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ABSTRACT 35 

Borderline Personality Disorder (BPD) is a complex psychological condition characterised by 36 

affective instability, cognitive impairment, problematic behaviours and social dysfunction. Due 37 

to the variability in symptomatic profiles, efforts have recently been directed towards 38 

comprehending the disorder from a neurological standpoint within the aforementioned domains. 39 

Although adolescent-onset BPD is now reliably diagnosed as the adult-onset variant, a limited 40 

number of studies address the neural correlates of first presentation BPD. Moreover, research 41 

investigating the outcomes of therapeutic interventions on brain function and morphology is 42 

scarce. Preliminary findings consistently cite the involvement of grey matter deficiencies of the 43 

orbitofrontal cortex, hippocampus and amygdala in the neuropathology of BPD. Additionally, 44 

frontolimbic white matter deficits are thought to be implicated. Functionally, over-activity in 45 

limbic regions such as the cingulate cortices and amygdala are believed to partially account for 46 

emotion dysregulation though the neural correlates of cognitive, social and behavioural 47 

impairments are relatively poorly understood. The present review will endeavour to evaluate the 48 

existing neurobiological evidence for BPD in adolescence as well as adulthood. Finally, a 49 

rudimentary neurodevelopmental model of BPD will be proposed.  50 

 51 
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ABBREVIATIONS 65 

ACC – Anterior Cingulate Cortex 66 

AI – Anterior Insula 67 

BPD – Borderline Personality Disorder 68 

DBT – Dialectical Behavioural Therapy 69 

DMN – Default Mode Network 70 

DSM-IV – Diagnostic and Statistical Manual of Mental Disorders (4
th

 Edition) 71 

DTI – Diffusion Tensor Imaging 72 

FA – Fractional Anisotropy 73 

fMRI – Functional Magnetic Resonance Imaging  74 

IPS – Intraparietal Sulcus 75 

OFC – Orbitofrontal Cortex 76 

PET – Positron Emission Tomography 77 

PFC – Prefrontal Cortex 78 

RSFC – Resting State Functional Connectivity 79 

VBM – Voxel Based Morphometry 80 

 81 
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INTRODUCTION 95 

Epidemiological evidence estimates Borderline Personality Disorder (BPD) to have a lifetime 96 

prevalence of around 1% (Coid et al., 2006) with a larger proportion of women (approximately 97 

70%) affected than men (Lieb et al., 2004).  The disorder is characterised by impairment in the 98 

following areas: emotion regulation, cognitive function, behaviour and interpersonal 99 

relationships; the consequences of which can be fatal, with up to 10% of patients committing 100 

suicide (American Psychiatric Association Practice, 2001). According to the DSM-IV (American 101 

Psychiatric Association, 2013), suspected sufferers of the condition must present with five or 102 

more symptoms including, but not limited to: identity disturbance, impulsivity, explosive 103 

episodes and suicidality, for the diagnostic criteria of BPD to be met. It is therefore considered to 104 

be an extremely heterogenous disorder as there are effectively over 100 permissible symptom 105 

combinations which would qualify for a clinical diagnosis (Herbort et al., 2016). 106 

 107 

Typically, the onset of BPD is during early adulthood (American Psychiatric Association, 2013), 108 

though there is a growing body of evidence suggesting that symptoms of the disorder can be 109 

detected in adolescence with relatively high levels of reliability and validity (Chanen, Jovev et 110 

al., 2008). By identifying and treating the disorder at such an early stage; symptom severity can 111 

be reduced, leading to an overall improvement in functioning (Chanen, Velakoulis, et al., 2008). 112 

Furthermore, confounding variables such as treatment side effects and chronicity can be avoided 113 

by investigating the disorder in adolescence (Chanen, Velakoulis, et al., 2008). Despite the ever-114 

increasing plethora of research into the aetiology of BPD, longitudinal data on the progression of 115 

the disorder from adolescence to adulthood is scarce. 116 
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Concerning the aetiology of BPD, no definitive causal mechanism has been proposed but it is 117 

likely due to a result of complex interactions between several factors such as genetic 118 

predispositions, environmental stressors (for example, childhood adversity) and congenital or 119 

acquired neurobiological changes (Kaess et al., 2014). The latter is of particular interest owing to 120 

the wealth of research into the neural correlates of BPD carried out within the last two decades. 121 

Structural neuroimaging studies consistently report the occurrence of grey matter deficits 122 

associated with BPD in frontolimbic regions such as the  orbitofrontal cortex (OFC) (Araujo et 123 

al., 2014; de Araujo Filho et al., 2014; Sato et al., 2012), hippocampus (Depping et al., 2016; 124 

Kimmel et al., 2016; Niedtfeld et al., 2013; O'Neill et al., 2013) and amygdala (Kimmel et al., 125 

