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An empirical understanding of how DNA read features affect read mapping and alignment

quality could be useful in designing better read mapping and alignment software, read

trimmers, and sequence masks. Many programs appear to use arbitrarily chosen features

that are putatively relevant to DNA alignment quality. Machine learning gives a ready way

to empirically assess a variety of features and rank them according to their importance.

Sequence complexity features such as run length distribution, DUST, and entropy and

quality measures from the DNA read data were used to predict read mapping quality on

Ion Torrent and Illumina data sets using both bisulfite-treated and untreated short DNA

reads. Surprisingly, run length distribution mean and variance did as well or better than

DUST and entropy even though several programs use DUST and entropy. Predictive

accuracy of the models had F1-scores between 0.5-0.95; thus, the feature set is useful for

understanding alignment quality.
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ABSTRACT8

An empirical understanding of how DNA read features affect read mapping and alignment quality could

be useful in designing better read mapping and alignment software, read trimmers, and sequence masks.

Many programs appear to use arbitrarily chosen features that are putatively relevant to DNA alignment

quality. Machine learning gives a ready way to empirically assess a variety of features and rank them

according to their importance. Sequence complexity features such as run length distribution, DUST, and

entropy and quality measures from the DNA read data were used to predict read mapping quality on Ion

Torrent and Illumina data sets using both bisulfite-treated and untreated short DNA reads. Surprisingly,

run length distribution mean and variance did as well or better than DUST and entropy even though

several programs use DUST and entropy. Predictive accuracy of the models had F1-scores between

0.5-0.95; thus, the feature set is useful for understanding alignment quality.
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1 INTRODUCTION19

A DNA read sequencer produces short DNA fragments from an organism, and DNA sequence alignment20

maps these short DNA reads, which are strings over the nucleic acid bases A, C, T, and G, to a reference21

genome. This process can be error prone as the short DNA fragments may not match a portion of the22

reference genome perfectly because of natural variation and mutation or because of sequencing error23

Porter et al. (2015). Insight into why DNA mapping and alignment fails could lead to more effective24

alignment software, read trimmers, masking algorithms, and so on. I used machine learning to study25

which numerical features of short DNA reads are predictive of read alignment quality. These features26

include metrics of quality, sequence complexity, and sequence content. Data from bisulfite-treated short27

reads and regular reads was used for the assessment.28

A challenging read mapping task involves epigenetic cytosine covalent modification. Epigenetic29

phenomena are heritable biology that does not come from DNA sequence data Allis et al. (2007). One of30

the most important and well studied epigenetic phenomena is the covalent modification of the cytosine31

nucleic acid. The 5-carbon of cytosine can be covalently bonded to a methyl, hydroxymethyl Kriaucionis32

and Heintz (2009), formyl, or carboxylic group Ito et al. (2011). The epigenetic methylation of cytosine33

plays an important role in disease, development, and gene regulation Holliday and Pugh (1975); Allis et al.34

(2007). Life experiences such as stress and toxin consumption affect epigenetic phenomena in heritable35

ways Notterman and Mitchell (2015); Kubota (2016).36

One way to identify the locations of DNA methylation is to sequence the DNA of an organism after37

it has been treated with bisulfite and then to identify nucleic acid base locations on a reference genome38

that differ in such a way as to suggest covalent modification of the cytosine base. Bisulfite converts39

unmethylated cytosine into thymine after polymerase chain reaction (PCR) amplification. Bisulfite40

treatment introduces more variation between the short DNA reads and the reference genome, so alignment41

tasks with bisulfite-treated DNA can be characterized by low alignment quality (< 60% uniquely mapped)42

Tran et al. (2014).43

DNA sequence mapping software that is used for regular untreated reads includes Bowtie2 Langmead44

and Salzberg (2012), BWA Li and Durbin (2009), and BFAST Homer et al. (2009). Mapping software for45

bisulfite-treated reads must adjust for the bisulfite treatment, and such software includes Bismark Krueger46
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and Andrews (2011), BWA-Meth Pedersen et al. (2014), and BisPin Porter and Zhang (2018). There are47

many more examples of these kinds of software.48

2 RELATED WORK AND MOTIVATION49

Other work has used machine learning to predict methylation loci from DNA reads Zou et al. (2018);50

Wang et al. (2016); He et al. (2015), DNA age from methylation Vidaki et al. (2017); Naue et al. (2017),51

and DNA function from DNA sequence identity Libbrecht and Noble (2015). My own study found that52

