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The phenology of major seasonal events is an important indicator of climate. We analyzed

multiple datasets of in situ chlorophyll measurements from the Gulf of Maine dating back

to the early 20th century in order to detect climate-scale changes in phenology. The

seasonal cycle was consistently characterized by a two-bloom pattern, with spring and

autumn blooms. The timing of both spring and autumn blooms has shifted later in the year

at rates ranging from ~1 to 9 days per decade since 1960, depending on the phenology

metric, and trends only emerged at time scales of >40 years. Bloom phenology had only

weak correlations with major climate indices. There were stronger associations between

bloom timing and physical and chemical variables. Autumn bloom initiation correlated

strongly with surface temperature and salinity, and spring bloom with nutrients. A later

spring bloom also correlated with an increased cohort of Calanus finmarchicus, suggesting

broader ecosystem implications of phytoplankton phenology.
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ABSTRACT8

The phenology of major seasonal events is an important indicator of climate. We analyzed multiple

datasets of in situ chlorophyll measurements from the Gulf of Maine dating back to the early 20th century

in order to detect climate-scale changes in phenology. The seasonal cycle was consistently characterized

by a two-bloom pattern, with spring and autumn blooms. The timing of both spring and autumn blooms

has shifted later in the year at rates ranging from á1 to 9 days per decade since 1960, depending on the

phenology metric, and trends only emerged at time scales of > 40 years. Bloom phenology had only weak

correlations with major climate indices. There were stronger associations between bloom timing and

physical and chemical variables. Autumn bloom initiation correlated strongly with surface temperature

and salinity, and spring bloom with nutrients. A later spring bloom also correlated with an increased

cohort of Calanus finmarchicus, suggesting broader ecosystem implications of phytoplankton phenology.
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INTRODUCTION19

One of the earliest studied and most striking oceanographic phenomena is the spring phytoplankton20

bloom. A prominent feature of satellite images, the bloom initiates as “flowerings of diatoms, resulting21

in local swarms so dense as to be the most spectacular event in the yearly planktonic cycle” (Bigelow,22

1924). Efforts to predict the timing of the spring bloom in the Gulf of Maine helped to coalesce the23

interdisciplinary and quantitative approaches that underlie modern oceanography (Riley, 1949). Despite24

over 100 years of study and a corpus of theory, predicting the dynamics of phytoplankton blooms25

remains an important but elusive goal (Sverdrup, 1953; Taylor and Ferrari, 2011; Mahadevan et al., 2012;26

Behrenfeld and Boss, 2014; Zarubin et al., 2017).27

Phytoplankton blooms are indeed spectacular events, and their timing is particularly important to28

marine ecosystems in strongly seasonal climes. Because they constitute the primary source of carbon29

fixation for the pelagic food web, animals across trophic levels have life history strategies tuned to the30

seasonal cycle of production. Productive systems depend on seasonal timing matches between trophic31

levels because mismatches in timing can mean that a grazer or predator misses its feeding window (i.e.32

match-mismatch hypothesis, (Cushing, 1969; Edwards and Richardson, 2004)). The Gulf of Maine is a33

quintessential example of this phenomenon. The zooplankton community is largely copepods of the genus34

Calanus (Bigelow, 1924), which time their emergence from diapause to exploit the spring phytoplankton35

bloom. The pulse of Calanus production is then succeeded by fish (Golet et al., 2015), mammal (Pershing36

et al., 2009), and other migrations.37

There is growing attention to changing phenology as both an indicator and a consequence of climate38

change. Understanding phenology in a climate context requires time series that span many decades. Such39

datasets in the pelagic ocean are limited. In the Gulf of Maine, there have been noted phenological shifts40

in recent times, particularly regarding physical properties such as temperature (Thomas et al., 2017),41

stratification, and hydrology (Smith et al., 2012), related to climate change. To understand the associated42

phenological changes in the pelagic ecosystem in a climate context, we need biological time series that43

span many decades–in seasonal oceans a minimum of 40 years (Henson et al., 2010). To examine changes44

in phytoplankton phenology in the Gulf of Maine at the climate scale, we aggregated multiple datasets45

of in situ chlorophyll measurements over the past century. We used this data to address the following46
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questions: (1) Has the timing of phytoplankton blooms changed over the past century? (2) What are the47

drivers of these changes? And (3) What are the ecological consequences of these changes?48

