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Causality testing methods are being widely used in various disciplines of science. Model-

free methods for causality estimation are very useful as the underlying model generating

the data is often unknown. However, existing model-free measures assume separability of

cause and effect at the level of individual samples of measurements and unlike model-

based methods do not perform any intervention to learn causal relationships. These

measures can thus only capture causality which is by the associational occurrence of

8cause9 and 8effect9 between well separated samples. In real-world processes, often 8cause9

and 8effect9 are inherently inseparable or become inseparable in the acquired

measurements. We propose a novel measure that uses an adaptive interventional scheme

to capture causality which is not merely associational. The scheme is based on

characterizing complexities associated with the dynamical evolution of processes on short

windows of measurements. The formulated measure, Compression- Complexity Causality

is rigorously tested on simulated and real datasets and its performance is compared with

that of existing measures such as Granger Causality and Transfer Entropy. The proposed

measure is robust to presence of noise, long-term memory, filtering and decimation, low

temporal resolution (including aliasing), non-uniform sampling, finite length signals and

presence of common driving variables. Our measure outperforms existing state-of-the-art

measures, establishing itself as an effective tool for causality testing in real world

applications.
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ABSTRACT8

Causality testing methods are being widely used in various disciplines of science. Model-free methods

for causality estimation are very useful as the underlying model generating the data is often unknown.

However, existing model-free measures assume separability of cause and effect at the level of individual

samples of measurements and unlike model-based methods do not perform any intervention to learn

causal relationships. These measures can thus only capture causality which is by the associational

occurrence of ‘cause’ and ‘effect’ between well separated samples. In real-world processes, often

‘cause’ and ‘effect’ are inherently inseparable or become inseparable in the acquired measurements. We

propose a novel measure that uses an adaptive interventional scheme to capture causality which is not

merely associational. The scheme is based on characterizing complexities associated with the dynamical

evolution of processes on short windows of measurements. The formulated measure, Compression-

Complexity Causality is rigorously tested on simulated and real datasets and its performance is compared

with that of existing measures such as Granger Causality and Transfer Entropy. The proposed measure

is robust to presence of noise, long-term memory, filtering and decimation, low temporal resolution

(including aliasing), non-uniform sampling, finite length signals and presence of common driving variables.

Our measure outperforms existing state-of-the-art measures, establishing itself as an effective tool for

causality testing in real world applications.
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1 INTRODUCTION25

The ‘Ladder of Causation’ very rightly arranges hierarchically the abilities of a causal learner (Pearl and26

Mackenzie, 2018). The three levels proposed are 1.Association, 2. Intervention and 3. Counterfactuals,27

when arranged from the lower rung to the higher rung. Currently, causality learning and inferring28

algorithms using only data are still stuck at the lowermost rung of ‘Association’.29

Measures such as Granger Causality (GC) (Granger, 1969) and its various modifications (Dhamala30

et al., 2008; Marinazzo et al., 2008), as well as, Transfer Entropy (TE) (Schreiber, 2000) that are widely31

being used across various disciplines of science — neuroscience (Seth et al., 2015; Vicente et al., 2011),32

climatology (Stips et al., 2016; Mosedale et al., 2006), econometrics (Hiemstra and Jones, 1994; Chiou-33

Wei et al., 2008), engineering (Bauer et al., 2007) etc., are claimed to be ‘model-free’ measures of causality.34

This is because they have a wider scope compared to specific model assumptions made by methods such35

as Dynamical Causal Modeling (Friston et al., 2003) and Structural Equation Modeling (Pearl, 2009).36

However, the assumptions made by these methods are often ignored in practice resulting in erroneous37

causality estimates on real world datasets. These measures can accurately quantify the degree of coupling38

between the given time series only if assumptions (such as linearity, stationarity and presence of Gaussian39

noise in case of GC and stationarity, markovian in case of TE) are satisfied. Thus, these methods, when40

correctly applied, can infer the presence of causality when it is by ‘association’ alone and not due to higher41

levels on the Ladder of Causation. To explain this better, consider a case where the ‘cause’ and ‘effect’42

are inseparable. This can happen even when the time series satisfies stationarity but is non-markovian43

or in several instances when it is non-stationary. In fact, the stated assumptions are quite unlikely to be44

met in practice considering that acquired data are typically samples of continuous/discrete evolution of45

real world processes. These processes might be evolving at spatio-temporal scales very different from the46
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scales of measurements. As a result, cause and effect may co-exist in a single measurement or overlap47

over blocks of measurements thus making them inseparable. In such a scenario, it would be incorrect48

to estimate causality by means of correlations and/or joint probabilities which implicitly assumes the49

separability of ‘cause’ and ‘effect’. Both GC and TE make this assumption of separability. Circularly,50

to characterize a time series sample as purely a ‘cause’ or an ‘effect’ is possible only if there is a clear51

linear/markovian separable relationship. When cause and effect are inseparable, ‘associational’ measures52

of causality such as GC and TE are insufficient and we need a method to climb up the ladder of causation.53

Intervention based approaches to causality rank higher than association. It involves not just observing54

regularities in the data but actively changing what is there and observing its effect. In other words, we55

are asking the question — what will happen if we ‘do’ something? Given only data and not the power to56

intervene on the experimental set up, intervention can only be done by building strong, accurate models.57

Model-based causality testing measures, alluded to before, will fall in this category. They invert the model58

to obtain its various parameters, and then intervene to make predictions about situations for which data is59

unavailable. However, these methods are very domain specific and the models require specific knowledge60

about the data. With insufficient knowledge about the underlying model which generated the data, such61

methods are inapplicable.62

Given only data that has already been acquired without any knowledge of its generating model or63

the power to intervene on the experimental/real-world setting, we can ask the question — what kind of64

intervention is possible (if at all) to infer causality? The proposed ‘interventional causality’ approach will65

not merely measure ‘associational causality’ because it does not make the assumption that the cause and66

its effect are present sample by sample (separable) as is done by existing model-free, data based methods67

of causality estimation.68

Even in cases where cause and its effect are inseparable, which is probably true for most real-69

world processes, the change in the dynamics of the processes would contain information about causal70

influences between them. With this understanding, we propose the novel idea of data-based, model-71

free Interventional Complexity Causality (ICC). In this paper, we formalize the notion of ICC using72

Compression-Complexity to define Compression-Complexity Causality (CCC). CCC shows some73

interesting properties. We test CCC on simulated and real datasets and compare its performance with74

existing model-free causality methods. Our results demonstrate that CCC overcomes the limitations of75

‘associational’ measures (GC and TE).76

This paper is organized as follows. The idea of Dynamical Complexity and its specific realization77