Shannon entropy corresponds to read alignment categories Porter et al. (2015). A study found that genome53

complexity relates to read mapping quality Phan et al. (2015), but my study examines reads rather than54

genomes.55

A good sequence complexity measure could be useful for read trimming, read alignment, and read56

masking software. Machine learning will help to select which measure of sequence complexity is more57

predictive of read alignment performance. Some read trimming, masking, or filtering software uses58

sequence complexity Porter and Zhang (2017); Starostina et al. (2015). The bisulfite software BatMeth59

has a low complexity filter using Shannon entropy Lim et al. (2012), and BLAST can use a sequence60

complexity mask with the DUST score Morgulis et al. (2006); Altschul et al. (1990). The sequence61

complexity measures chosen for these programs appear to be arbitrarily chosen or chosen for convenience.62

A thorough evaluation of such measures with machine learning gives an empirical rationale for the choice63

of the sequence complexity measure.64

3 METHODS65

3.1 Data Acquisition and Read Mapping66

Six data sets of three million reads each were downloaded from the sequence read archive (SRA)67

Leinonen et al. (2010) at https://www.ncbi.nlm.nih.gov/sra. This data represents a variety68

of bisulfite-treated and regular short DNA reads. A DNA read is a string over the alphabet {A,C,T,G,N}69

corresponding to the nucleotide bases and the N wildcard character. The data includes quality information70

that gives the probability that the base was called correctly. The data includes DNA reads generated from71

the Illumina platform and the Ion Torrent platform. Table 1 shows a summary of the data.72

Table 1. Summary of the DNA Read Data.

SRA # Type 1 Platform Read Size Genome

ERR2562409 BS Illumina 90 Mouse

SRR1104850 BS Illumina 200 Human

SRR5144899 BS Illumina 100 Human

SRR1534392 BS Ion Torrent Varies Mouse

SRR2172246 Reg Illumina 76 Human

ERR699568 Reg Ion Torrent Varies Mouse

One or two read mapping and alignment programs were used to map and align each data set to73

the reference genome. A version of the reference genome was downloaded from the NCBI (National74

Center for Biotechnology Information) data store at https://www.ncbi.nlm.nih.gov/genome.75

Table 2 indicates which read mapping programs were used with which data set. This implies that eleven76

alignment files were created to do machine learning.77

For bisulfite-treated Illumina reads, BisPin Porter and Zhang (2018) and Bismark Krueger and78

Andrews (2011) were used on their default settings. A primary and secondary index was used with BisPin79

with rescoring turned off. Bismark is a popular read mapper for bisulfite-treated reads, and it uses Bowtie280

Langmead and Salzberg (2012) to do alignments. BisPin is a versatile read mapper that has good accuracy81

with a variety of data Porter and Zhang (2018). Bismark did not return any mapped reads for data set82

SRR1104850, so only BisPin was used there. This was probably because the reads were too long for83

Bismark. For Illumina regular untreated reads, BFAST (BLAT-like Fast Accurate Search Tool) Homer84

et al. (2009) and Bowtie2 Langmead and Salzberg (2012) were used.85
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Table 2. Read Mappers Used for Each Data Set.

SRA # Read Mappers

ERR2562409 BisPin, Bismark

SRR1104850 BisPin

SRR5144899 BisPin, Bismark

SRR1534392 BisPin, Tabsat

SRR2172246 BFAST, Bowtie2

ERR699568 BFAST-Gap, TMAP

For bisulfite-treated Ion Torrent reads, BisPin and Tabsat were used. BisPin was used with default86

settings appropriate to Ion Torrent reads as found in Porter and Zhang (2018). Tabsat Pabinger et al.87

(2016) uses Bismark’s Perl code and the Ion Torrent read mapper TMAP (Torrent Mapping Alignment88

Program https://github.com/iontorrent/TMAP). For regular untreated Ion Torrent reads,89

BFAST-Gap Porter and Zhang (2018) and TMAP were used. TMAP was used with the map4 algorithm.90