2016; Niedtfeld et al., 2013; Richter et al., 2014), suggesting that the disorder may have a 126 

distinct neurological profile.  127 

 128 

It would appear that there are additional alterations in white matter tract coherence which have 129 

been examined in a few studies using the Diffusion Tensor Imaging (DTI) modality. Fractional 130 

anisotropy (FA), believed to be a measure of the myelination and organisational orientation of 131 

white matter tracts, has been also been found to be reduced in adult-onset and adolescent-onset 132 

BPD (Carrasco et al., 2012; Maier-Hein et al., 2014; New et al., 2013; Salvador et al., 2016). 133 

Moreover, studies using event-related measures such as fMRI have observed discrepant patterns 134 

of neural activation in the cognitive (Mensebach et al., 2009; Niedtfeld et al., 2017; O'Neill et al., 135 

2015; Reitz et al., 2015) , behavioural (Herbort et al., 2016), social (Bungert et al., 2015; 136 

Domsalla et al., 2014; King-Casas et al., 2008) and affective processing (Bertsch et al., 2013; 137 

Hazlett et al., 2012; Lischke et al., 2017; Scherpiet et al., 2014) of BPD samples compared to 138 

healthy controls. However, it must be noted that the neurocircuitry of the disorder – though more 139 
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widely researched at present – is still poorly understood and that which distinguishes BPD from 140 

other similar psychiatric disorders remains elusive. 141 

 142 

Another area of somewhat unexplored territory are the neuroprotective biomarkers, despite the 143 

relatively high recovery rates such that ten years after the first diagnoses, 85% of patients no 144 

longer meet the diagnostic criteria for the disorder (Gunderson et al., 2011). Only three of the 145 

studies reviewed in the present work investigated the effects of therapy on the neural profiles of 146 

afflicted patients, with some promising preliminary results (Niedtfeld et al., 2017; Ruocco et al., 147 

2016; Winter et al., 2017).  It is therefore evident that a global understanding of BPD, spanning 148 

from first incidence to therapy-assisted remission is yet to be achieved.  149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 
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AIMS 160 

The present review will endeavour to evaluate recent BPD literature and propose a 161 

neurodevelopmental profile of the condition from adolescence to adulthood. In addition, 162 

neuroprotective changes engendered by therapeutic measures such as DBT will be considered. 163 

To our knowledge, no prior paper has put forth a neurodevelopmental approach to BPD in the 164 

format of a systematic review as yet.  165 

 166 

Moreover, the results of DBT from a neurological perspective in BPD have yet to be examined, 167 

despite its clinical utility. An understanding of the neural progression of BPD and how both 168 

functional and morphological brain changes can be remedied through DBT may enable clinicians 169 

to devise novel early interventions and refine existing treatments.   170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 
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 182 

 183 
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METHODS 184 

Potentially relevant research papers were retrieved using a broad PubMed search with 185 

“Borderline Personality Disorder” as a titular term, combined with (“neur*" or "imaging" or 186 

"brain") and ("adolescent", "child*", "adult*" or "longitudinal" or “therap*” or "remission"). The 187 

search, carried out on 27/11/17, yielded 180 papers and was then restricted using the advanced 188 

search tabs to return studies published exclusively within the past ten years (2007-2017). Further 189 

inspection of the titles and abstracts led to the exclusion of an additional 119 results due to 190 

general irrelevance, insufficient sample size (N<15) and inappropriate imaging modality (see 191 

section below). The methodology of the remaining literature was then reviewed and only the 192 

studies meeting the predetermined inclusion criteria were selected (N=45). Replicative articles of 193 

previous studies were also dismissed, providing they did not report any new findings. A visual 194 

representation of the present search methods can be observed in Figure 1 below:  195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 
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 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

Exclusion Criteria 224 

Following an initial PubMed search, non-applicable papers were screened out subject to several 225 

exclusion criteria such as insufficient sample size (N<15), imaging modalities other than fMRI, 226 

PET, MRI, DTI and NIRS and literature written in languages other than English. Furthermore, 227 

studies using samples of individuals with BPD who also suffered from comorbid Axis I disorders 228 

Figure 1. PRISMA flow diagram of search and selection method. 
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(specifically schizophrenia, schizoaffective disorder, affective psychoses (including bipolar I 229 

disorder), current alcohol/substance abuse or intellectual difficulties) were omitted.  230 