Dynamical Compression-Complexity are discussed in Section 2. Interventional Complexity Causality78

and its specific case Compression-Complexity Causality (CCC) are discussed in Section 3. How positive79

and negative CCC is a possibility and what is its implication on the kind of causal influence is detailed80

in Section 4. Results and Discussion on the performance of CCC and its comparison with the existing81

measures, GC and TE, are included in Section 5, followed by Conclusions and Future Work in Section 6.82

2 DYNAMICAL COMPLEXITY (DC) AND DYNAMICAL COMPRESSION-COMPLEXITY83

(CC)84

There can be scenarios where cause and effect co-exist in a single temporal measurement or blocks

of measurements. For example, this can happen (a) inherently in the dynamics of the generated pro-

cess, (b) when cause and effect occur at different spatio-temporal scales, (c) when measurements are

acquired at a scale different from the spatio-temporal scale of the cause-effect dynamics (continuous

or discrete). In such a case, probabilities of joint occurrence is too simplistic an assumption to capture

causal influences. On the other hand, the very existence of causality here is actually resulting in a change

of joint probabilities/correlations which cannot be captured by an assumption of static probabilities.

To overcome this problem, we capture causality using the idea of dynamical complexity. Inseparable

causal influences within a time series (or between two time series) would be reflected in their dynamical

evolution. Dynamical Complexity (DC) of a single time series X is defined as below -

DC(∆X |Xpast) =C(Xpast +∆X)2C(Xpast), (1)

where ∆X is a moving window of length w samples and Xpast is a window consisting of immediate85

past L samples of ∆X . ‘+’ refers to appending, for e.g., for time series A = [1,2,3] and B = [p,q], then86

A+B = [1,2,3, p,q]. C(X) refers to complexity of time series X . DC, thus varies with the temporal index87

of ∆X and can be averaged over the entire time series to estimate its average DC.88
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It is important to note that dynamical complexity is very different from complexity rate (CR), which

can be estimated as follows -

CR(∆X |Xpast) =C(Xpast ,∆X)2C(Xpast), (2)

where C(Xpast ,∆X) is the joint complexity of Xpast and ∆X . Complexity rate can be seen as a generalization89

of Shannon entropy rate (Cover and Thomas, 2012), the difference being that the former can be computed90

using any notion of complexity, not just entropy. As is evident from the equation, CR is estimated based91

on the joint occurrences of ∆X and Xpast , while DC captures temporal change in complexities on the92

evolution of the process. In case of inseparability of cause and effect, it would be inappropriate to use CR93

to infer causal relationships.94

Now for this notion of “complexity”, that has been referred to in this section several times, there is no95

single unique definition. As noted in Nagaraj and Balasubramanian (2017b), Shannon entropy (Cover and96

Thomas, 2012) is a very popular and intuitive measure of complexity. A low value of Shannon entropy97

indicates high redundancy and structure (low complexity) in the data and a high value indicates low98

redundancy and high randomness (high complexity). For ergodic sources, owing to Shannon’s noiseless99

source coding theorem (Cover and Thomas, 2012), (lossless) compressibility of the data is directly related100

to Shannon entropy. However, robustly estimating compressibility using Shannon entropy for short101

and noisy time series is a challenge (Nagaraj and Balasubramanian, 2017a). Recently, the notion of102

compression-complexity has been introduced (Nagaraj and Balasubramanian, 2017a) to circumvent this103

problem. Compression-complexity defines the complexity of a time series by using optimal lossless data104

compression algorithms. It is well acknowledged that data compression algorithms are not only useful105

for compression of data for efficient transmission and storage, but also act as models for learning and106

statistical inference (Cilibrasi et al., 2007). Lempel-Ziv (LZ) Complexity (Lempel and Ziv, 1976) and107

Effort-To-Compress (ETC) (Nagaraj et al., 2013) are two measures which fall in this category.108

As per the minimum description length principle (Rissanen, 1978) that formalizes the Occam’s109

razor, the best hypothesis (model and its parameters) for a given set of data is the one that leads to its110

best compression. Extending this principle for causality, an estimation based on dynamical complexity111

(compressibility) of time series would be the best possible means to capture causally influenced dynamics.112

Out of the complexity measures discussed before, ETC seemed to be most suitable for estimation of113

dynamical complexity. ETC is defined as the effort to compress the input sequence using the lossless114

compression algorithm known as Non-sequential Recursive Pair Substitution (NSRPS). It has been115

demonstrated that both LZ and ETC outperform Shannon entropy in accurately characterizing the116

dynamical complexity of both stochastic (Markov) and deterministic chaotic systems in the presence of117

noise (Nagaraj and Balasubramanian, 2017a,b). Further, ETC has shown to reliably capture complexity of118

very short time series where even LZ fails (Nagaraj and Balasubramanian, 2017a), and for analyzing short119

RR tachograms from healthy young and old subjects (Balasubramanian and Nagaraj, 2016).120

In order to faithfully capture the process dynamics, DC is required to be estimated on overlapping121

short-length windows of time series data. Infotheoretic quantities (like shannon entropy) which are based122

on computation of probability densities are not the ideal choice here (owing to finite-length effects).123

Compression-Complexity measures are more appropriate choices. Because of the advantages of ETC over124

LZ mentioned above, we use ETC to formulate our measure of causality discussed in the next section.125

3 INTERVENTIONAL COMPLEXITY CAUSALITY (ICC) AND COMPRESSION-126

COMPLEXITY CAUSALITY (CCC)127

To measure how the dynamics of a process Y influence the dynamics of a process X , we intervene to create

new hypothetical blocks of time series data, Ypast +∆X , where Ypast is a window of length L samples,

taken from the immediate past of the window ∆X . These blocks are created by ‘surgery’ and do not exist

in reality in the data collected. Interventional Complexity Causality (ICC) is defined as the change in

the dynamical complexity of time series X when ∆X is seen to be generated jointly by the dynamical

evolution of both Ypast and Xpast as opposed to by the reality of the dynamical evolution of Xpast alone.

Mathematically,

ICCYpast³∆X = DC(∆X |Xpast)2DC(∆X |Xpast ,Ypast), (3)

where DC(∆X |Xpast) is as defined in Eq. 1 and DC(∆X |Xpast ,Ypast) is as elaborated below:

DC(∆X |Xpast ,Ypast) =C(Xpast +∆X ,Ypast +∆X)2C(Xpast ,Ypast), (4)
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where C(·, ·) refers to joint complexity. ICC varies with the moving temporal window ∆X and its128

corresponding Ypast , Xpast . To estimate the average causality from time series Y to X , ICCYpast³∆X129

obtained for all ∆Xs are averaged.130

The above is the generic description of ICC that can be estimated using any complexity measure.