3.2 Feature and Class Extraction91

Feature extraction. For each DNA read, 67 numerical features were created that comprised sequence92

complexity, read content, and quality. Reads with N’s in them were excluded from the analysis as their93

presence interferes with the sequence complexity measures; however, N’s are highly relevant to read94

mapper performance as an N means an ambiguous nucleotide base that can match to any nucleotide base95

in the reference genome.96

The sequence complexity features included run length metrics, DUST, entropy, DKG, RKG, Bzip297

compressibility, and LZMA compressibility.98

The run length distribution was computed. A run is a substring of the DNA string comprised of the99

same base. The length of the run is the number of bases in that run. For example, “AATCCC” has a length100

2 run of A’s, a length 1 run of a T, and a length 3 run of C’s. The mean, variance, and maximum of this101

distribution were used as features.102

The DUST score is a sequence complexity metric based on tri-nucleotide frequency Morgulis et al.103

(2006). Given that a is a sequence of n characters from A = {A,C,T,G}, a triplet is a substring of length104

3, and there are 64 possible triplets. The space of triplets is R. There are n−2 non-unique triplets in a105

for n > 2. If ct(a) is the number of times triplet t occurs in a, then the DUST score is106

∑t∈R ct(a)(ct(a)−1)/2

n−3
.

The DUST score was normalized to be between 0 and 1 by dividing it by
(n−2)(n−3)/2

n−3
, the maximum107

DUST score.108

Shannon entropy Shannon and Weaver (1949) is a sequence complexity measure common in machine109

learning. If fb(a) is the frequency of character b in sequence a, then entropy is given by110

− ∑
b∈A

fb(a) log2( fb(a)).

For each b ∈ A , the base frequency fb(a) was included as a feature. This captures sequence content111

related features.112

The metrics DKG and RKG are found in Phan et al. (2015). The function g(x) gives the number of113

times that the substring x occurs in a. DKG measures the rate of distinct substrings. Given a number k for114

the substring length, DKG is defined as115

Dk(a) =
|{x : g(x)> 0 | |x|= k,x ∈ a}|

|a|− k+1
.

RKG measures the rates of repeats, and it is116
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Rk(a) =
∑g(x)>1,|x|=k g(x)

|a|− k+1
.

RKG and DKG for k = 2,3,4,5 were used. These metrics can be computed in linear time and space117

using suffix arrays Phan et al. (2015).118

The Bzip2 and LZMA implementations in Python3 were used to measure the compressibility of the119

DNA sequence. The number of bytes returned by the compression algorithms was divided by the length120

of the uncompressed sequence to get a compressibility metric.121

Quality related features were computed from the probability measures given with the DNA reads. This122

included the mean, variance, skewness, maximum, and minimum. Since the probabilities are arranged in123

a sequence, the difference between each probability was computed, and these values were averaged and124

included as a feature.125

The preceding features were computed for the whole read. For each third of the DNA sequence, each126

of the preceding features except for DKG, RKG and the run length metrics, were computed and included127

in the feature set as well.128

Label extraction. This problem was modeled as a classification problem since every read mapping129

program gives some indication of read alignment uniqueness. There are at least four mapping classes130

possible: uniquely mapped, ambiguously mapped, unmapped, and filtered. A read is uniquely mapped if131

the read mapping software reports that there is a unique best scoring alignment for that read. A read is132

ambiguously mapped if there are multiple best scoring locations. An unmapped read maps to no location,133

and a filtered read has an alignment score below some program specific threshold. Not every read mapper134

reports every class, so some classes were excluded for some read mappers. The classes that each read135

mapper reports is given in Table 3.136

Table 3. Read Mapping Classes for Each Read Mapper.

Read Mapper Mapping Classes

BisPin , BFAST, BFAST-Gap Unique, Ambig, Unmapped, Filtered

Bismark, Tabsat Unique, Ambig, Unmapped

Bowtie2, TMAP Unique, Ambig

The filter threshold for BisPin, BFAST, and BFAST-Gap was set to 45 for Illumina reads and 75 for137

Ion Torrent reads since that was found to work well in a previous study Porter and Zhang (2018).138

