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Development of a species distribution model for fin whales

(Balaenoptera physalus) within a Bayesian hierarchical

framework: Implications for uncertainty

Species distribution models (SDMs) have proven to be an integral tool in the conservation

and management of cetaceans. Many applications have adopted a two-step approach

where a detection function is estimated using conventional distance sampling in the first

step and subsequently used as an offset to a density-habitat model in the second step. A

drawback to this approach, hereafter referred to as the conventional species distribution

model (CSDM), is the difficulty in propagating the uncertainty from the first step to the

final density estimates. We describe a Bayesian hierarchical species distribution model

(BHSDM) which has the advantage of simultaneously propagating multiple sources of

uncertainty. Our framework includes 1) a mark-recapture distance sampling observation

model that can accommodate two team line transect data, 2) an informed prior for surface

availability 3) spatial smoothers using spline-like bases and 4) a compound Poisson-

gamma likelihood which is a special case of the Tweedie distribution. We compare our

approach to the CSDM method using a simulation study and a case study of fin whales

(Balaenoptera physalus) off the East Coast of the USA. Simulations showed that the

BHSDM method produced estimates with lower precision but with confidence interval

coverage closer to the nominal 95% rate (94% for the BSHDM vs 85% for the CSDM).

Results from the fin whale analysis showed that density estimates and predicted

distribution patterns were largely similar among methods. Abundance estimates were also

similar though modestly higher for the CSDM (4700, CV=0.13) than the BHSDM (4526,

CV=0.26). Estimated sampling error differed substantially among the two methods where

the average CV for density estimates from BHSDM method was approximately 3.5 times

greater than estimates from the CSDM method. Successful wildlife management hinges on

the ability to properly quantify uncertainty. Underestimates of uncertainty can result in ill-
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informed management decisions. Our results highlight the additional sampling uncertainty

that is propagated in a hierarchical framework. Future applications of SDMs should

consider techniques that allow all sources of error to be fully represented in final density

predictions.
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informed management decisions. Our results highlight the additional sampling uncertainty

that is propagated in a hierarchical framework. Future applications of SDMs should

consider techniques that allow all sources of error to be fully represented in final density

predictions.
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20

21 Abstract

22 Species distribution models (SDMs) have proven to be an integral tool in the 

23 conservation and management of cetaceans.  Many applications have adopted a two-step 

24 approach where a detection function is estimated using conventional distance sampling in the 

25 first step and subsequently used as an offset to a density-habitat model in the second step.  A 

26 drawback to this approach, hereafter referred to as the conventional species distribution model 

27 (CSDM), is the difficulty in propagating the uncertainty from the first step to the final density 

28 estimates.   We describe a Bayesian hierarchical species distribution model (BHSDM) which has 

29 the advantage of simultaneously propagating multiple sources of uncertainty.  Our framework 

30 includes 1) a mark-recapture distance sampling observation model that can accommodate two 

31 team line transect data, 2) an informed prior for surface availability 3) spatial smoothers using 

32 spline-like bases and 4) a compound Poisson-gamma likelihood which is a special case of the 

33 Tweedie distribution.  We compare our approach to the CSDM method using a simulation study 

34 and a case study of fin whales (Balaenoptera physalus) off the East Coast of the USA.  

35 Simulations showed that the BHSDM method produced estimates with lower precision but with 

36 confidence interval coverage closer to the nominal 95% rate (94% for the BSHDM vs 85% for 

37 the CSDM).  Results from the fin whale analysis showed that density estimates and predicted 

38 distribution patterns were largely similar among methods.  Abundance estimates were also 

39 similar though modestly higher for the CSDM (4700, CV=0.13) than the BHSDM (4526, 

40 CV=0.26).  Estimated sampling error differed substantially among the two methods where the 

41 average CV for density estimates from BHSDM method was approximately 3.5 times greater 

42 than estimates from the CSDM method.  Successful wildlife management hinges on the ability to 
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43 properly quantify uncertainty.  Underestimates of uncertainty can result in ill-informed 

44 management decisions.  Our results highlight the additional sampling uncertainty that is 

45 propagated in a hierarchical framework.  Future applications of SDMs should consider 

46 techniques that allow all sources of error to be fully represented in final density predictions.

47

48 Introduction

49 Species distribution models (SDMs) have become valuable tools to help characterize the 

50 spatial distribution and abundance of many species (Elith & Leathwick, 2009) and have provided 

51 critical information to help guide management decisions of cetacean populations (Forney et al., 

52 2012; Roberts et al., 2016).  The rapid development of techniques for fitting SDMs to data has 

53 provided multiple options and the need to evaluate their advantages and limitations.  Some 

54 attempts have been made to compare methods with a focus on prediction accuracy (Elith & 

55 Graham, 2009; Oppell et al., 2012).  Uncertainty, however, is rarely addressed when evaluating 

56 SDMs (Robinson et al., 2017).  Because proper assessment of uncertainty is critical to effective 

57 management of cetacean populations (Taylor et al., 2000) attempts to model their distribution 

58 and abundance should carefully consider the ability of the chosen method to quantify 

59 uncertainty.