 231 

RESULTS 232 

A summary of all included studies is reported in Table 1, which can be found in the Appendices 233 

section. 234 

 235 

STRUCTURAL BRAIN IMAGING 236 

MRI of the Adolescent Cerebrum 237 

According to Chanen and colleagues (2008), BPD can be as reliably diagnosed in adolescence as 238 

in adulthood; a claim which has received some experimental substantiation. The reduction of 239 

grey matter density in the orbitofrontal cortex (OFC) is seemingly the most discriminative deficit 240 

in first-presentation BPD relative to controls. Diminished grey matter volume in this area has 241 

been observed by two previous studies (Brunner et al., 2010; Chanen, Velakoulis, et al., 2008) 242 

albeit in contralateral hemispheres. Reductions in bilateral dorsolateral prefrontal cortex have 243 

also been reported, however at this early stage in the progression of the disorder, these alterations 244 

were not able to significantly discern BPD from other psychiatric diagnoses (Brunner et al., 245 

2010). 246 

The available research consistently observes no intergroup differences between BPD and control 247 

groups in the limbic and midline structures including the hippocampus, amygdala, insular 248 

cortices and the adhesio interthalamica (Brunner et al., 2010; Chanen, Velakoulis, et al., 2008; 249 

Takahashi et al., 2009a; Takahashi et al., 2009b).  250 
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MRI of the Adult Cerebrum 251 

A meta-analyses of nine voxel-based MRI studies comprising of a total of 256 BPD patients and 252 

272 healthy controls, proposed that grey matter volume of the hippocampi and amygdalae 253 

decreases with age in BPD (Kimmel et al., 2016), hence the reason it does not present in the 254 

adolescent brain. The validity of VBM, however, can be called into question as the mapping of 255 

each brain, prior to analysis, onto a template is mandatory (Mechelli et al., 2005)  and often lacks 256 

the robustness to accurately identify volumetric atypicalities in very small structures such as the 257 

hippocampus and amygdala (Kimmel et al., 2016). That said, Kimmel and colleagues’ (2016) 258 

claims regarding hippocampal grey matter diminishment are consistently corroborated by the 259 

literature in adult samples (Depping et al., 2016; Niedtfeld et al., 2013; Richter et al., 2014; 260 

Soloff et al., 2008). 261 

 262 

Additionally, Kimmel and associates (2016) speculate that hippocampal grey matter deficits may 263 

be attributable to comorbid PTSD as opposed to BPD in isolation. One study of 39 adults with 264 

BPD, reported concurrent findings as those with comorbid PTSD had a smaller hippocampal 265 

head and body. It is speculated that hippocampal deficits may be related to the trauma of 266 

childhood abuse specifically (Brambilla et al., 2004), which is present in up to 76% of BPD 267 

patients (Zanarini, 2000) thus explaining its synchronous presence in the neuropathology of 268 

PTSD. Unfortunately, decreased hippocampal volume as a biomarker of BPD with comorbid 269 

PTSD cannot be taken as more than conjecture, as some studies find no differences in the 270 

hippocampi or amygdalae across BPD-PTSD and BPD subgroups (Niedtfeld et al., 2013; Sato et 271 

al., 2012).  272 

 273 
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Other limbic components such as the cingulate cortices are also thought to be involved in the 274 

neuropathology of BPD. The volume of the anterior cingulate cortex (ACC), a region which is 275 

theorised to be partly responsible for the modulation of emotional expression (New et al., 2012), 276 

is ostensibly reduced in the dorsal (Niedtfeld et al., 2013) and rostral (Sato et al., 2012) areas. 277 

Further, other investigators have found there to be volumetric asymmetry in the ACC, such that 278 

the left cortices are thinner than the right (Zhou et al., 2017). Dorsal ACC volume has also been 279 

found to predict BPD symptom severity (Niedtfeld et al., 2013), a correlation which could have 280 

great clinical utility (though some researchers find no between-group differences in this region 281 

(Muller et al., 2015)). Neighbouring regions such as the ventral cingulate gyrus have also shown 282 

bilateral decreases in volume (Soloff et al., 2008), whereas the middle and posterior cingulate 283 

cortices appear to have increased volume in BPD groups compared to healthy controls (Jin et al., 284 

2016).  285 

 286 

It would therefore seem that, consistent with adolescent research, the medial and lateral OFC are 287 

more reliable neural correlates of BPD, as volumetric deficits are also present in adult cerebrums 288 

(Araujo et al., 2014; de Araujo Filho et al., 2014; Sato et al., 2012). Lesion research suggests that 289 

the OFC is important for emotion regulation, the maintenance of social appropriateness and for 290 

curbing impulsivity (Malloy et al., 1993), where reductions in its volume could account for 291 

dysfunction of these behaviours in BPD. Other frontal regions such as the dorsolateral prefrontal 292 

