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Abstract 10 

Background: To date, the theoretical bases of Lewis’s law and Aboav-Weaire’s law are still unclear.  11 

  12 

Methods: Software R with package Conicfit was used to fit ellipses based on geometric parameters of 13 

polygonal cells of red alga Pyropia haitanensis.  14 

 15 

Results: The average form deviation of vertexes from the fitted ellipse was 03.1 % (8,291 vertices in 16 

1375 cells were examined). Area of the polygonal cell was 0.90.1 times of area of the ellipse’s 17 

maximal inscribed polygon (EMIP). These results indicated that the polygonal cells can be considered 18 

as ellipse’s inscribed polygons (EIPs) and tended to form EMIPs. This phenomenon was named as 19 

ellipse packing. Then, an improved relation of Lewis’s law for a 𝑛-edged cell was derived 20 

 cell area = 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (
2π

𝑛
) (1 −

3

𝑛2
) 21 

where, 𝑎 and 𝑏 are the semi-major axis and the semi-minor axis of fitted ellipse, respectively. This 22 

study also improved the relation of Aboav-Weaire’s law 23 

number of neighboring cells = 6 +
6 − 𝑛

𝑛
× (

𝑎

𝑏
+

3

𝑛2
) 24 

 25 

Conclusions: Ellipse packing is a short-range order which places restrictions on the direction of cell 26 

division and the turning angles of cell edges. The ellipse packing requires allometric growth of cell 27 

edges. Lewis’s law describes the effect of deformation from EMIP to EIP on area. Aboav-Weaire’s law 28 

mainly reflects the effect of deformation from circle to ellipse on number of neighboring cells, and the 29 

deformation from EMIP to EIP has only a minor effect. The results of this study could help to simulate 30 

the dynamics of cell topology during growth.   31 
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Introduction 32 

Three laws were generalized from observations on many natural and artificial two-dimensional (2D) 33 

structures: Euler’s law, Lewis’s law and Aboav-Weaire’s law (Weaire & Rivier 1984). The latter two 34 

were first observed empirically by Lewis and Aboav with the original aims of understanding laws in 35 

biological structures and mechanisms of crystal growth, respectively (Aboav 1970; Lewis 1926; Lewis 36 

1928; Weaire 1974). Although Lewis’s law and Aboav-Weaire’s law are very important for 37 

understanding the formation mechanisms of 2D structures, their theoretical explanations are still 38 

deficient (Mason et al. 2012; Weaire & Rivier 1984). Furthermore, to date, only one common feature 39 

was found in these 2D structures: the coordination number (the number of edges meeting at a vertex) is 40 

always three. This feature is a short-range order, and also the core mechanism mathematically 41 

determined that the average number of edges per cell is six (Graustein 1931).  42 

Thallus of P. haitanensis is a single-layered prismatic cell sheet which is a mathematical 43 

consequence of 2D expansion on a plane by cell proliferation (Xu et al. 2017). Thus, P. haitanensis 44 

thalli can be simplified as 2D structures. When this study restrict attention to biological 2D structures, 45 

the word “cell” was used to represents the top and/or bottom faces of a prismatic cell. The dynamics of 46 

cell topology during growth make biological 2D structures even more complicated than other types of 47 

2D structures. For examples, internal angles of P. haitanensis cells were concentrated in range of 48 

100−140º by direction specific division and direction turning of cell edges, which suggested that the 49 

cells tended to form regular polygons (Xu et al. 2017). These observations hinted that there are 50 

undiscovered short-range orders in 2D structures. A recent study by Xu et al. (2018) found that the 51 

effective coverage area of ellipse-shaped exoskeletons of microalga E. huxleyi cells tended to approach 52 

the maximal area of EIP. Similar phenomenon was found in this study that the polygonal cells inclined 53 

to form EMIP. Based on this short-range order, the present study improved the relations of Lewis’s law 54 

and Aboav-Weaire’s law.  55 

 56 

Materials and methods 57 

Images of membranous thalli of P. haitanensis were analyzed using software Amscope Toupview 3.0. 58 

For each polygonal cell, the area (A𝐶), coordinates of center (X𝑃𝐶, Y𝑃𝐶) and vertices (X𝑉, Y𝑉) were 59 

measured. Software R (version 3.5.1) with package Conicfit was used to fit an ellipse based on the 60 
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coordinates of vertices of each polygonal cell (Fig. 1A) (Chernov et al. 2014). Five geometric 61 

parameters could be used to describe an ellipse, which include the semi-major axis 𝑎, semi-minor axis 62 