60 For cetaceans, line transect data are often used to fit SDMs.  Fitting SDMs to these data 

61 can be challenging because relationships between habitat variables and density are often 

62 nonlinear and subject to unexplained variance.  In addition, not all animals are detected on the 

63 trackline and therefore probability of detection needs to be taken into account.  Diving animals 

64 such as cetaceans offer particular challenges because detection can be influenced by two 
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65 independent factors.  Surface detectability refers to the probability observers detect animals that 

66 are at the surface.  This probability can be estimated using conventional distance sampling 

67 techniques (Buckland et al., 2001).  Surface availability refers to the probability that animals are 

68 at the surface and therefore available for detection.  Surface availability is not as easily estimated 

69 from line transect data alone and requires additional information on diving behavior (Langrock et 

70 al., 2013).

71 One common approach is to use a two-step method where the detection function is 

72 estimated using conventional distance sampling techniques in the first step and used as an offset 

73 when relating observed animal counts to habitat covariates in the second step (Miller at al., 

74 2013).  Generalized additive models (GAMs) are commonly used in the second step due to their 

75 flexibility to capture non-linear density-habitat relationships and flexible distributions such as the 

76 negative binomial or Tweedie distribution can be adopted to model overdispersion.  This 

77 method, hereafter referred to as the conventional species distribution model (CSDM) method, 

78 has proven quite robust (Forney et al., 2012; Roberts et al., 2016).  However, it is difficult to 

79 propagate uncertainty from the detection function that is estimated in the first step to the final 

80 density predictions that are made in the second step.  Bootstrap techniques can be used to 

81 estimate uncertainty (Hedley & Buckland, 2004), but this method requires resampling the data 

82 multiple times and coverage can be poor (Miller et al., 2013).  Williams et al. (2011) used a 

83 random effects approach to propagate error from the detection function but their method is 

84 limited to cases where there is only a single team of observers.  As an alternative, a number of 

85 studies have adopted a Bayesian hierarchical framework.

86 Hierarchical analysis of distance sampling data has also been developed in the literature 

87 (Royle, Dawson & Bates 2004; Royle & Dorazio, 2008).  This approach integrates over the 
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88 uncertainty in the detection function, effectively propagating the uncertainty into final density 

89 estimates (Miller et al., 2013).  When estimated in a Bayesian framework, prior information 

90 about other sources of error (e.g. surface availability) can also be included.  Although there are a 

91 number of examples of applying a Bayesian hierarchical approach to line transect data (Eguchi & 

92 Gerrodoette, 2009; Moore & Barlow, 2011; Conn, Johnson & Laake, 2012) this framework is 

93 still ripe for further development.   For example, applications to line transect data of cetaceans 

94 have generally used single team shipboard data where detectability on the trackline (i.e. g(0)) 

95 cannot be estimated directly (Moore & Barlow, 2011; Pardo et al., 2015; Pavanato et al., 2017).  

96 There have been fewer attempts to develop a framework that can accommodate two team survey 

97 data (but see Conn, Laake & Johnson, 2012 for an example).  In addition, recent examples of 

98 estimating SDMs in a Bayesian framework have used generalized linear models (GLMs) to 

99 parameterize the habitat function (Conn, Laake & Johnson, 2012; Pardo et al., 2015; Goyert et 

100 al., 2016).  Thus, they lack the flexibility that GAMs provide in the two-step method.  

101 In this paper we present a Bayesian hierarchical species distribution model (BHSDM).  

102 Our main goal was to develop a comprehensive framework that incorporates the multiple 

103 components that influence detection, flexibility in the habitat function and flexible distributions 

104 that can accommodate overdispersion and excessive zeros.  A secondary goal was to verify that 

105 an appropriate level of uncertainty is propagated into final density estimates.  We compare the 

106 BHSDM with a CSDM analysis using a simulation study and a case study with line transect data 

107 of fin whales (Balaenoptera physalus) off the east coast of the U.S.    