(DLPFC) (O'Neill et al., 2013), inferior frontal gyrus (Kimmel et al., 2016) and ventrolateral 293 

prefrontal cortices (VLPFC) have been found to be reduced in BPD, with the latter again affected 294 

significantly by a history of childhood abuse (Morandotti et al., 2013). The left superior frontal 295 

gyrus however, was found to have increased cortical thickness and area (de Araujo Filho et al., 296 
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2014). Thus, due to the discord within the research community, MRI in isolation is not sufficient 297 

to produce a steadfast neurodevelopmental profile of BPD. 298 

 299 

Diffusion Imaging in BPD 300 

Whilst structural MRI imaging focuses on neural grey matter changes, white matter tract 301 

coherence and integrity is examined using DTI. The fractional anisotropy (FA) outcome measure 302 

is believed to reflect axon directionality, myelination and fibre density (Carrasco et al., 2012; 303 

Mädler, et al., 2008). Studies examining FA in the adolescent brain are limited but preliminary 304 

research suggests that there may be decreased FA in the fornix compared to both healthy and 305 

clinical controls (with other mixed diagnoses) (Maier-Hein et al., 2014). The inclusion of a 306 

clinical control group in Maier-Hein and colleagues’ work is a particular strength as the white 307 

matter alterations found appear to be specific to BPD. Further changes have been observed 308 

bilaterally in the inferior longitudinal fasciculi and temporal lobe white matter tracts (uncinated 309 

and occipitofrontal fasciculi) of BPD adolescents compared to healthy adolescents (New et al., 310 

2013). The aforementioned work is of interest as the investigators recruited samples of both 311 

healthy and disordered adolescents and adults to understand the pathological development of 312 

white matter. As expected, FA was highest in healthy adolescents than the remaining samples 313 

and it is noteworthy to mention that no differences in FA were found between BPD and healthy 314 

adult groups (New et al., 2013).  315 

 316 

On the contrary, consistent with New and associates’ (2013) work in adolescent groups, one 317 

study reports diminished FA in the uncinate and inferior fronto-occipital fasciculi in disordered 318 

adults using diffusion MRI (Salvador et al., 2016). Similarly, Ninomiya et al. (2018) have found 319 
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reduced axial diffusivity (which also determines axonal integrity) in the inferior front-occipital 320 

fasciculus, as well as the cingulum and inferior longitudinal fasciculus. The experimental sample 321 

of 35 BPD patients, also did not include medicated individuals nor individuals with comorbid 322 

conditions (Ninomiya et al., 2018), thus it could be that the white matter alterations of the 323 

inferior fronto-occipital fasciculus partly represent the core neuropathology of BPD. 324 

Nevertheless, such conclusions must be made tentatively as research suggests several other tracts 325 

(including the corpus callosum, corona radiata and prefrontal fasciculi) may be implicated in 326 

BPD (Carrasco et al., 2012; Ninomiya et al., 2018; Salvador et al., 2016), and diffusion 327 

modalities are more prone to artefacts than other imaging methods (Carrasco et al., 2012). 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 
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FUNCTIONAL BRAIN IMAGING 355 

fMRI is increasingly being used to determine the resting-state functional connectivity (RSFC) 356 

between various brain regions by examining contemporaneous patterns of neural activity (in the 357 

absence of goal-directed tasks) (Krause-Utz et al., 2014; Nierhaus et al., 2012). The RSFC 358 

observed within particular networks may also be referred to as the default mode network (DMN) 359 

(Kluetsch et al., 2012). One study exploring RSFC in BPD found there to be increased functional 360 

connectivity between the amygdala and insula as well as stronger amygdala-OFC and amygdala-361 

putamen RSFC in individuals with BPD compared to controls (Krause-Utz et al., 2014). 362 

Additionally, decreased RSFC between the left ventral ACC and V1 cortex, lingual gyrus and 363 

cuneus was observed in the BPD sample relative to healthy controls. These findings should be 364 

interpreted with care though as they are yet to be endorsed by further research and signals from 365 

the amygdala can be confounded by venous drainage. Furthermore, due to the lack of adolescent-366 

based functional imaging literature, the neural findings presented here refer only to the adult 367 

cerebrum. 368 

 369 

Cognitive-Perceptual Differences  370 

Functional connectivity has been explored within the default mode network as well as in the 371 

context of emotion processing and theory of mind (O'Neill et al., 2015). During rest, greater 372 

functional connectivity between the precuneus and the left inferior frontal lobe, left precentral 373 

gyrus, middle frontal gyrus, and left middle occipital and superior parietal lobes was observed; a 374 

conflicting pattern of activity to that reported by Krause-Utz et al. (2014). Additionally, during 375 

the theory of mind condition (which assessed the comprehension of visual puns and jokes), 376 

decreased functional connectivity between subgenual ACC and the left superior temp lobe, right 377 
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supramarginal parietal lobes and right middle cingulate cortex was shown in the BPD sample 378 

relative to controls. As Krause-Utz and colleagues (2014) set the DMN seed as the amygdala 379 

whilst O’Neill and associates (2015) decided upon the precuneus, it is not surprising that the 380 

findings were not concurrent. Furthermore, O’Neill et al. (2015) procured DMN data during a 381 

ten second period of rest between task conditions, thus this is not a true exemplification of the 382 

default mode.  383 

 384 

It is known that the processing of pain in BPD is atypical and is more than likely a direct result 385 

of the self-injurious behaviour that is present in approximately 60-80% of patients (Chapman, 386 