3.3 Machine Learning Methods139

Python3 with scikit-learn 0.19 Pedregosa et al. (2011) was used to do the machine learning. Three140

machine learning classifiers were used to assess predictive accuracy: random forests (RF), multi-layer141

perceptron neural networks (MLP), and logistic regression (LR). A random forest is an ensemble of142

decision trees. At each level in the tree, a value for a feature is used to split the level. The leaves are143

labeled with classes. An MLP is a neural network with hidden layers that linearly combine previous layers144

and apply an activation function. The ReLU activation function was used. The output of the network is a145

vector of probabilities for each class. Logistic regression is a binary statistical model that uses a log-odds146

ratio. It was used with the l2 norm. A binary problem was used for each class, and the class with the147

maximum probability was reported as the predicted class.148

Bayesian optimization with scikit-optimize (https://scikit-optimize.github.io/) was149

used to do hyperparameter tuning with three-fold cross-validation. Bayesian optimization strategically150

selects a point in the hyperparameter space based on the performance of previously selected hyperparame-151

ters Snoek et al. (2012). The GP-hedge acquisition function was used, and twenty-five iterations were152

performed.153

Random forest hyperparameters max depth and max features were optimized. After some initial154

experiments, a MLP architecture with four hidden layers of size 30, 20, 15, and 10 was chosen, and the155

regularization parameter alpha was optimized. Logistic regression uses a C regularization parameter that156

was optimized.157
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A random classifier was trained. This classifier learns the proportion of classes in the training data and158

simply guesses a class with probability equal to the proportion that it learned for that class. This classifier159

was used to determine if the other three classifiers had a predictive accuracy better than random guessing.160

The three million reads for each dataset was divided into 2.5 million training examples used in161

three-fold cross-validation. The remaining approximately 500,000 reads were held-out as test data to162

assess model predictive performance. In some cases, fewer than 500,000 reads were used since reads163

with N’s were excluded from the analysis. Cohen’s kappa metric was used for model selection since it164

is supposed to perform better than accuracy with rare classes Cohen (1960). Precision, recall, and the165

F1-score (the harmonic mean of precision and recall) were computed for each class for each data set.166

These were used to assess predictive performance on the held-out test data.167

The source code for this project can be found at https://github.com/JacobPorter/168

AlignmentML.169

4 RESULTS170

4.1 Model Accuracy171

The F1-score was computed for each class, and then each class’s F1-score was averaged to assess model172

predictive performance. These results are presented in Table 4. All models performed better than random173

guessing. Random forest models always had the highest F1-score, and logistic regression was generally174

the worst with the slowest training time. The MLP had the fastest training time of the three.175

Table 4. Average Class F1-score for Each Data Set.

Data Software Class 2 Rand RF MLP LR

ERR2562409 Bismark UAN 0.40 0.94 0.84 0.80

ERR2562409 BisPin UANF 0.41 0.95 0.85 0.81

ERR699568 BFAST-Gap UANF 0.86 0.91 0.90 0.90

ERR699568 TMAP UA 0.87 0.92 0.91 0.91

SRR1104850 BisPin UANF 0.52 0.77 0.77 0.74

SRR1534392 BisPin UANF 0.59 0.82 0.73 0.72

SRR1534392 Tabsat UAN 0.68 0.88 0.84 0.80

SRR2172246 BFAST UANF 0.34 0.53 0.51 0.49

SRR2172246 Bowite2 UA 0.84 0.92 0.90 0.90

SRR5144899 Bismark UAN 0.65 0.81 0.80 0.79

SRR5144899 BisPin UANF 0.72 0.85 0.82 0.81

Predictive accuracy was generally good for uniquely mapped reads and poor for ambiguously mapped176

reads. Predictive accuracy for unmapped and filtered reads ranged from poor to fair. The number of177

uniquely mapped reads could be as high as approximately 90% of the data, and other classes could only178

be a few percent of the data. This makes non-unique classes rare classes and difficult to predict.179

An example of precision, recall, and F1-score by class is shown in Table 5. Throughout this project,180

precision was generally better than recall, and Ambig was the class that was generally the hardest to181

predict. This may be because the ambiguously mapped class may have sequence complexity intermediate182

between uniquely mapped and unmapped Porter et al. (2015) reads making the difference more difficult183

to distinguish. Ambiguously mapped reads may be a result of repetition in the genome Schmid and184

Deininger (1975); Deininger (2011) that can’t be detected from examining the read alone.185

4.2 Feature Importance186

Random forest feature importance was used to rank the features since the random forest models had the187

best predictive performance. This gives a ranking of features from most important to least important188

according to the model. This ranking was computed for each of the eleven data sets, and the distribution189

of ranks for each feature was computed. Figure 1 gives a box plot of these distributions for all of the190

features that used the entire read.191
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Table 5. Precision, Recall, F1-Score by Class for SRR5144899 Bismark.