For the reasons discussed in Section 2, we would like to estimate ICC using the notion of Dynamical

Compression-Complexity estimated by the measure ETC. The measure would then become Interventional

Compression-Complexity Causality. For succinctness, we refer to it as Compression-Complexity Causality

(CCC). To estimate CCC, time series blocks Xpast , Ypast , Xpast +∆X , and surgically created Ypast +∆X are

separately encoded (binned) — converted to a sequence of symbols using ‘B’ uniformly sized bins for the

application of ETC1. For the binned time series blocks, Xpast , Ypast , Xpast +∆X , Ypast +∆X , to determine

whether Ypast caused ∆X or not, we first compute dynamical compression-complexities, denoted by CC,

CC(∆X |Xpast) = ETC(Xpast +∆X)2ETC(Xpast), (5)

CC(∆X |Xpast ,Ypast) = ETC(Xpast +∆X ,Ypast +∆X) 2ETC(Xpast ,Ypast), (6)

Eq. 5 gives the dynamical compression-complexity of ∆X as a dynamical evolution of Xpast alone. Eq. 6131

gives the dynamical compression-complexity for ∆X as a dynamical evolution of both Xpast and Ypast .132

ETC(·) and ETC(·, ·) refer to individual and joint effort-to-compress complexities (see Section 1 of133

supplementary material). For estimating ETC from these small blocks of data, short-term stationarity of134

X and Y is assumed.135

We now define Compression-Complexity Causality CCCYpast³∆X as:

CCCYpast³∆X =CC(∆X |Xpast)2CC(∆X |Xpast ,Ypast). (7)

Averaged CCC from Y to X over the entire length of the time series with the window ∆X being slided

by a step-size of δ is estimated as —

CCCY³X =CCCYpast³∆X =CC(∆X |Xpast)2CC(∆X |Xpast ,Ypast), (8)

If CC(∆X |Xpast ,Ypast)jCC(∆X |Xpast), then CCCY³X is statistically zero, implying no causal influ-136

ence from Y to X . If CCCY³X is statistically significantly different from zero, then we infer that Y causes137

X . A higher magnitude of CCCY³X implies a higher degree of causation from Y to X . The length of138

Xpast ,Ypast , L is chosen by determining the correct intervention point. This is the temporal scale at which139

Y has a dynamical influence on X . Detailed criteria and rationale for estimating L and other parameters140

used in CCC estimation — w (length of ∆X), δ and B for any given pair of time series are discussed in141

Section 3 of the supplementary material.142

For multivariate data, CCC can be estimated in a similar way by building dictionaries that encode

information from all variables. Thus, to check conditional causality from Y to X amidst the presence of

other variables (say Z and W ), two time varying dictionaries are built — D that encodes information from

all variables (X , Y , Z, W ) and D2 that encodes information from all variables except Y (X , Z, W only).

Once synchronous time series blocks from each variable are binned, the dictionary at that time point is

constructed by obtaining a new sequence of symbols, with each possible combination of symbols from all

variables being replaced by a particular symbol. The mechanism for construction of these dictionaries are

discussed in Section 2 of the supplementary material. Subsequently, dynamical compression-complexities

are computed as:

CC(∆X |D2
past) = ETC(D2

past +∆X)2ETC(D2
past), (9)

CC(∆X |Dpast) = ETC(Dpast +∆X) 2ETC(Dpast), (10)

where D2
past +∆X represents the lossless encoding of joint occurrences of binned time series blocks143

Xpast +∆X , Zpast +∆X , Wpast +∆X and D2
past refers to the lossless encoding of joint occurrences of144

binned time series blocks Xpast , Zpast and Wpast . Similarly, Dpast +∆X represents the lossless encoding of145

joint occurrences of binned time series blocks Xpast +∆X , Ypast +∆X ,Zpast +∆X , Wpast +∆X and Dpast146

refers to the the lossless encoding of joint occurrences of binned time series blocks Xpast , Ypast , Zpast and147

Wpast .148

1Henceforth, the same variables are used to denote the binned/encoded versions of the blocks.
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Conditional Compression-Complexity Causality, CCCYpast³∆X |Zpast ,Wpast
, is then estimated as the

difference of Eq. 9 and Eq. 10. Averaged Conditional Compression Complexity-Causality over the entire

time series with the window ∆X being slided by a step-size of δ is given as below:

CCCY³X |Z,W =CC(∆X |D2)2CC(∆X |D). (11)

4 POSITIVE AND NEGATIVE CCC149

The dynamical compression-complexities estimated for the purpose of CCC estimation, CC(∆X |Xpast) and150

CC(∆X |Xpast ,Ypast), can be either positive or negative. For instance, consider the case when CC(∆X |Xpast)151

becomes negative. This happens when ETC(Xpast +∆X) is less than ETC(Xpast), which means that with152

the appending of ∆X , the sequence Xpast has become more structured resulting in reduction of its153

complexity. The value of CC(∆X |Xpast) is positive when appending of ∆X makes Xpast less structured154

(hence more complex). Similarly, CC(∆X |Xpast ,Ypast) can also become negative when ETC realizes Xpast +155

∆X , Ypast +∆X to be more structured than Xpast , Ypast . When the opposite is true, CC(∆X |Xpast ,Ypast) is156

positive.157

Because of the values that CC(∆X |Xpast) and CC(∆X |Xpast ,Ypast) can take, CCCYpast³∆X can be both158

positive or negative. How different cases result with different signs of the two quantities along with their159

implication on CCC is shown in Table 1.160

From the table we see that the sign of CCCYpast³∆X signifies the ‘kind of dynamical influence’ that161

Ypast has on ∆X , whether this dynamical influence is similar to or different from that of Xpast on ∆X . When162

CCCYpast³∆X is 2ve, it signifies that Ypast has a different dynamical influence on ∆X than Xpast . On the163

contrary, when CCCYpast³∆X is +ve, it signifies that Ypast has a dynamical influence on ∆X that is similar164

to that of Xpast . On estimating the averaged CCC from time series Y to X , expecting that CCCYpast³∆X165

values do not vary much with time, we can talk about the kind of dynamical influence that time series Y166

has on X . For weak sense stationary processes, it is intuitive that the influence of Y on X would be very167

different from that on X due to its own past when the distributions of coupled time series Y and X are168

very different.169

We verify this intuition by measuring probability distribution distances2 between coupled processes Y170

and X using symmetric Kullback-Leibler Divergence (KL) and Jensen-Shannon Divergence (JSD). The171

trend of values obtained by these divergence measures is compared with the trend of CCC for different172

cases such as when CCC is positive or negative.173

Coupled autoregressive (AR) processes were generated as per Eq. 15. Also, linearly and non-linearly174

coupled tent maps were generated as per Eq. 17, 18 and Eq. 17, 19 respectively. Symmetric KL and JSD175

between distribution P and Q of coupled processes are estimated as per Eq. 12 and 14 respectively.176

DSymm KL(P,Q) = DKL(P�Q)+DKL(Q�P), (12)

where,177

DKL(P�Q) = ∑
i

P(i) log

(

P(i)

Q(i)

)

,

DKL(Q�P) = ∑
i

Q(i) log

(

Q(i)

P(i)

)

.