Specht, & Cellucci, 2005). Connectivity within DMN has therefore been investigated with 387 

respect to pain processing in BPD patients who partake in non-suicidal self-injury (Kluetsch et 388 

al., 2012). The left superior frontal gyrus and PCC were found to be less incorporated into the 389 

DMN in BPD, and the latter was ostensibly less integrated with the left DLPFC when the 390 

nociceptive stimuli were administered (Kluetsch et al., 2012). Furthermore, DMN response to 391 

painful stimuli was found to be negatively correlated with symptom severity (Kluetsch et al., 392 

2012). 393 

 394 

Nociceptive perception was also examined in a more ecologically valid study by Reitz and 395 

colleagues (2015), who demonstrated that for those with BPD, a small incision to the forearm is 396 

capable of reducing tension incurred by stressful tasks. This translated neurally to decreased 397 

amygdala activity and increased functional connectivity with the superior frontal gyrus in BPD 398 

patients following the incision, whereas the converse was observed in controls (Reitz et al., 399 

2015). The objective of therapies targeting self-injurious behaviour in BPD is often to aid 400 
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patients in finding means other than self-harm to reduce aversive tension. The effects of such 401 

treatments could therefore be assessed, taking the amygdala as a region of interest. One 402 

preliminary study exploring the effect of DBT on temperature pain perception and affect 403 

regulation shows promising results (see Niedtfeld et al., 2017).  404 

 405 

Emotion Dysregulation 406 

Both self-injurious behaviour and suicidality are typical examples of the dysfunctional 407 

behaviours that may arise as a result of the poor emotion regulation evident in BPD (Soloff et al., 408 

2012; Stiglmayr et al., 2008). Region of interest studies researching emotion regulation in BPD 409 

at the neural level tend to focus on the amygdala and consistently report an increased response to 410 

negatively-valenced stimuli (Bertsch et al., 2013; Hazlett et al., 2012; Koenigsberg et al., 2009). 411 

Furthermore, one study suggests that amygdala activation may have some discriminative value 412 

across Axis II disorders, as it was shown to distinguish BPD from both healthy controls and 413 

those with schizotypal personality disorder, when viewing negative affect-inducing stimuli 414 

(Hazlett et al., 2012).  415 

 416 

The anterior and posterior cingulate cortices also appear to “come online” when viewing 417 

negatively-valenced stimuli in BPD (Koenigsberg et al., 2009). Further, the mere anticipation of 418 

negative affect-inducing stimuli seems to be sufficient to cause a heightened response in the 419 

anterior and posterior cingulate cortices, as well as in the left visual areas (Scherpiet et al., 2014). 420 

Disparate findings, of reduced activation in the middle cingulate cortex projecting into the 421 

dorsolateral PFC, were observed when BPD samples anticipated ambiguously-valenced stimuli 422 

(Scherpiet et al., 2014). Emotion regulation hence, appears to be more disturbed with respect to 423 
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negative emotions as there seems to be a bias toward potentially threatening information in BPD, 424 

which translates neurally to increased amygdala and cingulate cortex responses (Bertsch et al., 425 

2013; Scherpiet et al., 2014). Encouragingly, one study investigating distraction (using 426 

negatively-valenced stimuli) and subsequent emotion regulation found positive treatment effects 427 

of DBT, reflected by reduced ACC activity in treatment responders (Winter et al., 2017); 428 

suggesting hyper-activation of particular brain areas may be reversible.  429 

Psychological Distancing 430 

As stipulated by the DSM-IV, severe dissociative symptoms are also present in the BPD 431 

psychopathological profile (American Psychiatric Association, 2013). A method of dissociation 432 

referred to as psychological distancing can be utilised by BPD patients in order to reduce 433 

negative affect induced by aversive stimuli (Koenigsberg et al., 2009; Silvers et al., 2016).  434 

Distancing as opposed to looking at negatively-valenced stimuli has been shown to correlate 435 

with increased activation of the PFC, PCC, precuneus and intraparietal sulcus (IPS) in both 436 

control groups and BPD samples (Koenigsberg et al., 2009). However, decreased activation of 437 

the dorsal ACC and IPS, as well as greater activation of the amygdala, superior temporal sulcus 438 

and superior frontal gyrus distinguished BPD from controls (Koenigsberg et al., 2009).  439 