DATA AND METHODS49

Phytoplankton Dataset50

We aggregated datasets of in situ phytoplankton measurements from multiple public sources. We used51

chlorophyll as an estimate of phytoplankton biomass and used previously published datasets. Chlorophyll52

time series in the interior Gulf of Maine vary together based on empirical orthogonal function analysis,53

separately from the coastal Gulf of Maine (Thomas et al., 2003). This analysis thus focused on the inner54

Gulf of Maine, including all samples deeper than the 100 m isobath (106,257 samples, Fig 1). For some55

data, measurements were in standard units (mg chl m�3). For others, a conversion was necessary. For56

phytoplankton colour index (PCI) measured by the continuous plankton recorder (CPR) and for Forel-Ule57

(FU) scale, we used established relationships (Raitsos et al., 2005; Wernand et al., 2013, respectively).58

The data were all from calibrated, quality-controlled, public databases: Aggregated database of (Boyce59

et al., 2012) (1934-2010, mg chl m�3 and FU), Continuous Plankton Recorder (1961-2013, PCI), Gulf60

of Maine North Atlantic Time Series (1998-2015, mg chl m�3 and FU (Balch et al., 2016), including61

measurements from (Bigelow, 1924b)), and the World Ocean Database (Boyer et al., 2013) (1934-2010,62

mg chl m�3 and FU). We averaged these data into a monthly time series, removing duplicates, spanning63

the time period 1912-2015.64

We tested the accuracy and limitations of a temporal cubic spline interpolation for missing data.65

We validated the interpolation by removing each data point, interpolating, comparing the interpolated66

value to the measured value, and comparing the phenology metric (described below) calculated from67

the interpolation to that calculated from the measured value. For an interpolation that only included68

points not surrounded by missing data, the interpolated values compared well to measured values69

(r = 0.37, p ' 0.0001 over all points, and r > 0.99, p ' 0.0001 for phenology metrics). When the70

interpolation was tested for points surrounded by missing data, there was no significant correlation71

between interpolated and measured values, so we did not interpolate beyond one point.72

Figure 1. Sample locations for the compiled phytoplankton dataset in the inner Gulf of Maine.

Background map adapted from (Bigelow, 1924). Grey line is updated 100 m isobath.
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Oceanographic datasets73

We assembled oceanographic time series to compare to chlorophyll phenology. We used previously pub-74

lished data for water column physics (Fisheries and Oceans Canada, climate database, http://www.bio.gc.ca/75

science/data-donnees/base/run-courir-en.php, (Gregory, 2004)) and nutrients (Rebuck and Townsend,76

2014). We used measurements that fell within the spatial domain matching the chlorophyll dataset and77

averaged to monthly values. Physical data included temperature (T) and salinity (S) averaged over the78

upper 50 m. We also included a stratification index (∆), estimated as the difference of mean density (σT )79

between the surface (0 - 50 m) and deep (50 m - bottom) layers (Drinkwater and Gilbert, 2004). Chemical80

data included surface NO3+NO2, Si(OH)4, and PO4 measurements, using only those measurements that81

passed all quality control criteria (Rebuck and Townsend, 2014). We also used annual climate indices:82

the Atlantic Multidecadal Oscillation (AMO), North Atlantic Oscillation (NAO), Gulf Stream Index83

(GSI), the Arctic Ocean Oscillation (AOO), and the Arctic Oscillation (AO) (cf NOAA Climate Prediction84