108

109 Materials & Methods
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110    Data Collection

111

112 Line transect data were collected as part of the Atlantic Marine Assessment Program for 

113 Protected Species (AMAPPS) conducted by the Northeast Fisheries Science Center (NEFSC) 

114 and the Southeast Fisheries Science Center (SEFSC).  The study area ranged from Halifax, Nova 

115 Scotia, Canada to the southern tip of Florida and from the coastline to slightly beyond the US 

116 exclusive economic zone covering approximately 1,193,320 km² (Fig. 1).  A total of 16 

117 AMAPPS surveys were conducted using both shipboard and aerial platforms from July 2010 to 

118 August 2013 covering approximately 104,000 km of line transect survey effort (Table 1).  

119 Shipboard surveys were primarily conducted during summer months in offshore waters and 

120 aerial surveys were conducted throughout the year primarily in coastal waters.  Each platform 

121 included two independent observer teams. 

122 We divided the study site into 10 x10 km oblique Mercator grid cells and into 8-day 

123 temporal time periods.  For each spatial-temporal cell we calculated the amount of on-effort 

124 trackline, number of sightings and obtained the corresponding values of a suite of static 

125 physiographic variables and dynamic environmental variables (Table S1).  More details on the 

126 methods to collect and process the line transect and environmental data are found in Palka et al. 

127 (2017).  

128

129 Model Overview

130 A general form of the SDM model for a given unit of a study area can be written as
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131

132 ,                     eqn 1ý(ÿÿ) = ýÿýÿexp (ÿ(ý))

133 where  is the expected number of sightings in unit i,  is a distance integrated probability ý(ÿÿ) ýÿ
134 of detection within the search area of unit i, Ai is an offset term for the amount of search effort 

135 and  is a user-defined habitat function that relates habitat covariates to the true density of ÿ(ý)

136 animals in unit i.  This model can be fit within a frequentist framework using a two step process 

137 (Miller et al., 2013).  

138 We take a hierarchical approach to modeling the spatial density of animals.  Our 

139 modeling framework consists of a number of subcomponent models that include 1) a detection 

140 function model based on distance sampling, 2) a group size model to model the average group 

141 size (i.e. number of individuals within a group), 3) an informed prior for surface availability 

142 based on information on the diving behavior of tagged fin whales and 4) an underlying habitat 

143 model.  Below we outline the development of each subcomponent and its implementation in a 

144 Bayesian framework.

145

146      Detection Function 

147 To estimate surface detectability we used information from the double platform survey 

148 method.  Information collected from this survey design allowed us to apply mark-recapture 

149 distance sampling (MRDS) methods (Laake & Borchers, 2004).  To model the sightings data 

150 from the dual observers we adopt the formulation for point independence outlined by Laake and 

151 Borchers (2004).  This estimator combines a mark-recapture analysis with conventional distance 
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152 sampling to estimate detection probability such that detection on the trackline (i.e. g(0)) can be 

153 estimated directly, and therefore, is not assumed to be 1.   The estimator is

154   ,                eqn 2ýÿý = ý(0,ýÿý) *
+ÿ

0
ý(ÿ,ýÿý)ýÿÿ

155 where   represents the estimate of detection probability on the trackline and is estimated  ý(0, ýÿý)
156 from the mark-recapture data;  represents the detection function at distance y and is ý(ÿ, ýÿý)
157 estimated from the distance data;  is a matrix of detection covariates that influence surface ýÿý
158 detectability in grid cell i at time t and W is the truncation distance.  To model the likelihood for 

159 the distance data, we considered half-normal and hazard rate detection functions. For the mark-

160 recapture component of the data we adopted the approach outlined by Laake and Borchers 

161 (2004).  Specifically, we modeled the binary outcome of whether or not an observer successfully 

162 detected an animal group that was present at distance y as the outcome of a Bernoulli trial.  

163 Further details of analyzing the double platform line transect data using the MRDS method are 

164 provided in Appendix S1.  

165 For the aerial surveys, the secondary team was situated toward the back of the plane but 

166 had an obstructed view of the trackline complicating a direct implementation of the MRDS 

167 approach.  Therefore, we estimated an average g(0) for both the NEFSC and SEFSC aerial 

168 surveys independently where we treated the front team as a single platform and estimated g(0) 

169 using a trial configuration (i.e., using detections by the rear observers as <trials= for the front 

170 observers).  The estimated g(0) was 0.50 (CV=0.17) and 0.90 (CV=0.09) for NEFSC and 

171 SEFSC, respectively.  We used these estimates to develop informative priors in the BHSDM.  

172 Information on estimating g(0) and applying it to the aerial data is provided in Appendix S1.
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173  For each platform and survey, the best detection function was determined through a 

174 stand-alone MRDS analysis using the program Distance and fitting both half-normal and hazard 

175 rate likelihoods (see Palka et al., 2017).  Because sample sizes were low for fin whales, we 

176 pooled data from several other large whale species to estimate survey specific detection 

177 functions.  Models were compared using AIC and the top model for each survey was included in 

178 the Bayesian framework.  A description of top model used for each platform and survey 

179 combination is provided in Appendix S2.