Additionally, one study found that diminished precuneus activation when distancing may 440 

discriminate suicide attempters with BPD from non-attempters (Silvers et al., 2016). The 441 

precuneus may therefore be implicated in the lethality of poor emotion regulation in BPD. The 442 

aforementioned works differ in study design, however, as Silvers and colleagues (2016) chose to 443 

use aversive memories as negatively-valenced stimuli which prompted the activation of 444 

additional “memory” regions such as the hippocampus, whereas Koenigsberg et al. (2009) used 445 
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images of negative interpersonal scenes. Moreover, there is no definitive way of assuring 446 

distancing took place as it is a very subjective psychological phenomenon.  447 

 448 

Oxytocin Modulation 449 

It is widely accepted that the neuropeptide oxytocin modulates prosociality and attachment 450 

formation (New et al., 2012), though its specific influence on human behaviour remains unclear 451 

(see Nave et al., 2015). Individuals with BPD tend to perceive others negatively and often lack 452 

empathy (American Psychiatric Association, 2013); providing the rationale for the study of the 453 

effects of oxytocin on the behaviour of those with BPD. Oxytocin has been found to dampen 454 

amygdala hyper-reactivity in response to negative affect-inducing stimuli in BPD samples, 455 

seemingly reducing the archetypal bias to threatening stimuli (Bertsch et al., 2013; Lischke et al., 456 

2017).  Greater amygdala activity was ostensibly related to less engagement with emotional 457 

scenes, which was regulated by oxytocin administration (Bertsch et al., 2013). Oxytocin therapy 458 

may therefore be beneficial for those with BPD who are hyper-reactive to aversive stimuli. It is 459 

necessary, however, to evaluate the role of oxytocin cautiously as it has also been shown to 460 

hinder affiliative behaviour in BPD (Bartz et al., 2011) 461 

 462 

Opioid Function 463 

Attachment and the regulation of the emotion and stress responses are thought to be mediated, in 464 

part, by the endogenous opioid system and µ-opioid receptors (Prossin et al., 2010). Binding 465 

potential is believed to measure neurotransmission facilitated by µ-opioid receptors and one PET 466 

study (using the radioligand ([11C] carfenatil) found that BPD patients, in a state of neutrality, 467 

exhibit greater µ-opioid receptor binding potential in the bilateral OFC, caudate, left amygdala 468 
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and nucleus accumbens (Prossin et al., 2010). Activation of the endogenous opioid system was 469 

observed in the left posterior thalamus, left OFC, left ventral pallidum, left amygdala and left 470 

inferior temporal gyrus of BPD patients in states of sustained sadness, whereas controls showed 471 

activation only in the left anterior thalamus, left medial thalamus and the right hippocampus 472 

(Prossin et al., 2010). These results imply that BPD may be linked to greater activation the 473 

endogenous opioid system as a means to compensate for an intrinsic shortage of µ-opioid 474 

neurotransmission. 475 

Interpersonal Dysfunction 476 

Borderline personality disorder is also characterised by impaired interpersonal functioning, 477 

reflected by unstable relationships and preoccupation with abandonment (American Psychiatric 478 

Association, 2013). Despite the detrimental effects of interpersonal dysfunction, few studies 479 

explore the neural correlates of sociality in BPD; perhaps owing to the difficulty of recreating 480 

realistic social scenarios experimentally. Virtual ball tossing is a popular experimental paradigm 481 

which has been employed in the context of BPD by two studies. Domsalla and colleagues (2014) 482 

provide evidence that BPD patients tend to feel more excluded even when equally included by 483 

virtual teammates, which correlated neurally with greater activation of the precuneus, DLPFC, 484 

insula and medial PFC. Both healthy controls and BPD patients appeared to report similar levels 485 

of exclusion in the experimental condition, though BPD patients showed increased activation of 486 

the DLPFC relative to controls (Domsalla et al., 2014).
1
 Using a similar study design exploring 487 

the relationship between rejection sensitivity and physical pain thresholds, social exclusion was 488 

found to lead to increasing reactivity to nociceptive stimuli in BPD patients and healthy controls 489 

(Bungert et al., 2015). At a neural level, this correlated with thalamic and anterior insular (AI) 490 

                                                 
1
 Some differences in neural activation across BPD and control samples were reported at a 10% significance level. 
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activation in both samples and addition posterior AI was observed in BPD patients (Bungert et 491 

al., 2015). Interestingly, social inclusion engendered reduced relative activation of the amygdala 492 

in BPD patients following the administration of nociceptive stimuli (Bungert et al., 2015).  493 

A landmark study, carried out by King-Casas and colleagues (2008), employed an economic 494 

exchange game as the experimental design in an effort to explore the neural correlates of social 495 

cooperation in BPD. Behaviourally, when interacting with healthy subjects, those with BPD 496 

reported lower levels of trust than did other healthy controls (King-Casas et al., 2008). 497 