𝑏, coordinates of center (X𝐸𝐶, Y𝐸𝐶), and angle of tilt of the major axis 𝜃 (Fig. 1B). On 2D geometry, 63 

five points determine a conic, for example, the ellipse. For polygons with five or more edges, X𝑃𝐶 and 64 

Y𝑃𝐶 were set as the initial values of coordinates of ellipse center to improve fitting. As for cells with 65 

only four edges, the coordinates of four vertices and four midpoints of edges were combined as a single 66 

data set to fit an ellipse as same as for cells with  5 edges. Then, the geometric parameters of the fitted 67 

ellipse were set as the initial values to fit the second ellipse for the coordinates of four vertices. The 68 

second ellipse was found to be the smallest one among all fitted ellipses, and which was used for 69 

analyzation. The reason of finding the smallest circumstanced ellipse for 4-edged polygonal cell was 70 

given in the next section. The area of ellipse (A𝐸) was calculated as  71 

A𝐸 =  π𝑎𝑏                                                                                    (1)                                     72 

The area of the maximal inscribed polygon of ellipse (A𝑀𝐼𝑃) is 73 

A𝑀𝐼𝑃 =  0.5𝑛𝑎𝑏𝑠𝑖𝑛 (
2π

𝑛
)                                                                    (2)  74 

where 𝑛 is the number of edges of inscribed polygon (Su 1987). The form deviation of vertex (FD) is 75 

𝐹𝐷 =
D𝑉𝐶 − 𝑅

𝑅
× 100%                                                                     (3) 76 

where D𝑉𝐶 is the distance between a vertex and the center of fitted ellipse (length of line VC) 77 

D𝑉𝐶 =  √(X𝑉 − X𝐸𝐶)2 + (Y𝑉 − Y𝐸𝐶)2                                                  (4)  78 

and 𝑅 is the distance from the ellipse center to the cross point of the fitted ellipse and the line VC  79 

𝑅 =
𝑎𝑏

√(𝑎 𝑠𝑖𝑛(𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑡𝑎𝑛 ) − 𝛿))2 + (𝑏 𝑐𝑜𝑠(𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝑡𝑎𝑛 ) − 𝛿))2
                     (5) 80 

where 𝛿 is the angle between line VC and X-axis, the ranges of  and 𝛿 are [0, π) and 81 

(−0.5π, 0.5π), respectively (Fig. 1B). R code and three examples for the above calculations can be 82 

found in supplementary files. 83 

 84 

Results and discussion 85 

Ellipse packing 86 

The average number of cell edges was 6.00.9 (1,375 cells in 13 thalli were examined) which is 87 

consistent with previous studies in P. haitanensis, and many other organisms, and abiotic structures 88 
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(Gibson et al. 2006; Sánchez-Gutiérrez et al. 2016; Weaire & Rivier 1984; Xu et al. 2017). According 89 

to Euler’s 2D formula, this kind of phenomenon was mathematically determined by a short-range 90 

geometric order, which is the coordination number of each vertex equal to three when different-sized 91 

cells tessellate a 2D plane (Graustein 1931; Weaire & Rivier 1984). The size differences between cells 92 

indicate that these biotic and abiotic 2D structures display long-range disorder, because unit cell has 93 

neither periodicity nor translational symmetry. Besides, the average number of cell edges quickly 94 

approached to six with exponential increase of cell number due to increase of body or tissue size. Thus, 95 

the above phenomenon can only be observed when a body or tissue contains a large number of cells 96 

(Graustein 1931; Lewis 1926; Weaire & Rivier 1984; Xu et al. 2017).  97 

This study found that the vertices of a cell could be used to fit an ellipse with an average form 98 

deviation of 03.1 % (8,291 vertices in 1375 cells were examined, Table 1). Thus, polygonal cells of P. 99 

haitanensis were EIPs, which ensured that all the cells were convex polygons. The ratios of A𝐶/A𝑀𝐼𝑃 100 

ranged from 0.5 to 1.0 with an average value of 0.90.1 (Table 1), and 90% of the values concentrated 101 

in range of 0.78 to 0.97 (supplementary data S1), which indicated that cells preferred to reach the 102 