180

181 Surface Availability 

182 Because most marine animals spend some amount of time below the surface there is a 

183 need to also correct for surface availability ( ) (Laake et al. 1997; Forcada et al. 2004).  Species-ÿ
184 specific surface availability and the corresponding standard error by platform, was taken from 

185 Palka et al. (2017) who adopted the method of Laake et al. (1997).  This method was based on 

186 the probability of an animal being detectable at the surface during a survey, and took into 

187 consideration the species diving and aggregation behaviors, in addition to the amount of time the 

188 observer had to analyze any spot of water from each of the survey platforms. This correction 

189 tended to be larger for aerial surveys than for shipboard surveys, and larger for long diving 

190 species than for short diving species. The estimate for fin whales for aerial surveys was 0.37 

191 (CV=0.34).  This information was then used to develop an informative prior.  Combining surface 

192 detectability and surface availability, our final correction for detection probability in each grid 

193 cell i at time t can be written as:

194
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195    * ,                                    eqn 3ÿ .ÿý = ýÿý ÿ
196

197 Habitat Function

198 We take a generalized additive modeling (GAM) approach to parameterize the habitat 

199 function.  Because the smooth terms of a GAM have a common multivariate Gaussian (MVN) 

200 form they can be estimated relatively easily with standard Markov Chain Monte Carlo (MCMC) 

201 techniques (Hastie & Tibshirani, 1990; Wood, 2016).  The basic GAM formula can be written as

202     , eqn 4ÿ(ý) =  3ÿÿ = 1
ÿÿÿÿ(ý)

203 where  are spline like basis functions and  are parameters to be estimated.  The scalar K is ÿÿ(ý) ÿÿ
204 usually chosen by the user to be large enough to allow appropriate amount of flexibility in .  ÿ(ý)

205 To avoid overfitting quadratic penalty terms are included which take the form

206 ,3ÿÿÿÿÿÿÿÿ
207 where Sj are matrices of known coefficients and  are smoothing parameters to be estimated.  ÿÿ
208 The precision matrix of these distributions can be derived such that 

209

210 ò~MVN(0, , 3ÿÿÿÿÿ)
211 where the penalty terms are given a vague, gamma prior such as

212  ~Gamma(0.05,0.005),ÿÿ
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213 The terms can be estimated efficiently using Gibbs sampling with conjugate priors.  

214 To calculate the precision matrices we used the jagam function in the R package mgcv 

215 (Wood, 2016).  This function allows the user to specify a number of different smooths (cubic 

216 splines, tensor products, etc.) and provides the basic code and input of a JAGS model.  In 

217 addition, it centers the smooths to facilitate faster convergence.

218 We can now combine the habitat function with detection probability and an offset from 

219 the amount of search effort in each grid cell to estimate the total number of animal groups per 

220 grid cell using eqn (1).  The offset term was calculated by dividing the area searched within grid 

221 cell I by the total area of the grid cell i (Areai ) such that Ai =2*W*Li/Areai , where Li is the 

222 length of on-effort line transect.

223 Likelihood

224 Line transect data tend to be noisy so it is common when constructing SDMs to use a 

225 likelihood model that can accommodate outliers.  We implemented a Tweedie distribution which 

226 has been shown to provide a good fit to cetacean data (Miller at al. 2013; Roberts et al., 2016).  

227 The Tweedie distribution is a three parameter family of distributions that can take the form of 

228 more commonly used distributions such as the normal, Poisson and gamma.  If the power 

229 parameter is in the range 1<p<2 than the distribution can also be referred to as the compound 

230 Poisson-gamma (CPG).  Because the Tweedie random variables are a sum of G gamma variables 

231 where G is Poisson distributed (Jørgensen, 1987), it can be expressed in terms of a Poisson and a 

232 gamma distribution such that

233

234    G~Poisson(üp)

235
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236     M~Gamma(ñ, ò)

237

238 where

239                                               eqn 5                                                üý =
ÿÿ

240 and

241

242                          eqn 6                                               ý = {3ÿÿ = 1
ý,  ÿ > 0

  ÿ = 0�
243

244 the expectation is then E(x)=üpüg.  Lauderdale (2012) shows that under a specific 

245 parameterization, the coefficients of the regression model can be estimated by estimating both 

246 the Poisson and gamma components separately.  Specifically, this parameterization can be 

247 written as

248

249

250                                       eqn 7                                                    üÿ = ÿÿ(ÿ - ö)

2

251

252                                       eqn 8                                                      üý = ÿÿ(ÿ + ö)

2

253

0
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254 where X is a matrix of covariate values, ò is a vector of regression coefficients and ö is a vector 

255 of coefficients that control the extent to which the regression coefficients vary between the 

256 Poisson component and gamma component of the compound distribution (Lauderdale, 2012).

257

258

259 Group Size 

260

261 To model group size we use a zero truncated Poisson such that the group size of each 

262 sighting is modeled as

263 (sk-1)~Pois(üs),

264 where sk is the kth observation of group size and üs+1 represents the average group size.  This 

265 approach assumes that group size is unrelated to detection probability.  This assumption is 

266 supported by our analysis of fin whale sightings data which did not indicate a strong influence of 

267 group size on detection probability.  

