by back-in-time debuggers [25]. Back-in-time debugger
allow developers to step back in the program execution in order
to arrive at the point of interest without having to completely
restart the debugging process. All our interviewees could relate
to situations in which this occurred to them, stating that “it
happens all the time” (I1) to “back in time debugger would be
wonderful” (I3). However, WO14 indicates that it might not
be as frequent as some stated. While the drop frame feature
allows developers to go to the beginning of the current method,
it does not revoke side effects that already occurred and was
therefore found to be “helpful in a limited way” (I3). Currently,
mainstream IDEs do not support back-in-time debugging.
Improvement Wishes. We asked our interviewees how debug-
ger creators could better support them. Their answers fall into
two categories: 1) Make the core features easier to use while
pertaining all existing functionality. 2) Create tools that capture
the holistic debugging process better. We elaborate here on
2). I1 denotes: “If you’re in Java and have to debug across
language boundaries, [...] you really get to a point where you
feel helpless.” Other wishes included the ability to do back-
in-time debugging similar to CHRONON [43], to have a live
REPL, a feature the IDE XCODE introduced [44].

To possibly inform the design of future IDE debuggers, we
arranged a meeting with three debugging project leads from
ECLIPSE, E1, and an IDE developer from a commercial com-
pany, E2. The ECLIPSE leads said that, while they know how
individual developers use their debugger, they are unaware of
the number and detail our study could provide. They thanked
us “for all [...] suggestions made during the call, they were
really useful” and started or updated six feature requests for
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the debugger based on our study.3

C. Threats to Validity

In this section, we examine threats to the validity of our
study and show how we mitigated them.
Construct Validity. The manual implementation of new func-
tionality, such as the addition of the debug infrastructure to
WATCHDOG, is prone to human errors. To minimize these
risks, we extended WATCHDOG’s automated test suite. Fur-
thermore, we use this test suite to make sure we introduced
no regressions. In addition, we tested our plugins manually.
Finally, we performed rigorous code reviews before we in-
tegrated the changes. Debug sessions might not correspond
to actual debug work, e.g. a user might have inadvertently
left the debugger in the IDE running, explaining our 90 hour
outlier. Similarly, we approximate the number of classes in a
project by the number of different classes we observe with
WATCHDOG. Due to privacy reasons, we cannot mine the
repositories of projects to gain an entirely correct figure.
However, when not considering extreme outliers, the wealth
of our data looks very plausible, strengthening confidence in
our study setup.
Internal Validity. Since our survey in RQ1 dealt with de-
bugging, participation might have been self-selecting, i.e.
developers more interested and knowledgeable in debugging
are more likely to have responded. We tried to contrast
this with objective WATCHDOG observations, which is not
advertised specifically as a debugging tool. An important
internal threat is that the populations for RQ1 and RQ2 are
different and their intersection small (six users participated in
both studies). However, we are confident we only encounter a
small sampling or comparison bias because key characteristics
of both populations are similar, as 1) 80% of respondents
answered the survey for Java, which both plugins work with in
RQ2, 2) the majority in RQ1 used one of the IDEs supported
in RQ2, 3) the experience distributions of both populations
are similar and 4) both populations should be large enough to
even out individual influences.
External Validity. During our data collection period of more
than two months we collected 1,155,189 intervals with a total
duration of over ten developer years, spread over 458 users.
The fact that over 80% of the survey respondents stem from
the Java community means that little survey data is available
about other communities. The same holds for the analysis
of the WATCHDOG 2.0 data, which is restricted to the Java
programming language and to the ECLIPSE and INTELLIJ
IDEs. Other IDEs are not included in our analysis and the
results with them might deviate. However, at least imperative,
statically typed languages similar to Java, like C, C++, C#,
or Objective-C, would likely yield similar results and are so
widespread that researching them alone impacts many, if not
the majority of, developers.

3The umbrella bug 498469 describes and links to the sub change requests,
see https://bugs.eclipse.org/bugs/show bug.cgi?id=498469.

VI. FUTURE WORK & CONCLUSION

Based on the insights obtained from the online survey,
the fine-grained debugging activity data originating from
WATCHDOG 2.0 and the interviews with professional software
developers and debugging experts, we have formulated several
conclusions that have already impacted both education and
practice, for example, the introductory course on Computer
Science education at TU Delft, which previously contained
no lecture on debugging. We believe that more educators can
follow this example and include practical, hands-on teaching
on debugging. It is puzzling that we know that bugs are
inevitably linked with software and that we teach students to
write software from day one, but only give them the knowledge
to properly debug into these much later, if ever.

Apart from this lack in education, we also found that
debuggers are not easy to use, and, with the help of three
ECLIPSE project leads, identified several concrete areas of
improvement in the ECLIPSE debugger, leading to several
feature and change requests. Other debugging tool creators
could follow this example and use our findings to improve
their debuggers.

As researchers, to strengthen the generalizability of some
of our results, we plan to collect WATCHDOG 2.0 data
over a longer period of time. To overcome the limitation of
only collecting data on ECLIPSE and INTELLIJ and therefore
mainly on Java developers, we aim to support more non-Java
IDEs through our INTELLIJ plug-in family approach [39].
Finally, to better compare developers’ perception on debugging
and their behavior, we setup the infrastructure which links
survey responses to WATCHDOG 2.0 data, allowing research
on the same population. However, at the time of writing,
too few responses were available to draw significant results
from this study-worthy sub-population. We plan to follow-
up with a larger population and also conduct interviews with
WATCHDOG users.

The key contributions of this paper are:
• The creation of WATCHDOG 2.0, an OSS multi-platform

infrastructure that allows detailed tracking of developers’
debugging behavior.4

• A triangulated, large-scale empirical study of how devel-
opers debug in reality using a mixed methods approach.

• Improvement suggestions for Computer Science curricula
and current IDE Debuggers that have in part already been
implemented in practice.

We currently research ways to offer a live replication package.5
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