maximal area. Thus, the fitted ellipse should be the smallest circumstance ellipse of the polygonal cell, 103 

which was the reason to find the smallest ellipse for four-edged cells in this study. A recent study 104 

reported similar phenomenon on single-celled microalga E. huxleyi (Xu et al. 2018). E. huxleyi cells 105 

were fully covered by interlocked calcite exoskeletons, the specific geometric characteristics of 106 

exoskeletons resulted in that the effective coverage area of exoskeletons tended to reach the maximal 107 

area of inscribed polygon of ellipse-shaped exoskeletons.  108 

The eccentric angle of neighboring vertices of EMIP is equal to 2π/𝑛 (Su 1987). Therefore, the 109 

eccentric angles of 6-edged EMIPs is 60º. Based on observations of direction specific divisions 110 

(resulted in equal-sized divisions) and division-associated direction changes of cell edges (concentrated 111 

internal angles in range of 100-140º), Xu et al. (2017) found that P. haitanensis cells preferred to form 112 

regular polygons. The more the polygonal cell close to a regular hexagon, the more the cell close to a 113 

spherical shape which could help to maintain force balance (Chen 2008; Ingber et al. 2014). 114 

Unbalanced forces could potentially result in unequal-sized cell division (Kiyomitsu 2015). However, 115 

equal-sized daughter cells can always be found in cell proliferation of P. haitanensis thalli (Xu et al. 116 

2017).  117 
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 118 

Lewis’s law 119 

The average values of A𝐸, A𝑀𝐼𝑃 and A𝐶 increased with 𝑛, while the difference between average 120 

values of A𝐸 and A𝐶 was decreased (Fig. 2A). Except for 𝑛 > 8, the average ratios of a/b were very 121 

stable regardless of values of 𝑛 (Fig. 2B). Since A𝑀𝐼𝑃 is 
𝑛

2π
sin (

2π

𝑛
) times A𝐸  (Su 1987), the ratio 122 

of A𝑀𝐼𝑃/A𝐸 approaching to one with increase of 𝑛 (Fig. 2C). Positive linear relationships were found 123 

between A𝐶 and A𝐸 (R2=0.73, P < 0.0001, Fig. 2D), and between A𝐶 and A𝑀𝐼𝑃  (R2=0.85, P < 124 

0.0001, Fig. 2E). Thus, A𝐶  can be calculated by the following empirical equation 125 

A𝐶 = 0.80A𝑀𝐼𝑃 + 78.79 =  0.40𝑛𝑎𝑏𝑠𝑖𝑛 (
2π

𝑛
) + 78.79                                  (6)  126 

where, the maximal value of 𝑛𝑠𝑖𝑛 (
2π

𝑛
) is 127 

 lim
𝑛→∞

𝑛𝑠𝑖𝑛 (
2π

𝑛
) = 2π                                                                 (7) 128 

Because both 𝑛𝑠𝑖𝑛 (
2π

𝑛
) and A𝐸 increase with 𝑛 (Fig. 2A,B), A𝐶  also increase with 𝑛. This is 129 

consistent with Lewis’s law, which suggests that A𝐶 of a 𝑛-edged cell linearly related with 𝑛 (Chiu 130 

1995; Lewis 1926; Lewis 1928; Weaire & Rivier 1984). However, this study suggested the 131 

relationship between A𝐶 and 𝑛 is more complex than previous thoughts.  132 

By equal-sized division, mitosis shall strongly disturb cell topology. Obviously, division should 133 

separate a cell along the direction of minor-axis of fitted ellipse, which makes daughter cells more 134 

close to EMIP (Fig. 3A). Nearly 150 years ago, Hofmeister proposed the similar speculation named 135 

long axis division (Hofmeister 1863). More complicated, however, Xu et al. (2017) found that 136 

divisions preferred to transect mother cells at midpoints of unconnected paired-edges. Afterward, 137 

directions of cell edges were changed to concentrate internal angle in range of 100−140º. Thus, the 138 

smallest number of edges per cell was four, and two equal-sized daughter cells were produced.  139 