(13)

JSD(P � Q) =
1

2
D(P � M)+

1

2
D(Q � M), (14)

where, M = 1
2
(P+Q). KL and JSD values are in unit of nats.178

Curves for KL, JSD and CCC estimated for increasing coupling between AR processes of order 1,179

linearly coupled tent maps and non-linearly coupled tent maps are shown in Figures 1, 2 and 3 respectively.180

The values displayed represent the mean over 50 trials. As the degree of coupling is varied for AR181

2It should be mentioned that strictly speaking KL and JSD are not distance measures since they don’t satisfy the triangle

inequality.
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Table 1. Sign of Dynamical Compression-Complexities, CC(∆X |Xpast) and CC(∆X |Xpast ,Ypast), and

their resulting implication on the sign of estimated Compression Complexity-Causality, CCCYpast³∆X .

CC(∆X |Xpast)

CC(∆X |Xpast ,Ypast)

2ve +ve

2ve

Xpast +∆X was more structured than

Xpast . Further, two cases arise. 1.

When |CC(∆X |Xpast)|>
|CC(∆X |Xpast ,Ypast)|,

CCCYpast³∆X < 0. Here, intervention

by Ypast in the joint case degraded

the structure by bringing patterns

different from Xpast . Dynamical

influence of Ypast on ∆X is very

different from the dynamical influence

of Xpast on ∆X . e.g.: CCC from

independent tent map to dependent

tent map.

2. When |CC(∆X |Xpast)|<
|CC(∆X |Xpast ,Ypast)|,

CCCYpast³∆X > 0. Intervention by

Ypast in the joint case enhanced the

structure by bringing patterns similar

to Xpast . Dynamical influence of Ypast

on ∆X is very similar to the dynamical

influence of Xpast on ∆X .e.g.: CCC

from independent autoregressive (AR)

process to dependent AR process.

CCCYpast³∆X is 2ve always.

Xpast +∆X was more structured than

Xpast . Intervention by Ypast in the joint

case degraded the structure.

Dynamical influence of Ypast on ∆X is

very different from the dynamical

influence of Xpast on ∆X . e.g.: CCC

from independent tent map to

dependent tent map.

+ve

CCCYpast³∆X is +ve always.

Xpast +∆X was less structured than

Xpast . Intervention by Ypast in the joint

case enhanced the structure by

bringing patterns similar to Xpast .

Dynamical influence of Ypast on ∆X is

very similar to the dynamical

influence of Xpast on ∆X .

Xpast +∆X was less structured than

Xpast . Further, two cases arise. 1.

When |CC(∆X |Xpast)|>
|CC(∆X |Xpast ,Ypast)|,

CCCYpast³∆X > 0. Here, intervention

by Ypast in the joint case enhanced

the structure by bringing patterns

similar to Xpast . Dynamical influence

of Ypast on ∆X is very similar to the

dynamical influence of Xpast on ∆X .

2. When |CC(∆X |Xpast)|<
|CC(∆X |Xpast ,Ypast)|,

CCCYpast³∆X < 0. Intervention by

Ypast in the joint case degraded the

structure by bringing patterns

different from Xpast . Dynamical

influence of Ypast on ∆X is very

different from the dynamical influence

of Xpast on ∆X .
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processes, there is no clear pattern in KL and JSD values. The CCC values increase in the positive182

direction as expected for increasing coupling, signifying that the dynamical influence from Y to X is183

similar to the influence on X from its own past. Also, when we took larger number of trials for AR, the184

values obtained by KL and JSD become confined to a smaller range and seem to converge towards a185

constant value indicating that the distributions of X and Y are quite similar. However, in case of coupled186

tent maps, as coupling is increased, the divergence between the distributions of the two coupled processes187

increases, indicating that their distributions are becoming very different. The values of CCC grow in the188

negative direction showing that with increasing coupling the independent process Y has a very different189

dynamical influence on X compared to X’s own past. Subsequently, due to the synchronization of Y and190

X , KL, JSD as well as CCC become zero. With these graphs, it may not be possible to find an universal191

threshold for the absolute values of KL/JSD above which CCC will show negative sign. However, if the192

distributions of the two coupled processes exhibit an increasing divergence (when the coupling parameter193

is varied) then it does indicate that the independent process would have a very different dynamical194

influence on the dependent one when compared with that of the dependent process’ own past suggesting195

that the value of CCC will grow in the negative direction. The fact that KL/JSD and CCC do not have a196

one-to-one correspondence is because the former (KL and JSD) operate on first order distributions while197

the later (CCC) is able to capture higher-order dynamical influences between the coupled processes. For198

non-stationary processes, our measure would still be able to capture the kind of dynamical influence,199

though distributions are not static.200
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Figure 1. (color online). Divergence between distributions of coupled AR(1) processes using

Symmetric Kullback-Leibler (KL) and Jensen Shannon (JSD) divergences (in nats), and the causality

estimated using CCC from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta), as

the degree of coupling, ε is varied. CCC values increase with increasing ε . There is no similarity in the

trend of KL/JSD to CCC.
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Figure 2. (color online). Distance between distributions of linearly coupled tent maps using Symmetric

Kullback Leibler (KL) and Jensen Shannon (JSD) divergences (in nats), and the causality estimated using

CCC from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta), as the degree of

coupling, ε is varied. For ε < 0.5, CCC and KL/JSD are highly negatively correlated.