Center).85

Upper-trophic dataset86

We used copepod count data from the CPR. The dominant seasonal copepod in the central Gulf of Maine87

is Calanus finmarchicus (Runge et al., 2014), which has a seasonal peak in surface waters following88

the spring bloom. Adults emerge from diapause and exploit the spring bloom for egg production. This89

cohort reaches adulthood in the late spring and summer. We calculated a mean log anomaly for late-stage90

(copepodite 5-6) C. finmarchicus for May-July, as an index of how well this species fares following the91

spring bloom. We did not compute an analogous autumn time series because C. finmarchicus has entered92

diapause at depth by that time, and the CPR makes surface measurements.93

Analysis94

We used a clustering analysis to examine the shape(s) of the bloom cycle across years. This helped to95

confirm that our phenology metrics were applicable, and also to detect changes in the bloom pattern96

across time. We clustered years based on the shape of the seasonal cycle of chlorophyll following the97

methodology of (Foukal and Thomas, 2014): briefly, we used k-means multivariate clustering, with98

the squared Euclidean distance as the similarity metric and randomly selected starting centroids. Other99

similarity metrics yielded qualitatively similar results. To account for the randomness in the algorithm,100

we computed an ensemble of 100 runs, sorted clusters by frequency, and analyzed the modal clusters for101

each year.102

We produced time series of phenology metrics for spring and autumn blooms. There are many metrics103

for quantifying the timing of phytoplankton blooms, with most metrics targeting the timing of either bloom104

initiation or bloom peak (Ji et al., 2010; Brody et al., 2013). Bloom shape can vary from year to year105

and by location, so no single metric has emerged as the preferred choice. Because of the coarse temporal106

resolution (1 month), some phenology metrics were not appropriate for this dataset. We computed five107

phenology metrics for the spring and autumn blooms:108

1. µm - Timing of maximum. Because the dataset is binned monthly, this is a coarse time series; values109

are midpoints of months.110

2. µc - Center of mass. This metric computes the center of mass within the February-May time period111

(spring index) and of the August-November time period (autumn index), and provides a smooth112

metric.113

3. µg - Midpoint of Gaussian fit. This metric fits a Gaussian curve to half of the year (for spring and114

autumn indices) and uses the fitted mean (µ) parameter as the bloom peak timing, providing a115

smooth metric.116

4. τd - Timing of maximum increase. This is a coarse (monthly) index of the timing of bloom initiation.117

5. τt - Threshold timing. This metric computes the timing at which the total value crosses a threshold118

that is some percentage of the year’s total (i.e. the cumulative sum method). We computed this119

metric for multiple thresholds for both spring and autumn indices.120

We used the phenology metrics in time series analysis. We examined the time series for statistically121

significant trends. We then looked for long-term associations with physical drivers and with upper122
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trophic levels to determine the potential causes and consequences of changing phenology. Analysis was123

performed using Pearson correlation and coherence analysis. The coarse spatio-temporal resolution of124

the dataset means that there is additional variance around time series and associated relationships, and125

correlation coefficients reflect that. We took steps to avoid over-reliance on single p-value determinations126

and dichotomous thinking (McShane and Gal, 2017). While we did use p < 0.05 as one benchmark,127

we disregarded those correlations driven by an outlier. Furthermore, only correlations that held up for128

multiple phenology metrics or with very strong relationships were considered robust. For the analysis129

with the climate indices and the C. finmarchicus time series, the time series were sufficiently long and130

gap-free to conduct a coherence analysis. We used the minimum variance distortionless response approach131

(Benesty et al., 2005). We also tested the climate indices at lags of 0-3 years, and for the C. finmarchicus132

time series, because of the ontogenetic lag and east-to-west hydrographic flow, we compared it to the133

phenology time series calculated for just the eastern Gulf of Maine (east of > 68�W).134