268 Density and abundance estimation

269 To estimate the density within a grid cell we multiply the estimate of group size with the 

270 estimate of group density such that

271                                   Nit =Dit * (üs + 1),                    eqn 9

272 where Dit is the predicted number of groups in grid cell i at time t estimated from the GAM 

273 model, üs + 1 represent the average group size and Nit is the predicted number of individuals in 
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274 grid cell i at time t.  To estimate total abundance of individuals within the study area we sum Nit 

275 over all grid cells within the study area.  

276 Model Fitting

277 We fit the BHSDM outlined above using MCMC sampling implemented with the JAGS 

278 software (Plummer 2003).  Vague prior distributions were used for all parameters with the 

279 exception of g(0) for the aerial surveys and  where we used estimates and associated CVs to ÿ
280 develop informative beta prior distributions using the approach of Pardo et al. (2015).  We 

281 included a burnin of 20000 samples and two chains of 50000 with a thinning rate of 50. 

282 Convergence was assessed by examining traceplots and calculating Gelman-Rubin diagnostics.

283 Simulation study

284 To quantify differences in precision and statistical coverage probability between the 

285 BHSDM and CSDM method we used a simulation study.  We simulated spatial variation in 

286 abundance over 300 hypothetical grid cells that were all 100 km2 in area.  Each grid cell was 

287 assigned a covariate value and the associated density of animals was generated as a quadratic 

288 function of its covariate value.  We simulated variation in search effort and detection including 

289 both surface detectability and surface availability.  We applied both the CSDM method and the 

290 BHSDM method to each of 1000 independently simulated datasets.  For each simulation, we 

291 estimated population size by summing up the estimated number of animals in each grid cell.  We 

292 estimated statistical interval coverage by determining whether or not the true population size fell 

293 within the 95% confidence intervals of the CSDM method or the 95% credible region of the 

294 posterior estimate of the BHSDM method.  In addition, we calculated percent relative bias for 

295 each simulation and method as ( - )/ *100 where  is true abundance for simulation i and ýÿÿ ýÿ  ýÿ ýÿ
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296  is the estimate of population size for simulation i and method j.  A more detailed explanation ýÿÿ
297 of the simulations is provided in Appendix S2.

298

299 Case Study with Fin Whales

300 We tested our model on a four year dataset of fin whale sightings collected during the 

301 AMAPPS surveys.  Similar to our simulation study we also compared model predictions to 

302 predictions from a CSDM using a version of the two-step method.  Details for fitting the CSDM 

303 to the fin whale dataset are explained elsewhere (see Palka et al., 2017) but we briefly review the 

304 process here.  In the first step, we calculated densities of fin whales from the stand-alone MRDS 

305 analysis in program Distance.  We adjusted estimates from the aerial surveys by dividing by an 

306 estimate of surface availability.  In the second step, we fit GAMs to these effort-corrected 

307 estimates of density using the mgcv software (Wood, 2011) using thin plate regression splines 

308 and restricted error maximum likelihood (REML) to estimate parameters.  To account for 

309 overdispersion, a Tweedie distribution was assumed.  A multi-stage process was used to 

310 determine the best set of covariates and the best structure of the smooth terms (see Palka et al. 

311 2017 Appendix I, chapter 3 for results).  We then fit the same model using the BHSDM.  Our 

312 interest was in keeping as many components of the model structure consistent so we could focus 

313 on comparing output across modeling frameworks.  

314

315 Results

316   Simulation Study
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317 Simulations demonstrated higher uncertainty and higher statistical interval coverage 

318 using the BHSDM method as compared to the CSDM method.  We found approximately 94% 

319 coverage probability for the BHSDM compared to 84% coverage probability for the CSDM (Fig. 

320 2).  The average CV of  calculated from the BHSDM method was approximately 20% higher ý
321 than the average CV calculated from the CSDM method demonstrating the additional uncertainty 

322 that is propagated in a BHSDM framework.  Overall bias was low and positive for both methods 

323 but slightly more positive for the CSDM method (Fig. 2).  