The ellipse packing is exactly a short-range order which could influence both local and global 140 

cell topology. The average axes of fitted ellipses and average number of edges were used to calculate 141 

the average variation of internal angles (Table1, Fig. 3A). Assuming a EMIP with 6 edges was divided 142 

along the minor axis of ellipse, then ellipse packing should turns all three polygonal cells around the 143 

new vertex into EMIPs (Fig. 3B). Thus, two daughter cells would be turned into two equal-sized 144 

maximal inscribed 5-gons, and the neighboring cell of both daughters would be turned into maximal 145 
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inscribed 7-gon. The sum of three angles around the new vertex is 360º. Assuming the total disturbs 146 

on the three angles is minimum, based on least square method, the new internal angles around new 147 

vertexes in the neighboring cell would be decreased by 34.1º. Which gave an explanation to the 148 

observation that the turning angle was 406º (138 angles were examined) in the previous study by Xu 149 

et al. (2017). Meanwhile, those angles inherited from mother cells also need to be adjusted to obey 150 

ellipse packing (Fig. 3). Obviously, all these changes on angles must achieve by allometric growth of 151 

cell edges. The long axis division could decrease the disturb on cellular geometries and the payment 152 

to allometric growth of cell edges. Finally, from a global perspective, the combined effect of ellipse 153 

packing and the other short-range order (vertex coordination equal to three) turn all three angles 154 

around each vertex to 120º.  155 

Aboav-Weaire's law 156 

Aboav-Weaire's law describes that if 𝑚 represents the average number of edges of cells surrounding 157 

a 𝑛-edged cell, then 𝑚 is linearly related to 1/𝑛: 158 

𝑚 = (6 − β) +
6β + μ2

𝑛
                                                                (8) 159 

where, 6 is the average number of cell edges of 2D structures, β is a constant and μ2 is related to 160 

the second moment of the edges of the 𝑛-edged cell (Weaire & Rivier 1984). The present study and 161 

previous study by Xu et al. (2017) showed that all cells tended to form regular polygons, which 162 

indicated that the internal angles tended to close to each other. According to Eq. (6), the cell area 163 

increase with 𝑛. The average internal angles of a 𝑛-edged cell is π −
2π

𝑛
, which also increase with 𝑛. 164 

The sum of three angles around each vertex is 2π, which suggests that the average neighboring 165 

angles of the 𝑛-edged cell is decreasing with increase of 𝑛. Consequently, 𝑚, the average area and 166 

average internal angles of 𝑚 cells tend to decrease with increase of 𝑛. Thus, Aboav-Weaire's law 167 

describes the representative level for a data set of 2𝑛 neighboring angles in the total data set of 𝑚𝑛 168 

internal angles of neighboring cells. 169 

Based on experimental studies, β ≈ 1.2 was found to be conserved for several natural physical 170 

and biological structures (Aboav 1983; Aboav 1980; Mombach et al. 1990; Mombach et al. 1993). 171 

This number is very close to the average ratio of 𝑎/𝑏 of P. haitanensis cells (Table 1, Fig. 2B), and 172 

of oval-shaped exoskeletons (faces) of microalga E. huxleyi (Xu et al. 2018). In previous studies, μ2 173 

was assumed to be small (Edwards & Pithia 1994; Lambert & Weaire 1981). Regular hexagons could 174 
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monohedrally tessellate a plane (Grünbaum & Shephard 1987), such kind of tessellation also featured 175 

with ellipse packing and all vertexes have coordination equal to three. This indicates that when 𝑛 =176 

〈𝑛〉 = 6, μ2 = 0, where 〈𝑛〉 is the average number of cell edges. The observations of Aboav-177 

Weaire's law in natural 2D structures suggest that the edge numbers of cells are uniformly distributed. 178 

The probability density function of 𝑚/𝑛 is 179 

F (
m

n
) = {

0                
𝑚

𝑛
<

4

𝑛
 𝑜𝑟 

𝑚

𝑛
>

10

𝑛
 

  
𝑛

6
                             

4

𝑛
≤

𝑚

𝑛
≤

10

𝑛

                                                  (9)      180 

The second moment of Eq. (9) is 
3

𝑛2, then μ2 of a 𝑛-edged cell is 
3

𝑛2
(6 − 𝑛), using Eq. (8) this 181 

study got 182 

 𝑚 = (6 −
𝑎

𝑏
) +

6𝑎

𝑏
+

3(6−𝑛)