Furthermore, BPD patients were less able to maintain co-operation and repair broken cyber 498 

relationships. Neurally, investigators observed activity of the anterior insula (AI) of BPD patients 499 

only when repaying money to their partners, whereas this region was activated in healthy 500 

controls when receiving monetary inputs from their partners. As AI activation often occurs in 501 

response to violations of social norms (New et al., 2012); this pattern of activation was 502 

interpreted as indication that those with BPD did not interpret low monetary offers as insulting 503 

due to their inherently negative perceptions of others (King-Casas et al., 2008). However, to our 504 

knowledge, this experimental paradigm has not been replicated more recently and more research 505 

on BPD interpersonal functioning using non-monetary incentives is necessary.  506 

 507 

Abnormal Behaviour 508 

Impulsive behaviours such as excessive spending, reckless driving and substance abuse are 509 

routinely observed in the symptom profile of individuals with BPD (American Psychiatric 510 

Association, 2013). Experimentally, investigators often utilise response inhibition as a measure 511 

of impulsivity, by way of Go/No-go, Stop Signal and Simon tasks. However, whether or not such 512 

experimental paradigms provide accurate depictions of pathological impulsivity is debateable. 513 
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According to one study, fMRI BOLD signals did not differ across samples during each of the 514 

three aforementioned tasks, as the inferior frontal gyrus, striatum and pre-supplementary motor 515 

area was equally activated in both BPD and healthy control groups (van Eijk et al., 2015). 516 

Moreover, BPD patients did not have shorter response latencies nor did they commit more errors 517 

than did healthy individuals (van Eijk et al., 2015). Intriguingly, another study investigating the 518 

effects of DBT on response inhibition in treatment completers and non-completers reported 519 

increased activity in the bilateral medial and inferior frontal gyri during response inhibition after 520 

seven months relative to pre-treatment levels (Ruocco et al., 2016). It is worth mentioning 521 

though, that the investigators did not compare the performance of both BPD samples with 522 

healthy controls, thus any disorder-specific performance differences cannot be ascertained from 523 

this study.  524 

 525 

Impulsivity and its relation to the processing of aversive and pleasant stimuli in BPD, has been 526 

found to be mediated by the mesolimbic reward system, comprising the ventral striatum and 527 

nucleus accumbens (Herbort et al., 2016). Rewarded tasks involving dopaminergic 528 

neurotransmission ostensibly activate both of the aforementioned regions, which are also 529 

believed to be crucial for both reward prediction and Bayesian prediction error (Schott et al., 530 

2008). Those with BPD appear to have a blunted neural response in both the striatum and 531 

nucleus accumbens to reward and loss anticipation, as observed by Herbort and colleagues 532 

(2016). The authors reported that, during a monetary incentive delay task, those with BPD 533 

showed reduced activity in the nucleus accumbens and ventral striatum in response to reward and 534 

loss predicting cues, where thrill-seeking behaviours were thought to arise as a means of 535 

compensation. Due to the lack of clinical control group, however, it is difficult to determine 536 
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whether these neurological changes are exclusive to BPD as muted striatal responses to losses 537 

and gains are reportedly present in those with depression (Ubl et al., 2015). 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 
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DISCUSSION 558 

Whilst the studies reviewed in the present paper report some interesting and informative 559 

findings, it must be borne in mind that a definitive neurological profile of borderline personality 560 

disorder is yet to be synthesised. However, in light of the recent research reviewed, a 561 

rudimentary neurodevelopmental model of BPD can be proposed.  562 

Morphologically, it would seem that BPD is associated initially in adolescence with reduced grey 563 

matter volume in the orbitofrontal cortex (Brunner et al., 2010; Chanen, Velakoulis, et al., 2008), 564 

a region thought to partly mediate affect regulation, social appropriateness and inhibition 565 

(Malloy et al., 1993). Relative to adults, adolescents are ostensibly more prone to suffer acutely 566 

from symptoms such as impulsivity and inapposite anger (Kaess et al., 2014; Lawrence, Allen, & 567 

Chanen, 2010), which may therefore be attributable to a compromised OFC. Diminished white 568 

matter tract coherence in the inferior longitudinal and occipito-frontal fasciculi may also be 569 

implicated in the adolescent neuropathology of BPD (New et al., 2013); though due to the 570 

absence of a clinical control group and comorbid MDD in the BPD samples, the specificity of 571 

these results is questionable. Further replicative studies using large adolescent cohorts are 572 

therefore crucial to allow for the assessment of the influence of symptomatic variability 573 