Both positive and negative CCC implies significant causal influence (CCCj0 implies either no causal201

influence or identical processes), but the nature of the dynamical influence of the cause on the effect is very202

different in these two cases. Causality turning ‘negative’ does not seem very intuitive at first, but all that it203

signifies is that the past of the cause variable makes the dynamics of the effect variable less unpredictable204
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Figure 3. (color online). Distance between distributions of non-linearly coupled tent maps using

Symmetric Kullback Leibler (KL) and Jensen Shannon (JSD) divergences (in nats), and the causality

estimated using CCC from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta), as

the degree of coupling, ε is varied. For ε < 0.5, CCC and KL/JSD are highly negatively correlated.

than its (effect’s) own past. Such a unique feature could be very useful for real world applications in terms205

of ‘controlling’ the dynamics of a variable being effected by several variables. If a particular cause, out of206

several causes that makes the caused ‘less predictable’ and has ‘intrinsically different’ dynamics from that207

of the effect, needs to be determined and eliminated, it can be readily identified by observing the sign of208

CCC. Informed attempts to inhibit and enforce certain variables of the system can then be made.209

As the existing model-free methods of causality can extract only ‘associational causality’ and ignore210

the influence that the cause has on dynamics of the caused, it is impossible for them to comment on the211

nature of this dynamical influence, something that CCC is uniquely able to accomplish. Obviously, model212

based methods give full-fledged information about ‘the kind of dynamical influence’ owing to the model213

equations assumed. However, if there are no equations assumed (or known), then the sign and magnitude214

of CCC seems to be the best choice to capture the cause-effect relationship with additional information on215

the similarity (or its lack of) between the two dynamics.216

5 RESULTS AND DISCUSSION217

A measure of causality to be robust for real data needs to perform well in the presence of noise, filtering,218

low temporal and amplitude resolution, non-uniformly sampled signals, short length time series as well as219

presence of other causal variables in the system. In this section, we rigorously simulate these cases and220

evaluate the performance of CCC measure by comparing with existing measures — Granger Causality221

(GC) and Transfer Entropy (TE). In the last sub-section, we also test CCC on real-world datasets. In222

all cases, we take the averaged value of CCC over entire time series as computed by Eq. 11 and the223

parameters for CCC estimation are chosen as per the selection criteria and rationale discussed in Section 3224

of the supplementary material. GC estimation is done using the MVGC toolbox (Barnett and Seth, 2014)225

in its default settings and TE estimation is done using MuTE toolbox (Montalto et al., 2014). Akaike226

Information Criteria is used for model order estimation with the maximum model order set to 20 in the227

MVGC toolbox, except where specified. In the MuTE toolbox, the approach of Non Uniform Embedding228

(NUE) for representation of the history of the observed processes and of Nearest Neighbor (NN) estimator229

for estimating the probability density functions is used for all results in this paper. The number of lags to230

consider for observed processes was set to 5 and the maximum number of nearest neighbors to consider231

was set to 10.232

5.1 Varying unidirectional coupling233

5.1.1 AR(1)234

Autoregressive processes of order one (AR(1)) were simulated as follows. X and Y are the dependent and

independent processes respectively.

X(t) = aX(t 21)+ εY (t 21)+ εX ,t

Y (t) = bY (t 21)+ εY,t ,
(15)

where a = 0.9, b = 0.8, t = 1 to 1000s, sampling period = 1s. ε is varied from 02 0.9 in steps of 0.1.235

Noise terms, εY ,εX = νη , where ν = noise intensity = 0.03 and η follows standard normal distribution.236
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Figure 4 shows the performance of CCC along with that of TE and GC as mean values over 50 trials,237

(CCC settings: L = 150, w = 15, δ = 80, B = 2).238
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Figure 4. (color online). Causality estimated using CCC, TE and GC for coupled AR(1) processes, from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of coupling, ε is

varied. CCC, TE as well as GC are able to correctly quantify causality.

With increasing coupling, the causality estimated by CCC and TE increases. For GC, however,239

causality increases with increasing coupling initially then settles to a constant value.240

5.1.2 AR(100)241

Autoregressive processes of order hundred (AR(100): X dependent, Y independent) were simulated as242

follows.243

X(t) = aX(t 21)+ εY (t 2100)+ εX ,t

Y (t) = bY (t 21)+ εY,t ,
(16)

where a = 0.9, b = 0.8, t = 1 to 1000s, sampling period = 1s. ε is varied from 02 0.9 in steps of 0.1.244

Noise terms, εY ,εX = νη , where ν = noise intensity = 0.03 and η follows standard normal distribution.245

Figure 5 shows the performance of CCC along with that of TE and GC, as mean values over 50 trials246

(CCC settings: L = 150, w = 15, δ = 80, B = 2). Maximum model order was set to 110 in the MVGC247

toolbox.248
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Figure 5. (color online). Causality estimated using CCC, TE and GC for coupled AR(100) processes,

from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of coupling,

ε is varied. Only CCC is able to reliably estimate the correct causal relationship for all values of ε .

CCC values increase steadily with increasing coupling for the correct direction of causation. TE fails249

as it shows higher causality from X to Y for all ε . GC performs poorly for low values of coupling. GC250

shows significant causality from Y to X only when ε g 0.7. Thus, causality in coupled AR processes with251

long-range memory can be reliably estimated using CCC and not using TE or GC.252

5.1.3 Tent Map253

Linearly and non-linearly coupled tent maps were simulated as per the following equations. Independent

process, Y , is generated as:

Y (t) = 2Y (t 21), 0 f Y (t 21)< 1/2,

Y (t) = 222Y (t 21), 1/2 f Y (t 21)f 1.
(17)
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The linearly coupled dependent process, X , is as below:

X(t) = εY (t)+(12 ε)h(t),

h(t) = 2X(t 21), 0 f X(t 21)< 1/2,

h(t) = 222X(t 21), 1/2 f X(t 21)f 1,

(18)

where ε is the degree of linear coupling.254

The non-linearly coupled dependent process, X , is as below:

X(t) = 2 f (t), 0 f f (t)< 1/2,

X(t) = 222 f (t), 1/2 f f (t)f 1,

f (t) = εY (t 21)+(12 ε)X(t 21),

(19)

where ε is the degree of non-linear coupling.255
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Figure 6. (color online). Causality estimated using CCC and TE for linearly coupled tent maps, from Y

to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of coupling is

increased. With increasing coupling (until synchronization), magnitude of CCC and TE values increases.

CCC values are negative while TE are positive.
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Figure 7. (color online). Causality estimated using CCC and TE for non-linearly coupled tent maps,

from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the degree of coupling

is increased. With increasing coupling (until synchronization), magnitude of CCC and TE values

increases. CCC values are negative while TE are positive.