RESULTS135

Clustering136

Excluding singletons, there were three main bloom types that emerged consistently over the ensemble of137

cluster calculations (Fig 2). The most common was the conventional bloom, with a pronounced spring138

bloom peaking in April, a smaller autumn bloom peaking in October, and a seasonal minimum in January.139

This bloom type dominated in most of the 1980s and 1990s. The second most common was a two-bloom140

pattern where the spring and autumn blooms were of closer magnitude to each other, again peaking in141

April and October. The third bloom type had a pronounced but delayed spring bloom, peaking in May, a142

diminished autumn bloom, and a higher winter minimum. The second and third bloom patterns appeared143

sporadically over the later part of the time series. All of these bloom types had a predominantly two-peak144

shape, conducive to the phenology metrics used.145
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Figure 2. Aggregated chlorophyll dataset (a), showing monthly binned chlorophyll (log mg m�3),

including a 1-unit spline interpolation. Years clustered by bloom type, as computed in the k-means

clustering algorithm. (b) Bloom type for each year for which there is sufficient data, showing the most

common three bloom types. Seasonal shapes for bloom types 1-3 (c)-(e) respectively, calculated as the

climatology over all years within each cluster.

Trends146

For all phenology metrics, spring and autumn, the trend over the time series was positive–i.e. shifting147

later in the year. The strongest trend was for µg, shifting later with mean rates of 8.9 (p = 0.001) and 4.3148

(p = 0.02) days per decade (spring and autumn, respectively). Other metrics with noteworthy trends were149

spring µm (4.4 days per decade, p = 0.1), spring µc (1.5 days per decade, p = 0.1), autumn µc (1.2 days150
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per decade, p = 0.07), and spring τt (4.1 days per decade, p = 0.09). Taking the average of metrics, trends151

were significant for both spring (p = 0.03) and autumn (p = 0.01), with rates of 3.7 and 3.8 days per152

decade, respectively. Over the past sixty-year period, where there is enough data to consistently capture153

the phenology metrics, these shifts equate to a roughly 10-50 day shift in timing. There is substantial154

inter-annual variance around these trends (Fig 3a). To test the robustness of these trends to sampling155

biases, we subdivided the Gulf of Maine into east, west, and coastal sections, divided at 68.5 �W and tested156

the same phenology metrics for trends. Of the 30 significance tests, 10 were significant at the 0.05 level,157

5 were significant at the 0.01 level, and all significant trends were positive for both spring and autumn158

metrics. We also tested for trends over smaller sliding windows and found that time series of at least 40159

years were necessary for significant trends to emerge. Oceanographic variables had statistically significant160

trends as well, including increases in temperature and stratification and decreases in nitrate+nitrite and161

phosphate through much of the year (Fig 3b).162
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Figure 3. (A) Time series of spring and autumn µg and least squares line showing statistically

significant increase since 1960. Shaded area shows the range of all phenology metrics. (b) Significant

secular trends for the measured physical and chemical variables during different months and seasons.

Color scale is the strength of the trend as measured by a correlation coefficient (r). Numbers are p values

rounded up to the nearest hundredth. Trends with p < 0.05 are colored.

Associations163

Correlations between phenology metrics and climate indices were generally weak, with only a few164

correlations at p < 0.05. Spring and autumn τt correlated positively with the AMO, and autumn τt165

correlated negatively with the NAO (r2 = 0.17,0.16,0.17, respectively). These AMO correlations were166

also significant at lags of up to three years, with correlations peaking for spring τt at a three year lag167