(Brunner, 2010) and to increase the reliability of these preliminary findings. Longitudinal 574 

research within a developmental psychology framework would also allow for the verification of 575 

the abovementioned proposals. 576 

 577 

Deficits in the OFC, inferior longitudinal and occipitofrontal fasciculi are also reported by 578 

studies using adult BPD samples (Araujo et al., 2014; de Araujo Filho et al., 2014; Ninomiya et 579 

al., 2018; Salvador et al., 2016; Sato et al., 2012); suggesting that these structural alterations may 580 
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persist from adolescence into adulthood. Reductions of the hippocampus however, appear to 581 

present only with increasing age (Depping et al., 2016; Niedtfeld et al., 2013; Richter et al., 582 

2014; Soloff et al., 2008) and is one of several regions purported to have discriminant clinical 583 

value (Sato et al., 2012). Future studies should aim to clarify whether comorbid PTSD, past 584 

childhood adversity and/or symptom severity modulate the volume of the hippocampus in BPD 585 

patients as is proposed by some investigators (Brambilla et al., 2004; Kreisel et al., 2015). 586 

Crucially, further investigations should also assess the relationship between structural brain 587 

changes and the corresponding functional impact.  588 

 589 

Regarding resting-state functional connectivity in the default-mode network of those with BPD, 590 

further research is needed to replicate the few existing experimental designs and give credence to 591 

the small body of current evidence. Functionally, it seems as though BPD is mediated by 592 

hyperactivity of the cingulate cortices (Koenigsberg et al., 2009; Scherpiet et al., 2014) which 593 

has been interpreted by Mensebach et al. (2009) as a compensatory mechanism due to 594 

hippocampal shrinkage. Additionally, heightened amygdala responses are recurrently seen in 595 

BPD patients, particularly in relation to negatively-valenced stimuli (Bertsch et al., 2013; Hazlett 596 

et al., 2012; Koenigsberg et al., 2009). Further research should aim to investigate how the 597 

aforementioned regions interact during deliberate emotion regulation using strategies other than 598 

psychological distancing. In addition, future investigators should attempt to corroborate the 599 

notion that such neural hyper-activation can be remedied by DBT (Niedtfeld et al., 2017; Winter 600 

et al., 2017). 601 

 602 
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Interpersonally, there is evidence to suggest that the anterior insula is additionally activated in 603 

BPD during social inclusion/exclusion paradigms (Bungert et al., 2015; Domsalla et al., 2014). 604 

More research, however, is needed due to the lack of a non-social control condition (such as 605 

tossing ball to oneself), to which neural activation across samples could be compared. 606 

Behaviourally, a blunted striatal response to reward and loss predicting cues may explicate 607 

impulsivity in BPD, where risky behaviours are carried out to compensate for the neural de-608 

sensitisation. The findings with regard to response inhibition as a reflection of impulsivity in 609 

BPD are inconclusive. Further research should endeavour to different experimental designs to 610 

more reliably assess atypical behaviour in BPD. 611 

 612 

Limitations 613 

It is necessary to acknowledge that the present review is subject to publication bias, as only 614 

studies published in peer-reviewed journals were evaluated. Furthermore, the samples of the 615 

majority of the papers examined included only female subjects thus the findings cannot be 616 

generalised to males with BPD. Despite rather stringent exclusion criteria, many of the subjects 617 

in the included studied also presented with past histories of Axis I and II disorders, as is typical 618 

of BPD. Specificity of the results to BPD in isolation is therefore limited. Moreover, a 619 

neurodevelopmental model of BPD with respect to brain function within the four diagnostic 620 

domains (cognitive-perceptual differences, emotional dysregulation, interpersonal dysfunction 621 

and abnormal behaviour) was not put forth due to the non-existence of adolescent-based 622 

literature in these areas.  623 

 624 

 625 
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CONCLUSION 626 

To conclude, the current research reviewed presents fascinating results, though the degree to 627 

which they can be attributed to BPD alone remains elusive. Furthermore, the evidence base is not 628 

yet robust enough to have a strong clinical influence. A limited number of fMRI studies 629 

examining the neural aftereffects of psychological therapies offered to BPD patients are 630 

presently available; and further research is essential to corroborate the findings. The neural 631 

correlates of emotion dysregulation appear to be well-evaluated relative to other diagnostic 632 

domains such as interpersonal functioning, cognitive processing and atypical behaviours. Future 633 

investigators should therefore aim to devise ecologically valid methodologies to substantiate the 634 

existing evidence within these areas. It is crucial that the vast array of symptoms comprising the 635 

diagnostic criteria of BPD are eventually understood from a neurological perspective to aid in the 636 

development of person-centred therapies. Moreover, greater efforts to recruit larger cohorts of 637 

both adolescents and adults should be made to further our understanding of the neurological 638 

progression of this disorder. 639 

 640 

 641 
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