The length of the signals simulated in both cases was 3000, i.e. t = 1 to 3000s, sampling period = 1s256

and the first 2000 transients were removed to yield 1000 points for causality estimation. Figure 6 shows257

the performance of CCC and TE for linearly coupled tent maps and Figure 7 shows the same for non258

linearly coupled tent maps as ε is varied (CCC settings: L = 100, w = 15, δ = 80, B = 8). The assumption259

of a linear model for estimation of GC was proved to be erroneous for most trials and hence GC values260

are not displayed. As ε is increased for both linear and non-linear coupling, T EY³X increases in the261

positive direction and then falls to zero when the two series become completely synchronized at ε = 0.6.262

The trend of the magnitude of CCC values is similar to TE, however, CCCY³X increment is in negative263
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direction. This is because of the fact that with increasing coupling the kind of dynamical influence from Y264

to X becomes increasingly different than the dynamical influence from the past values of X to itself.265

5.2 Varying process noise266

The performance of measures as the process noise is varied is shown in Figure 8 for coupled AR processes267

simulated as in Eq. 15, where a = 0.9, b = 0.8, ε = 0.8, t = 1 to 1000s, sampling period = 1s, number of268

trials = 50. Noise terms, εY ,εX = νη , where ν = noise intensity is varied from 0.01 to 0.1 and η follows269

standard normal distribution. CCC settings: L = 150, w = 15, δ = 80, B = 2.270
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Figure 8. (color online). Causality estimated using CCC, TE and GC for coupled AR processes, from Y

to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the intensity of noise, ν is

varied. All the three measures perform well in this case.

The performance of all three measures is fairly good in this case. Only GC values show a slightly271

increasing trend with increasing noise intensity.272

5.3 Decimated coupled signals with uniform sampling273

It is often the case that the rate of sampling of acquired measurements is not equal to the rate of generation274

of the process. Causal inferences are regularly made from such data (Smirnov and Bezruchko, 2012), for275

e.g., fMRI signals (Glover, 2011; Kim et al., 1997) as well as other neurophysiological recordings (de Abril276

et al., 2018), climate data (Moberg et al., 2005). Two sets of coupled AR processes were first simulated277

and subsequently decimated.278

Set 1 of AR processes, of order 1, were simulated as below:

Y (t) = 0.7Y (t 21)+ εY,t ,

X(t) = 0.9X(t 21)+0.8Y (t 21)+ εX ,t .
(20)

Set 2 of AR processes, of order 5, were simulated as below:

Y (t) = 0.7Y (t 25)+ εY,t ,

X(t) = 0.9X(t 25)+0.8Y (t 21)+ εX ,t ,
(21)

where, noise terms, εY ,εX = νη , where ν = noise intensity = 0.03 and η follows standard normal279

distribution. The original length of X and Y simulated in both the sets is 2000. Upon decimation, the280

length of the time series reduces. β represents the decimation factor that scales the sampling frequency.281

As β is varied from 1 to 0.5, sampling frequency is scaled from its original value to half its value.282

Set 1 of processes, being of order one, have low frequency components in the signal. As a result,283

even when β is reduced to 0.5, it does not lead to frequency folding in the spectrum of process Y and X .284

Frequency spectrum for a trial of X in this process is shown in Figure 9 for the original case and the case285

where β is reduced to 0.5. In case of Set 2, decimation of the signals Y and X leads to aliasing. This is286

because higher frequency components are present in the signals, leading to folding of these frequencies287

even as β is reduced to 0.8. The frequency spectrum for a trial of X for its non-decimated version and for288

decimation with β equal to 0.75 is shown in Figure 10.289

5.3.1 Equal decimation of independent and dependent signal290

When both signals Y and X from the two sets are decimated by scaling their sampling rate by an equal291

decimation factor, β , ranging from 1 to 0.5 at intervals of 0.05, the results obtained using the three292
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Figure 9. Frequency Spectrum of dependent AR(1) process from Set 1 without decimation (left) and

when decimation factor equals 0.5 (right). The process does not undergo aliasing on decimation.
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Figure 10. Frequency Spectrum of of dependent AR(5) process from Set 2 without decimation (left) and

when decimation factor equals 0.75 (right). The process undergoes aliasing on decimation.

methods, CCC, TE and GC are as shown in Figures 11 and 12. Figure 11 shows the results for Set 1293

while Figures 12 shows results for Set 2 as mean causality values estimated over 10 trials. CCC settings294

for both sets: L = 150, w = 15, δ = 80, B = 2.295
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Figure 11. (color online). Causality estimated using CCC, TE and GC for coupled AR processes from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the decimation factor β is

varied for both independent and dependent signal. The coupled AR processes simulated do not undergo

frequency aliasing. CCC and TE values are relatively stable compared to GC.

While the values of CCC are relatively consistent even upon decimation (with or without aliasing)296

those of TE are stable only in case of non-aliased decimation. For GC (in both cases) and TE (in the297

aliased case), even though there is no confounding of the causality direction, the magnitude of causality298

estimated is not consistent and reliable.299

300

5.3.2 Decimation of dependent signal301

When only signal X is decimated by scaling its sampling rate by a decimation factor β , ranging from 1302

to 0.5 at intervals of 0.05, the results obtained using the three methods CCC, TE and GC are as shown303

in Figures 13 and 14. Figure 13 shows the results for Set 1 while Figure 14 shows results for Set 2 as304

mean causality values estimated over 10 trials. For the length of the two signals to match, the independent305
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Figure 12. (color online). Causality estimated using CCC, TE and GC for coupled AR processes from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the decimation factor β is

varied for both independent and dependent signal. The coupled AR processes simulated become

frequency aliased. CCC values are stable compared to TE and GC.

signal considered is truncated at the length of the dependent signal. CCC settings for both sets: L = 150,306

w = 15, δ = 80, B = 2.307
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Figure 13. (color online). Causality estimated using CCC, TE and GC for coupled AR processes from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the decimation factor β is

varied for the dependent signal. The dependent AR process simulated does not undergo

frequency-aliasing. Only CCC can capture the correct direction and strength of coupling when β is

decreased.
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Figure 14. (color online). Causality estimated using CCC, TE and GC for coupled AR processes from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the decimation factor is

varied for the dependent signal. The dependent AR process simulated becomes frequency aliased. Only

CCC can capture the correct direction and strength of coupling when β is decreased.