𝑛2

𝑛
                                                              (10) 183 

where, 𝑎 and 𝑏 are the semi-major axis and semi-minor axis of fitted ellipse of a 𝑛-edged cell, 184 

respectively. The Eq. (10) can be rewritten as 185 

𝑚 = 6 +
6 − 𝑛

𝑛
× (

𝑎

𝑏
+

3

𝑛2
)                                                        (11) 186 

This equation could explain the monohedral tiling using equal-sized regular hexagons and 6-edged 187 

EMIPs (Fig. 3A top). As for 𝑚 of P. haitanensis cells, the calculated values using Eq. (11) were very 188 

close to the real values by enumeration (Fig. 4A). The average difference between calculated 𝑚 and 189 

real 𝑚 was –0.10.3 (211 cells were examined). The 𝑎/𝑏 describes the deformation degree from 190 

circle to ellipse. Similarly, the present study assumed that the second moment of Eq. (9) describes the 191 

deformation degree from EMIP to EIP. This suggested the relation 192 

3

𝑛2
= 1 −

A𝐶

A𝑀𝐼𝑃
                                                                   (12) 193 

which can be expressed as 194 

A𝐶 = A𝑀𝐼𝑃 (1 −
3

𝑛2
) = 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (

2π

𝑛
) (1 −

3

𝑛2
)                                (13) 195 

The results of this study strongly supported the above relation of Lewis’s law (Fig. 4B). Meanwhile, 196 

the Eq. (11) can be rewritten as 197 

𝑚 = 6 +
6 − 𝑛

𝑛
× (

𝑎

𝑏
+ 1 −

A𝐶

A𝑀𝐼𝑃
)                                              (14) 198 

Due to μ2 is very small, Aboav-Weaire's law could be approximately expressed as 199 

𝑚 ≈ 6 +
6 − 𝑛

𝑛
×

𝑎

𝑏
                                                           (15) 200 
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The calculated 𝑚 using Eq. (11), Eq. (14) and Eq. (15) only showed minor differences (Fig. 4A, 201 

supplementary data S1). 202 

Furthermore, for 2D structures, the combination of Lewis’s law and Aboav-Weaire's law could 203 

derive a new law: big cells tend to surround by small cells, and vice versa. This law was frequently 204 

observed in many natural and artificial structures (Weaire & Rivier 1984). The results of this study 205 

could help to analyze the relation between areas of neighboring cells. 206 

 207 

3D structures 208 

Every prismatic cell of P. haitanensis thallus could be considered as a convex polyhedron with an 209 

average face number of eight. For multi- polyhedral-celled 3D structure with coordination number of 210 

four, the average face number is (
48

35
) π2 + 2 (≈ 15.54) (Meijering 1953; Weaire & Rivier 1984). 211 

This number is very close to the average face number of 15.4 in single-polyhedral-celled microalga E. 212 

huxleyi with vertex coordination of three (Xu et al. 2018). The difference on average face number 213 

indicates that 2D and 3D structures are formed under different restrictions. A convex polyhedral cell is 214 

a sealed 3D structure which has a positive curvature at every vertex and obeys Euler’s law. However, 215 

Euler’s law does not set any restriction on 6-edged faces (Grünbaum & Motzkin 1963; Xu et al. 216 

2018). Which suggests that a given 3D structure does not necessarily need to be a sealed structure 217 

even it obeys Euler’s law. The closure of polyhedra could be considered as a basic level of uniform 218 

distribution of curvature. The face topology of polyhedra could be analyzed using software CaGe 219 

(Brinkmann et al. 2010).  220 

Polygons with more than 6 edges induce locally negative curvature and with less than 6 edges 221 

induce positive curvature (Cortijo & Vozmediano 2007). Thus, the polyhedral cells of E. huxleyi only 222 

contains 4-gons, 5-gons and 6-gons which could help to maintain a full coverage on spherical surface 223 

(Xu et al. 2018). As for 2D tessellation using different-sized cells, the average edge number of 6 224 

determined that the top and/or bottom faces of P. haitanensis cells contain four to ten edges (Table 1). 225 

Due to geometric limits, Lewis’s law and Aboav-Weaire’s law still valid for face topology of cells of 226 

E. huxleyi (Xu et al. 2018). Since Lewis’s law only related to the semi-axes of fitted ellipse and the 227 

number of edges (Eq. 13), this law may be directly used for 3D structures. As for Aboav-Weaire’s law, 228 

which may be able to generalize to 3D space with consideration of distribution of curvature at 229 
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vertexes.  230 