(r2 = 0.19), and for autumn τt at a two year lag (r2 = 0.24). Coherence analysis (not shown) also showed168

weak associations, with r2 typically below 0.2. The notable exceptions were spring phenology metrics169

and the AO, at á 3 year periods, and various metrics and the NAO, at both short and long periods, where170

r2 increases to 0.3-0.4.171
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Correlations between phenology metrics and ocean physics and chemistry showed a moderate signal172

with some consistent patterns (Table 1). For spring metrics, the strongest signal was a correlation between173

stratification and earlier bloom timing. Additionally, high February nutrients correlated with a later bloom,174

and high June nutrients correlated with an earlier bloom. For autumn metrics there was a consistent175

pattern across all months of high temperature and salinity correlating with earlier bloom initiation. There176

was a very strong correlation between October silicate and earlier bloom timing, but these correlations177

consisted of only four data points.178

Table 1. Correlation coefficients between the phenology metrics and the monthly temperature (T),

salinity (S), and stratification (∆) values, and the seasonal anomalies of nitrate+nitrite (N), silicate (Si),

and phosphate (P). Each column represents the month or season over which the physical variable or

nutrient anomaly was averaged. Numbers in parentheses indicate correlation coefficients (r, p). Only

correlations with p < 0.05 shown.

SPRING METRICS

J F M A M J

Physical variables

∆,τt (�0.93,< 0.01) T, µg(�0.41,0.03)
Chemical variables

N, µm(0.61,0.05) N, µg(�0.53,0.04)
N, µc(0.66,0.03) Si, µg(�0.55,0.03)

AUTUMN METRICS

J A S O N D

Physical variables

T, τd(�0.61,0.02) T, τd(�0.68,< 0.01) T, τd(�0.49,< 0.01) T, τd(�0.40,< 0.01) T, τd(�0.50,< 0.01) S, τt (�0.84,0.03)
T, τt ,(�0.55,0.01) S, τd(�0.66,< 0.01) S, τd(�0.71,0.03) S, τd(�0.64,0.05) S, τd(�0.70,0.01) S, τd(�0.64,0.01)
∆,τd(�0.48,< 0.01) S, µg(�0.45,0.02)
∆,τt (�0.55,0.03)
Chemical variables

N, µg(�0.51,0.04) Si, µg(�0.98,0.04)
Si, µm(�0.96,0.02)
Si, τd(�1.00,< 0.01)

Upper-trophic analysis179

The C. finmarchicus index correlated significantly with µg (r2 = 0.17, p = 0.01). The western Gulf of180

Maine C. finmarchicus population is supplied by coastal waters, so we compared the phenology metrics181

to the C. finmarchicus in the eastern Gulf of Maine (> �68�) and found stronger and more consistent182

correlations: µm (r2 = 0.17, p = 0.01), µc (r2 = 0.24, p = 0.003), µg (r2 = 0.26, p = 0.001). Coherence183

analysis (Fig 4) showed that these correlations were largely driven by the long-term secular trend. There184

was a dip in coherence for periods of approximately 10-40 years. There was also an increase in coherence185

for periods of < 10 years to r2
á 0.2, depending on the metric.186

DISCUSSION187

This extended time series of in situ chlorophyll measurements in the Gulf of Maine gives a climate-scale188

perspective on changing phenology that is not available in the comparatively recent satellite records.189

Climate-scale changes in the timings of blooms are clear, as are associations between bloom phenology190

and changing physical conditions as well as changing C. finmarchicus abundance. The most surprising191

result is that spring bloom timing, primarily using measures of the bloom center, have gotten later at a rate192

of á 1�9 days per decade. This shift is apparent when comparing the recent seasonal cycle to that of a193

few decades ago (Fig 5). Typically, as the climate warms, summer lengthens, shifting spring events earlier194

and autumn events later. The shift toward later autumn blooms is consistent with this expectation, but the195

shift toward later spring blooms is unexpected in this context. Climate indices have been cited to explain196

recent temperature and ecosystem changes in the Gulf of Maine (Pershing et al., 2015). However, our197

analysis did not reveal any compelling relationship with the NAO, AMO, GSI, AOO, or AO–the climate198

oscillations known to be important in the Gulf of Maine–either via direct correlation, lagged correlation,199

or coherence analysis.200

Relationships between bloom phenology and water properties were somewhat more promising. A later201

spring bloom was associated with lower stratification, higher nutrients near the beginning of the bloom,202

and lower nutrients near the end of the bloom. Causality is difficult to assign regarding nutrients. Because203

an earlier spring bloom correlates with decreased February nutrients, and a later spring bloom with204
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Figure 4. Coherence analysis of three spring phenology metric time series against the time series of

late-stage C. finmarchicus abundance.