324 Case Study

325 A comparison of the resulting detection functions between the stand alone MRDS and the 

326 BHSDM showed detection probabilities were similar (Table 2).  Estimates from the distance 

327 sampling component were similar among all framework although estimates from the BHSDM 

328 were consistently higher.  Similarly, estimates of g(0) for the shipboard surveys were also similar 

329 but consistently higher in the BHSDM framework.  The posterior estimate of mean group size 

330 was 1.4 (CV=0.14) indicating relatively small group sizes.  Most observed group sizes were less 

331 than 2 animals with 4 % greater than 3 animals.

332 The top model for the habitat function included latitude, chlorophyll, sea surface 

333 temperature and distance to 125 m isobath as covariates (see Palka et al,. 2017 Appendix I, 

334 chapter 3) and were subsequently used in the BHSDM.  Results from fitting the BHSDM to the 

335 observed sightings data showed good agreement between predicted and observed number of 

336 groups per grid cell although there was some tendency of the model to under predict as the 

337 number of sightings increased (Fig. S1).  In comparison to the CSDM, density estimates for the 

338 grid cells during the summer time period were similar between the two frameworks (Fig. 3).  
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339 Overall abundance estimate for the entire study area was 4 % lower with lower precision for the 

340 BHSDM (4526,CV=0.26) compared to the CSDM (4718,CV=0.13) .

341 In contrast to density estimates, sampling uncertainty of the grid cell density estimates 

342 varied substantially between the two frameworks (Fig. 4).  The median CV9s were 0.28 and 0.98 

343 for the CSDM and the BHSDM, respectively. The distribution of CV9s from the BHSDM were 

344 highly skewed. However, the highest CV9s from BHSDM were associated with low density 

345 estimates (Fig. 4).  Ignoring grid cells with low density estimates (density <0.0001 animals/km2), 

346 the median CV9s were 0.45 and 0.15 for the BHSDM and CSDM, respectively.  

347 The predicted spatial average seasonal density distribution patterns were largely similar 

348 for the two frameworks (Fig. 5a and Fig. 5b).  Both modeling frameworks indicated that the Gulf 

349 of Maine and the shelf break where areas of relatively high density.  There were some minor 

350 differences south of the Gulf of Maine where the CSDM indicated slightly higher densities than 

351 the BHSDM.  The overall pattern of uncertainty was similar for the two frameworks where 

352 uncertainty was lowest in areas with the highest density and vice versa for the areas of highest 

353 uncertainty (Fig. 5c and Fig. 5d).

354

355 Discussion

356 The use of SDMs to predict the abundance and distribution of animals in time and space 

357 is increasingly becoming a cornerstone in the conservation and management of cetacean 

358 populations (Gregr et al., 2012).  Techniques for fitting SDMs have grown rapidly and although 

359 there have been a number of attempts to compare methods in terms of model fit and prediction 

360 (Elith & Graham, 2009; Oppel et al., 2012), few studies have focused specifically on uncertainty.  

361 Yet, properly accounting for uncertainty is crucial to informing good management decisions 
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362 (Ludwig, Hilborn, & Walters 1993).  Our focus was on further developing the one-step BHSDM 

363 and comparing its performance to the more standard CSDM with the explicit goal of highlighting 

364 differences in uncertainty between the two methods. 

365 Two-step approaches to SDMs have the advantage of being able to use all the built-in 

366 options available in different software packages such as Distance to model detection and mgcv to 

367 model habitat relationships (Miller et al. 2013).  In contrast, Bayesian methods have been more 

368 limited in these options.  We have taken steps to expand the BHSDM framework such that it is 

369 more compatible with the two-step approach and similar models can be compared.  For example, 

370 we adopted the MRDS approach available in Distance to model two team data while also 

371 including a hazard rate option.  Previous Bayesian applications to line transect data of cetaceans 

372 have generally been applied to single shipboard team data using a half-normal detection function 

373 (Moore & Barlow, 2011; Pavanato et al., 2017).  We have also included nonparametric GAMs 

374 which allow for flexible, data-driven relationships between habitat and density.  Other 

375 approaches to BHSDM have included quadratic terms in a GLM framework (Pardo et al., 2015; 

376 Goyert et al., 2016) to capture nonlinear relationships, but this approach is still parametric in 

377 form and limited in flexibility.  Finally, we implemented a Tweedie distribution within this 

378 framework.  Because the Tweedie is not a built in distribution in most Bayesian software 

379 packages, we adopted the CPG approach of Lecomte et al. (2013).  This approach is a limited 

380 version of the Tweedie where the power parameter is constrained between 1 and 2; however, it is 

381 not uncommon in studies using the two-step approach with a Tweedie distribution to restrict the 