 231 

Conclusion 232 

This study found that polygonal cells of P. haitanensis inclined to form EMIPs. This phenomenon was 233 

named as ellipse packing, which could be applied in simulation of dynamics of cell topology during 234 

growth. Improved relations of Lewis’s law and Aboav-Weaire’s law were derived and tested using the 235 

geometric parameters of fitted ellipses and the number of cell edges. The present study suggested that 236 

Lewis’s law and Aboav-Weaire’s law are nonlinear relations, the former describes the deformation 237 

effect of EMIP on area, and the latter describes the deformation effects of circle (major effect) and 238 

EMIP (minor effect) on number of neighboring cells. This study also gave a mathematical explanation 239 

for long axis division. Further works are needed to test our results in other 2D structures. 240 
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Table 1 Parameters of polygonal cells and fitted ellipses. 

 

  

Parameters MeanSD Range n 

Average number of cell edges (𝑛) 6.00.9 4–10 1,375 

Form deviation (𝐹𝐷, %) 03.1 –13.9–20.6 8,291 

Fitted semi-major-axis (𝑎, μm) 19.92.8 13.9–37.2 1,375 

Fitted semi-minor-axis (𝑏, μm) 15.31.7 9.3–21.8 1,375 

a/b 1.30.2 1.0–2.7 1,375 

Area of fitted ellipse (AE, μm2) 961.8195.3 506.2–2016.9 1,375 

Area of the maximal inscribed polygon of 

fitted ellipse (A𝑀𝐼𝑃, μm2) 

788.2172.0 343.2–1,667.9 1,375 

Area of cell (A𝐶, μm2) 706.0149.0 303.9–1,512.6 1,375 

A𝐶/A𝑀𝐼𝑃 0.90.1 0.5–1.0 1,375 
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Figure 1 Geometry of polygonal cell and fitted ellipse. (A) Coordinates of vertexes of a polygonal cell 

and fitted ellipse. The ellipse was plotted using Software R with package Conics (Chernov et al. 2014). 

(B) A diagram shows semi-major-axis 𝑎, semi-minor-axis 𝑏, angle between line VC and X-axis 𝛿, 

angle of tilt of the major axis 𝜃, distance between center of ellipse and vertex of polygonal cell D𝑉𝐶, 

distance from center of ellipse to the cross point of line VC and fitted ellipse 𝑅. 
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Figure 2 Relationships between 𝑛, A𝐶, A𝑀𝐼𝑃 and AE. (A) Relationships between number of cell 

edges 𝑛, area of cell A𝐶, area of the maximal inscribed polygon A𝑀𝐼𝑃, and area of fitted ellipse AE. 

Big symbols represent the average values of A𝐶, A𝑀𝐼𝑃 and AE, while small symbols represent the raw 

data (1,375 cells were analyzed). (B) Relationship between 𝑛 and ratio of a/b. (C) Relationship 

between 𝑛 and ratio of A𝑀𝐼𝑃/A𝐸. (D) Relationship between A𝐶 and A𝑀𝐼𝑃 (1,375 cells were 

analyzed). (E) Relationship between A𝐶 and AE (1,375 cells were analyzed). 
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Figure 3 Cell division obeys ellipse packing. (A) Red dash line represents that division of the maximal 

inscribed 6-gon divided the cell along the minor axis of ellipse, and produced two equal-sized 

daughters. Blue dash line shows that an edge was separated by a new vertex which produced three new 

angles (bottom). (B) Ellipse packing would turns the daughters into maximal inscribed 5-gons (top left) 

by allometric growth of cell edges, meanwhile the neighboring 7-gon also need to be turned into EMIP 

(top right). To minimize the total disturbs on the three angles, the turning angle in neighboring cell 

should be 34.1º (bottom). (C) Three angles around each vertex tended to be 120º. The ratios of a/b of 

all ellipses were set to an average value of 1.3.   
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Figure 4 Examinations of relations of Lewis’s law and Aboav-Weaire’s law. (A) Relationship between 

real and calculated number of neighboring cells 𝑚 of a 𝑛-edged cell (211 cells were examined). The 

Eq. (11), (14) and (15) were used to calculate 𝑚. (B) Relationship between real and calculated area of 

a 𝑛-edged polygonal cell (1,375 cells were examined). The Eq. (13) was used to calculated cell area. 
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