Class Precision Recall F1-Score Support

Unique 0.851 0.974 0.909 393343

Ambig 0.657 0.133 0.221 36771

Unmap 0.775 0.473 0.587 69094

Figure 1. Feature importances for all of the data. For each data set and each read mapper, random forest

feature rank importances were calculated, and the distribution of rank for each feature was used to make

the box plot.
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Surprisingly, run length variance and run length mean were among the most important and performed192

a bit better than entropy and DUST. This is interesting since several programs use DUST, such as BLAST193

Morgulis et al. (2006); Altschul et al. (1990), and entropy Porter and Zhang (2017); Lim et al. (2012).194

Perhaps if these measures of sequence complexity replaced DUST or entropy, programs that use them195

would perform better. Character frequency features were of good importance but not as important as196

DUST and entropy.197

DKG and RKG performed more poorly; however, DKG(2) was very important for the data ERR2562409198

as it was ranked the most important with an average importance confidence 0.251, which was larger by199

0.174 on average than the next best feature, the largest difference of its kind. Perhaps DKG is more useful200

for some data sets.201

Compressibility measures were the worst average performing sequence complexity metrics. LZMA202

was the worst on average with a mean rank of 51.45. However, the Bzip2 feature from the first third of the203

sequence had the highest rank on the SRR1534392 data with BisPin, and LZMA in the second third of204

the sequence had the highest rank for the SRR1534392 data with Tabsat.205

Quality metrics were generally not as important as sequence complexity metrics. The quality mean was206

the most important of these, and quality skewness, maximum, and minimum had the lowest importance of207

all features.208

Since four of the six data sets were for bisulfite-sequencing reads, there could be a bias favoring209

bisulfite read mapping. Thus, the same feature rank analysis was performed with only the regular untreated210

data. The feature rank box plots for this data can be found in Figure 2. The order of features is very211

similar, but DUST does a little better beating the run length metrics. The quality mean is a bit lower in the212

rankings.213

Figure 2. Feature importances for the regular untreated data.

In Illumina data sets, features from the last third generally had a higher importance than features214

in the first or second thirds of the read sequence. Features from the second third were generally more215

important than features from the first third. This may be because there is often lower quality in the last216

third of a read since Illumina sequencing technology can make more errors in later cycles Buermans and217

Den Dunnen (2014). In Ion Torrent data, features from each third were generally more evenly distributed218

in the top 15 most important features.219
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4.3 Feature Ranking Similarity Across Different Data220

There is weak evidence that the feature importance ranking depends more on the read mapper than the221

data set. This conclusion was drawn by looking at Kendall’s tau coefficient for feature rankings across222

different data. Kendall’s tau coefficient is used to measure how similar two ordered sequences are Kendall223

(1938). It ranges from 1.0 to -1.0. A 1.0 means the sequences are identical, and a -1.0 means that the224

sequences are the reverse of each other.225

Kendall’s tau coefficient and p-value was computed using scipy. The feature importance ranking for226

both read mappers for the same SRA number was used to calculate Kendall’s tau. Only ERR2562409 and227

ERR699568 had p-values below 0.1. All tau’s were positive. The highest was for ERR699568 at 0.308,228

and the lowest was for SRR5144899 at 0.0276. Both data sets come from bisulfite-treated Illumina reads.229

The feature importance ranking for all data mapped with BisPin was compared with SRR1104850230

since it was mapped only with BisPin. In all cases, tau was larger than in the previous analysis. This231

suggests that read mapper feature rankings correlate better than feature rankings based on the same data232

set but mapped by different programs. This suggests that there is some program-specific qualities of233

feature performance and data set specific qualities are less important.234

5 CONCLUSIONS235

My study showed that sequence complexity measures are important in predicting the read mapping quality236

of short DNA reads. Read quality metrics were less important. Run length mean and variance, DUST, and237

entropy were the best performing sequence complexity measures. Bioinformatics programs may consider238

using run length statistics instead of or in addition to DUST and entropy because they were among the239

best features.240

Without knowledge of the genome, and only knowledge of the DNA read, machine learning models,241

especially random forests, were able to predict alignment quality with surprisingly good accuracy242

approaching F1-scores of 0.95 in some cases.243

The features that work well on regular untreated reads tended to work well on bisulfite reads as well.244

This suggests that sequence complexity measures that work well in one application will probably work245

well in other applications.246

Future work could include training a regressor to predict the alignment score rather than alignment247

categories; however not all programs (such as Bismark) report such a score.248
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