382 power parameter to be within this range (Williams et al., 2011; Cañadasa et al., 2018).  Together 

383 these features provide more options for users when applying a BHSDM to line transect data.
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384 In a review of marine SDMs, Robinson et al. (2017) notes that uncertainty is rarely 

385 assessed rigorously.  We explicitly addressed this issue with simulations.  We found the BHSDM 

386 method not only results in higher uncertainty but greater statistical coverage than the CSDM 

387 method.  When interpreting the magnitude of the difference between the two methods it is 

388 important to take into account the simplicity of the simulations.  For instance, we assumed a low 

389 amount of scientific uncertainty around the estimate of surface availability (as represented by a 

390 relatively narrow distribution).  In addition, our estimates of surface detectability were relatively 

391 precise as we used simulated data with no detection covariates.  Finally, we did not include 

392 uncertainty in group size.  Whether using the two-step method or one-step method it is important 

393 to consider all the sources of uncertainty and their influence on final predictions.  For example, 

394 estimates of surface availability from tag data are generally limited to a few individuals and may 

395 include high uncertainty.  As a corollary, these results also point to the value of trying to derive 

396 more precise estimates of detectability.  Recent advances in sampling technology such as passive 

397 acoustic technology (Marques et al., 2012) and aerial drones (Brack et al., 2018) may be greatly 

398 beneficial in estimating both more accurate and more precise measurements of surface 

399 availability and in turn could greatly reduce uncertainty in final estimates.

400 Our simulations also demonstrated that overall bias of the BHSDM method is relatively 

401 small and slightly positive.  When using Bayesian methods, bias will partly be a function of how 

402 one calculates point estimates using posterior samples.  For our simulations we used the posterior 

403 mean, but the posterior median or mode could also be used.  In a study of harbor seals, Ver Hoef 

404 and Jansen (2007) showed that in cases where the posterior distributions are skewed, the 

405 posterior median estimate can be biased low and the posterior mean estimate can be biased high.  

406 They suggest use of the linex loss function to achieve more accurate estimates (Varian, 1975).  
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407 We did not take that approach here, but it is worth considering if small amounts of bias are a 

408 concern.

409 When applied to field data, the BHSDM produced density estimates and distribution 

410 patterns that were similar to the CSDM albeit not exact.  Although we attempted to keep the two 

411 frameworks as similar as possible, there were some structural differences that may have 

412 influenced density estimates.  For example, the CSDM used a Horvitz-Thompson like estimator 

413 to estimate observed densities whereas the BHSDM models used the observed sighting of groups 

414 in each grid cell directly and used a mean estimate of group size to calculate total density of 

415 animals.  In addition, the estimates of detection from the BHSDM tended to be higher than 

416 estimates from a stand-alone MRDS analysis which might have translated into slightly lower 

417 density estimates.  Overall, the spatial distribution and abundance from both methods were 

418 comparable to a previous study by Roberts et al. (2016) for the same general area.

419 Estimates of precision differed substantially between the two methods.  This result was 

420 anticipated as the hierarchical structure of the BHSDM framework propagates more uncertainty 

421 from the other components of the model.  Several factors contributed to uncertainty including 

422 uncertainty in average group size, surface detectability and surface availability.  Estimates of 

423 precision from most of these components were relatively high with CVs ranging from 0.06 to 

424 0.26.  Our estimate of surface availability had the lowest precision with a CV of 0.34 and likely 

425 contributed the most to differences in CVs among density estimates.  

426 Proper consideration of uncertainty is crucial to effective management of natural 

427 resources (Ludwig, Hilborn & Walters, 1993).  A number of studies have shown how failure to 

428 consider uncertainty can result in poor management decisions (Regan et al., 2005; Artelle et al., 

429 2013).  For example, in population viability analysis, ignoring error in initial population size may 
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430 result in misleading estimates of population persistence (McLoughlin & Messier, 2004).  In the 

431 management of cetacean populations, overly precise estimates of abundance can have direct 

432 consequences on the determination of potential biological removal and may result in a lack of 

433 management action when action should be taken (Taylor et al., 2000).  Using a BHSDM, 

434 Gerrodette & Eguchi (2012) demonstrated how a more complete consideration of uncertainty of 

435 spatial distribution can result in a more cautionary approach to the design of a marine reserve 

436 that may ultimately be more effective for conservation.  Taken together, these studies suggest 

437 that modeling tools used to inform management decisions must prioritize a full assessment of 

438 uncertainty to avoid undesirable outcomes.

439

440 Conclusions

441 Rigorously quantifying uncertainty is a challenging but important goal.  Recently, 

442 Bravington, Miller & Hedley (2018) developed alternative methods for propagating uncertainty 

443 from estimation of detectability into final density estimates within two-stage line transect SDMs.  