In this scenario, for both non-aliased and aliased decimation, CCC estimates are much more stable308

and consistent (across β ) when compared to those of TE and GC, where confounding in the direction of309

causality results even upon slightest decimation. It is clear from these results that CCC is the most robust,310

reliable and consistent among the three causality measures.311
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5.4 Non uniform sampling312

Non-uniformly sampled/non-synchronous measurements are common in real-world physiological data313

acquisition due to jitters/motion-artifacts as well as due to the inherent nature of signals such as heart314

rate signals (Laguna et al., 1998). Also, in economics, the case of missing data is common (Baumöhl315

and Vỳrost, 2010). To realistically simulate such a scenario, non-uniform sampling was introduced by316

eliminating data from random locations of the dependent time series and then presenting the resulting317

series as a set with no knowledge of the time-stamps of the missing data. The percentage of non-uniform318

sampling/non-synchronous measurements (α) is the percentage of these missing data points.319

AR processes with non-uniformly sampled signals were simulated as per Eq. 15 with b = 0.7, a = 0.9,320

ε = 0.8. Noise terms, εY ,εX = νη , where ν = noise intensity = 0.03 and η follows standard normal321

distribution. Length of original time series, N = 2000, and is reduced upon increasing the percentage322

non-uniform sampling α . In order to match the lengths of the two time series, Y , the independent323

time series, is appropriately truncated to match the length of the dependent signal, X (this results in a324

non-synchronous pair of measurements). CCC settings used: L = 150, w = 15, δ = 80, B = 2. Mean325

causality estimated for 10 trials using the three measures with increasing increasing α , while ν = 0.03,326

are shown in Figure 15.327

Linearly coupled tent maps with non-uniformly sampled signals were simulated as per Eq. 17 and 18328

with ε = 0.3. Length of original time series, N = 2000, and is reduced upon increasing the percentage329

non-uniform sampling α . In order to match the lengths of the two time series, Y , the independent330

time series, is appropriately truncated to match the length of the dependent signal, X (this results in a331

non-synchronous pair of measurements). CCC settings used: L = 100, w = 15, δ = 80, B = 8. Mean332

causality estimated for 10 trials using the three measures with increasing increasing α , while ν = 0.03,333

are shown in Figure 16.334
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Figure 15. (color online). Causality estimated using CCC, TE and GC for coupled AR processes from

Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the percentage of

non-uniform sampling α is varied. CCC is the only measure that shows reliable, consistent and correct

estimates of causality.
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Figure 16. (color online). Causality estimated using CCC, TE and GC for coupled tent maps from Y to

X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as the percentage of non-uniform

sampling is varied. CCC is able to estimate the correct causality direction while TE and GC fail.

As the results clearly indicate, both TE and GC fail when applied to non-uniformly sampled coupled335

AR and tent map processes. CCC values are relatively invariant to non-uniform sampling and thus could336
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be employed in such scenarios.337

5.5 Filtering of Coupled Signals338

Acquired data preprocessing often involves low pass filtering to smooth out the signal (Teplan et al., 2002).339

At other times, high pass filtering is required to remove low frequency glitches from a high frequency340

signal. Also when the signals acquired are sampled at low frequencies, the effects due to decimation341

and filtering may add up and result in poorer estimates of causality. This is often the case in fMRI342

signals (Glover, 2011; Kim et al., 1997).343

To test these scenarios, causalities were estimated using the three measures when coupled AR processes344

simulated as per Eq. 21, are low pass filtered using a moving average window of length 3 with step size345

1. The results are shown in Table 2 as mean values over 10 trials. CCC settings used: L = 150, w = 15,346

δ = 80, B = 2. The performance of the measures when the coupled signals are decimated to a decimation347

factor of 0.5 and then low pass filtered are also included in the table. The length of the original signal348

simulated is 2000 and is reduced to 1998 upon filtering and to 998 upon filtering and decimation.349

Table 2. CCC, TE and GC estimates for coupled AR processes Y (independent) and X (dependent) as it

is, upon filtering and upon decimation and filtering

System
CCC TE GC

Y ³ X X ³ Y Y ³ X X ³ Y Y ³ X X ³ Y

Original 0.0908 -0.0041 0.2890 0.0040 0.3776 0.0104

Filtered 0.0988 0.0018 0.2398 0.0170 0.4787 0.0056

Decimated and Filtered 0.0753 0.0059 0.1270 0.0114 0.4321 0.0596

From the table, we see that CCC can distinguish the direction of causality in the original case as well350

as in the filtering and decimation plus filtering case. Erroneously, TE shows significant causality in the351

direction opposite to causation upon filtering as well as upon decimation and filtering and GC shows352

significant causality in the direction opposite to causation upon decimation and filtering. By this we can353

infer that CCC is highly suitable for practical applications which involve pre-processing such as filtering354

and decimation of measurements.355

5.6 Conditional CCC on short length MVAR system356

A system of three variables was simulated as per the following equations —357

Z(t) = 0.8Z(t 21)+ εZ,t ,

X(t) = 0.9X(t 21)+0.4Z(t 2100)+ εX ,t ,

Y (t) = 0.9Y (t 21)+0.8Z(t 2100)+ εY,t ,
(22)

where the noise terms, εZ ,εX ,εY = νη , ν = noise intensity = 0.03 and η follows standard normal358

distribution. Length of time series simulated was 300 and first 50 transients were removed to yield short359

length signals of 250 time points.360

The coupling direction and strength between variables X , Y , Z are shown in Figure 17(a). The mean361

values of causality estimated over 10 trials using CCC, TE and GC are shown in Figure 17 tables, (b), (c)362

and (d) respectively. CCC settings used: L = 150, w = 15, δ = 20, B = 2. In the tables, true positives363

are in green, true negatives in black, false positives in red and false negatives in yellow. CCC detects364

correctly the true positives and negatives. GC, detects the true positives but also shows some false positive365

couplings. TE, performs very poorly, falsely detecting negatives where coupling is present and also366

showing false positives where there is no coupling.367

5.7 Real Data368

CCC was applied to estimate causality on measurements from two real-world systems and compared369

with TE. System (a) comprised of short time series for dynamics of a complex ecosystem, with 71 point370
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(a) Connectivity

To

From
X Y Z

X 0 0.0029 0.0420

Y
-

0.0026
0 0.0885

Z 0.0022 0.0046 0

(b) CCC

To

From
X Y Z

X 0 0.0615 0.0023

Y 0.1122 0 0.0022

Z 0.0055 0.0205 0

(c) TE

To

From
X Y Z

X NaN 0.1566 0.0985

Y 0.0966 NaN 0.1052

Z 0.0045 0.0065 NaN

(d) GC

Figure 17. Causalities estimated using CCC, TE and GC for a system of three AR variables coupled as

in (a). True positives are in green, true negatives in black, false positives in red and false negatives in

yellow.

recording of predator (Didinium) and prey (Paramecium) populations, reported in Veilleux (1976) and371

originally acquired for Jost and Ellner (2000), with first 9 points from each series removed to eliminate372

transients (Figure 18(a)). Length of signal on which causality is computed, N = 62, CCC settings used:373