decreased June nutrients, it is likely that the bloom is driving the nutrient dynamics through drawdown205

(or lack thereof), rather than the reverse. The autumn bloom was more tightly associated with changes206

in physics. Low temperature and salinity are both associated with increased transport of Arctic-origin207

water via the Labrador Current, which altered autumn bloom patterns during the 1990s (MERCINA, 2012).208

The pattern seen here suggests similar physical forcing might have a more consistent long-term effect209

specifically on the timing of autumn bloom initiation.210
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Figure 5. Comparison of mean seasonal cycle of chlorophyll between the most recent decade and an

earlier period. Shaded area shows the variance.

It is worth noting the secular trends in conditions, as well as correlations, focus on high-frequency211

variability and can overlook climate-scale changes. Spring conditions have shifted towards higher212

stratification and lower nutrients. The timing shift of the spring bloom is consistent with short-term shifts213

in the three Gulf of Maine zones described by (Ji et al., 2007); they hypothesize that higher stratification214

causes earlier blooms upstream on the Scotian Shelf, leading to depleted nutrients and later blooms by the215

time the water mass reaches the central Gulf of Maine. This hypothesis is consistent with our long-term216

observations and may provide a better explanation for the shift toward later spring blooms.217

The positive association between spring bloom timing and late spring C. finmarchicus abundance218

is notable. If later timing of the center of the bloom is an indication of an extended bloom, then219

C. finmarchicus emerging from diapause could have a longer window for reproduction, and the first220
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generation cohort would be more abundant than in a typical year. This offers one possible explanation221

for why the species has persisted in the western Gulf of Maine despite rapid warming and temperatures222

that should be detrimental to the population (Runge et al., 2014), but would require a consistent upstream223

supply of late-stage individuals. This shift also runs counter to the expectation of a phenology “mismatch”224

as conditions change (Edwards and Richardson, 2004).225

While this chlorophyll data set gives us new insights into climate-scale phenology changes, there are226

some caveats to bear in mind. First, chlorophyll is a proxy for phytoplankton. When the oceanography227

changes, adaptation or replacement of species can occur, and chlorophyll measurements might not capture228

this. As a means for detecting the major phenological events (i.e. blooms), chlorophyll is probably229

effective, but this caveat should be kept in mind. Second, the dataset includes measurements that use230

different methodologies. Measuring chlorophyll “is endlessly complicated by diverse methods of collection231

and analysis, each with its own virtues but only imperfectly comparable with other methods” (Riley, 1949).232

Again, the fact that we use relative changes to compute phenology metrics should hedge this caveat, but it233

should be considered as the data are used in the future.234

CONCLUSION235

The shift of both spring and autumn bloom timing toward later dates is surprising. The high range in rate236

estimates is indicative of the difficulty of quantifying bloom phenology, so the emphasis should be on the237

consistent directionality across metrics rather than any specific rate. Finally, while the analysis here is238

suggestive of possible drivers of the shift in bloom timing, a mechanistic explanation for bloom initiation239

has been an elusive goal in oceanography. As (Evans and Parslow, 1985) wrote: “Although it seems240

intuitively reasonable that a sudden effect should have a sudden cause, ecological systems need not behave241

intuitively. ...[S]pring blooms can occur without any sudden changes in driving variables.” The Gulf of242

Maine, with its unprecedented rapid changes (Pershing et al., 2015) is often seen as a potential bellwether243

for other marine systems. The apparent climate-scale shift toward later spring blooms underscores the244

point that ecosystems do not always change as expected.245
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