444 Their approach appears promising, and we expect it will likely become common practice for 

445 those conducting two-stage SDM modeling with line transect data.  Nevertheless, one stage 

446 hierarchical models may be the only way to resolve certain detection processes 3 for instance, in 

447 cases where detectability is a function of individual covariates such as group size, or when 

448 species misclassification occurs (e.g. Conn et al. 2012, Conn et al. 2013).  Thus, we expect to see 

449 continued, parallel development of hierarchical models for line transect data together with two-

450 stage SDMs.

451
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Table 1(on next page)

Summary of effort by season and platform
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1 Table 1: Summary of effort by season and platform.

Effort (km)

Platform

Spring Summer Fall Winter

NE Shipboard 0 8,146 0 0

NE Aerial 7,502 10,468 11,038 3,573

SE Shipboard 0 8,537 2,093 0

SE Aerial 17,978 16,835 11,818 6,007

2

3
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Table 2(on next page)

Comparison of posterior estimates for detection functions

Comparison of posterior estimates for the detection function estimated from the Bayesian

hierarchical species distribution model (BHSDM) to estimates of the detection function from

the mark-recapture distance sampling (MRDS) analysis using program Distance. Results are

shown for each survey along with the truncation distance (W) used in each analysis.

Estimates of detection from the distance sampling component (PD) and g(0) from the mark-

recapture component are shown with coefficients of variation in parentheses.
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1 Table 2:  Comparison of posterior estimates for detection functions

2

3 Comparison of posterior estimates for the detection function estimated from the Bayesian 

4 hierarchical species distribution model (BHSDM) to estimates of the detection function from the 

5 mark-recapture distance sampling (MRDS) analysis using program Distance.  Results are shown 

6 for each survey along with the truncation distance (W) used in each analysis. Estimates of 

7 detection from the distance sampling component (PD) and g(0) from the mark-recapture 

8 component are shown with coefficients of variation in parentheses.

Model Survey W (km) PD g(0)

BHSDM NE Ship 4 0.31 (0.26) 0.79 (0.06)

MRDS NE Ship 4 0.28 (0.26) 0.78 (0.08)

BHSDM SE Ship 8.84 0.53 (0.11) 0.82 (0.08)

MRDS SE Ship 8.84 0.51 (0.10) 0.77 (0.13)

BHSDM NE Air 5.24 0.13(0.11) 0.50 (0.17)*

MRDS NE Air 5.24 0.11 (0.10) 0.50 (0.17)*

BHSDM SE Air 0.56 0.59 (0.14) 0.90 (0.10)*

MRDS SE Air 0.56 0.56 (0.12) 0.90 (0.10)*

9 *Estimates of g(0) for aerial surveys were taken from Palka et al. (2017)

10
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Figure 1(on next page)

AMAPPS study area

Map of the AMAPPS study area with the shipboard survey track lines in blue and aerial survey

track lines in orange for surveys conducted from 2010-2013.
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Figure 1: AMAPPS study area  
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Map of the AMAPPS study area with the shipboard survey track lines in blue and aerial survey 

track lines in orange for surveys conducted from 2010-2013.   
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Figure 2(on next page)

Summary of simulations

Summary results comparing coverage probability after applying the BHSDM and CSDM

methods to 1000 simulated datasets. Black lines indicate estimates that covered the true

value and red lines indicate estimates that did not cover the true value (a & b). Histograms of

coefficients of variation (CV) (c & d) and bias in estimates of population size (e & f) are also

shown.
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Figure 3(on next page)

Comparison of density estimates.

Comparison of density estimates from the Bayesian hierarchical species distribution model

(BHSDM) vs density estimates from the Conventional species distribution model (CSDM)

framework.
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Figure 4(on next page)

Comparison of coefficients of variation (CVs) for density estimates

Comparison of coefficients of variation (CVs) for density estimates from the Bayesian

hierarchical species distribution model (BHSDM) and conventional species distribution model

(CSDM). Inner panel shows a histogram of CVs for all density estimates for both the BHSDM

and CSDM with median CVs represented by dashed lines. Outer panel shows a plot of CVs vs

density estimates for both the BHSDM and CSDM. Only density estimates greater than

0.00001 animal/km2 are shown.
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Figure 5(on next page)

Predicted densities of fin whales in summer.

Predicted densities and abundance estimates with corresponding coefficients of variation

(CV) of fin whales in summer from a species distribution model using a) the CSDM framework

and b) the BHSDM framework. Coefficients of variation for the density estimates from c) the

CSDM framework and d) BHSDM framework are also provided.
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