L = 40, w = 15, δ = 4, B = 8. CCC is seen to aptly capture the higher (and direct) causal influence from374

predator to prey population and lower influence in the opposite direction (see Figure 18). The latter is375

expected, owing to the indirect effect of the change in prey population on predator. CCC results are in376

line with that obtained using Convergent Cross Mapping (Sugihara et al., 2012). TE, on the other hand,377

fails to capture the correct causality direction.378

System (b) comprised of raw single-unit neuronal membrane potential recordings (V , in 10V) of squid379

giant axon in response to stimulus current (I, in V, 1V=5 µA/cm2), recorded in Paydarfar et al. (2006)380

and made available by Goldberger et al. (2000). We test for the causation from I to V for three axons (1381

trial each) labeled ‘a3t01’, ‘a5t01’ and ‘a7t01’, extracting 5000 points from each recording. Length of382

signal on which causality is computed, N = 5000, CCC settings used: L = 75, w = 15, δ = 50, B = 2.383

We find that CCCI³V is less than or approximately equal to CCCV³I and both values are less than zero384

for the three axons (Figure. 18), indicating negative causality in both directions. This implies bidirectional385

dependence between I and V . Each brings a different dynamical influence on the other when compared to386

its own past. TE fails to give consistent results for the three axons.387

6 CONCLUSIONS388

In this work, we have proposed a novel data-based, model-free intervention approach to estimate causality389

for given time series. The Interventional Complexity Causality measure (or ICC) based on capturing390

causal influences from the dynamical complexities of data is formalized as Compression-Complexity391

Causality (CCC) and is shown to have the following strengths —392

" CCC operates on windows of the input time series (or measurements) instead of individual samples.393

It does not make any assumption of the separability of cause and effect samples.394

" CCC doesn’t make any assumptions of stochasticity, determinism, gaussianity, stationarity, linearity395

or markovian property. Thus, CCC is applicable even on non-stationary/ non-linear/ non-gaussian/396

non-markovian, short-term and long-term memory processes, as well as chaotic processes. CCC397

characterizes causal relationship based on dynamical complexity computed from windows of the398

input data.399
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(a) Predator-Prey system. (b) Squid Axon system.

System Details
CCC TE

Y ³ X X ³ Y Y ³ X X ³ Y

Predator-

Prey

Y = Dn

X = Pn
0.116 -0.021 0.249 0.252

Squid

Y = Ia3t01

X =Va3t01
-0.142 -0.129 0 0.049

Axon
Y = Ia5t01

X =Va5t01
-0.142 -0.135 0.055 0.108

Y = Ia7t01

X =Va7t01
-0.153 -0.154 0.196 0.127

Figure 18. CCC, TE on real-world time series. Top (color online): (a) Time series showing population

of Didinium nasutum (Dn ) and Paramecium aurelia (Pn) as reported in Veilleux (1976), (b) Stimulus

current (I) and voltage measurements (V ) as recorded from a Squid Giant Axon (‘a3t01’) in Paydarfar

et al. (2006). Bottom: Table showing CCC and TE values as estimated for systems (a) and (b).

" CCC is uniquely and distinctly novel in its approach since it does not estimate ‘associational’400

causality (first rung on Ladder of Causation) but performs ‘intervention’ (second rung on the Ladder401

of Causation) to capture causal influences from the dynamics of the data.402

" The point of ‘intervention’ (length L for creating the hypothetical data: Ypast +∆X) is dependent403

on the temporal scale at which causality exists within and between processes. It is determined404

adaptively based on the given data. This makes CCC a highly data-driven/data-adaptive method405

and thus suitable for a wide range of applications.406

" Infotheoretic-based causality measures such as TE and others need to estimate joint probability407

densities which are very difficult to reliably estimate with short and noisy time series. On the other408

hand, CCC uses Effort-To-Compress (ETC) complexity measure over short windows to capture409

time-varying causality and it is well established in literature that ETC outperforms infotheoretic410

measures for short and noisy data (Nagaraj and Balasubramanian, 2017a; Balasubramanian and411

Nagaraj, 2016).412

" CCC can be either positive or negative (unlike TE and GC). By this unique property, CCC gives413

information about the kind of causal influence that is brought by one time series on another, whether414

this influence is similar (CCC > 0) to or different (CCC < 0) from the influence that the series415

brings to its own present.416

" Negative CCC could be used for ‘control’ of processes by intervening selectively on those variables417

which are dissimilar (CCC < 0)/similar (CCC > 0) in terms of their dynamics.418

" CCC is highly robust and reliable, and overcomes the limitations of existing measures (GC and TE)419

in case of signals with long-term memory, low temporal resolution, noise, filtering, non-uniform420
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sampling (non-synchronous measurements), finite length signals, presence of common driving421

variables as well as on real datasets.422

We have rigorously demonstrated the superior performance of CCC in this work. Given the above423

listed novel properties of CCC and its unique model-free, data-driven, data-adaptive intervention-based424

approach to causal reasoning, it has the potential to be applied in a wide variety of real-world applications.425

Future work would involve testing the measure on simulated networks with complex interactions as well426

as more real world datasets. We would like to further explore the idea of negative CCC and check its427

relation to Lyaupnov exponent (for chaotic systems) which can characterize the degree of chaos in a428

system. It is also worthwhile to explore the performance of other complexity measures such as Lempel-Ziv429

complexity for the proposed Interventional Complexity Causality.430

We provide free open access to the CCC MATLAB toolbox developed as a part of this work. See431

Section 4 of supplementary material for details.432

SUPPLEMENTARY MATERIALS433

Supplementary text and code are made available.434

ACKNOWLEDGMENTS435

The authors would like to gratefully acknowledge the financial support of Tata Trusts and Cognitive436

Science Research Initiative (CSRI-DST) Grant No. DST/CSRI/2017/54. A. Kathpalia is thankful to437

Manipal Academy of Higher Education for permitting this research as part of the PhD programme.438

REFERENCES439

Balasubramanian, K. and Nagaraj, N. (2016). Aging and cardiovascular complexity: effect of the length440

of RR tachograms. PeerJ, 4:e2755.441

Barnett, L. and Seth, A. K. (2014). The mvgc multivariate granger causality toolbox: a new approach to442

granger-causal inference. Journal of neuroscience methods, 223:50–68.443

Bauer, M., Cox, J. W., Caveness, M. H., Downs, J. J., and Thornhill, N. F. (2007). Finding the direction444

of disturbance propagation in a chemical process using transfer entropy. IEEE transactions on control445

systems technology, 15(1):12–21.446
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