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ABSTRACT

Increasingly, big data, coding, and quantitative methods contribute to contemporary ecological and
evolutionary endeavours. This is not in opposition to effective ideation nor does it play to the false
dichotomy of theory versus data. Computational expeditions with data, models, simulations or any other
number of approaches both expand the toolkit of science and promote more structured reasoning. The
implications of computational biology integrated with scientific pursuits such as experiments and theory
development include the following positive outcomes: enhanced open science, better reproducibility, data
literacy, author inclusivity, social good, and novel ideation opportunities. We face a climate apocalypse
and unprecedented ecological challenges of collapsing ecosystem functions. Computation coupled with
ideation is one mechanism to align the hearts and heads of scientists and decision makers alike.

INTRODUCTION
Humans do science not computers. Theoretical and empirical tools do not mix. Increasingly, the lines blur
between these almost always-false dichotomies but worthwhile debates on how to augment the many facets
of scientific inquiry (Shrader-Frechette and McCoy 1990; Zeller and Carmines 1980). Computational
biology is the perfect intersection or eye of the storm for changes in contemporary ecology and evolution.
Computational biology is quantitative and at times atomic (Nussinov 2013) because it can illuminate
broad patterns for biologists from very fine scales (Leonard 2007; Rosse et al. 1998). Contemporary
computation biology has become more integrated into the broader community of biological research
(Nussinov 2015) through big data, models, and other computational tools that examine or support the
examination of biological processes. All biology is likely computational biology to some extent ‘because
it is the questions you address that matter, not the tools you use’ (Markowetz 2017), and thus, in ecology
and evolution, we are unified and overlap in our shared focus on the dynamics and interactions within
natural systems. This is an exceptionally practical opportunity to do better science. Powerful ideas are
needed to inform our survival through the climate apocalypse and unprecedented ecological challenges
of collapsing ecosystem functions. It is germane to these crises that we include (some) computation
in our ecological and evolutionary expeditions, literal and digital, because there is wisdom in statistics
(Stigler 2016), logic in literate coding (Grolemund and Wickham 2016), and generalizable skills from a
computational toolkit (Allesina and Wilmes 2019; Wilson et al. 2017) for all the environmental challenges
we face (Cash et al. 2003). We swim in a sea of data in ecology and evolution now too (Hampton et
al. 2013), and computational thinking can help use own, manage, navigate, and reuse evidence (Di
Minin, Tenkanen, and Toivonen 2015; Gandomi and Haider 2015; Zook et al. 2017). If nothing else,
consideration of computation in our endeavours can force us to examine our objectivity and respective
value judgements at different stages of the research process (Rudner 1953) and simplify the clutter of
spurious from necessary in doing our research. A modern synthesis including the strengths of computation
in a paradigm of ecology and evolution is now viable – ideas, data, and coding map onto one another and
provide a richer representation of natural systems and change. Each tool can provide a different lens for
evidence and improve reasoning – i.e., the difference between novel and creative ideas is the criterion
of utility (Runco and Jaeger 2012). We must connect the dots, and we can no longer afford to silo our
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research activities. The dots to connect are different people with various skills, diverse ideas, many tools,
and fundamental scientific evidence to shape societal decision-making. I propose that there are at least 6
critical outcomes for ecology and evolution if we embrace this perspective.

OUTCOMES OF A CONNECTED PARADIGM
(1) Enhanced open science
Open science is the movement to make scientific products and outcomes transparent and accessible
(Hampton et al. 2015; Lortie 2017). These products can be associated with every stage of the scientific
process including open notebooks, data, code, and peer review. Open science can also promote open
source tool development by the community, broad social networks, and accessible educational materials.
Computational biology can contribute to these products directly for ecology and evolution through code,
data storage, and peer review of tools and approaches prior to the paper. It can further engage domain-
level scientists with a wider network of input from researchers exploring data reuse, efficiency, tool
development, and models at both atomic and macro scales. Importantly, transparency in the process
of moving from ideation and hypothesis development to analyses and hypothesis testing reduces the
likelihood of hypothesizing after the results are known (HARKing) and bias in ecology and evolution
(Kerr 1998), and computation can provide mechanisms to capture this workflow.
(2) Better reproducibility
The reproducibility crisis in science is fundamentally a limited capacity to replicate experiments (Ioannidis
2005), and it has been realized by many disciplines including psychology (Makel, Plucker, and Hegarty
2012), cancer research (Benjamin, Mandel, and Kimmelman 2017), and ecology (Kelly 2006). Admittedly,
irreproducible findings do not necessarily mean false findings (Fanelli 2018), there are different forms of
replication (Nakagawa and Parker 2015; Reed 2018), and many solutions can address this crisis such as
publishing false findings and registered reports (Reed 2018). Nonetheless, computation also provides
a crucial solution. The ability to review and rerun code supporting a reported finding in a paper is a
monumental achievement only possible through computational tools. Annotation and decisions made in
handling data when completed via programming by researchers in ecology and evolution is a means to
show thy work even if it is not easily repeated. This accountability is even more important than replication
because science is a process, and it evolves over time.
(3) Data literacy
Critical thinking is any mode of thinking that includes analysis and assessment preferably with a focus
on precision, implications, and supporting assumptions (Cederbloom and Paulsen 2006; Facionie 2017).
Hypotheses can be evaluated by logic and errors in likelihood given first principles and understanding of
systems (Loehle 1987), but merit assessment of experiments and the critical thinking we apply to the tests
of hypotheses in ecology and evolution further assumes that the data and design from empirical work are
valid. Necessarily, being able to consider data critically (J. Hardin et al. 2015) and statistically (Good and
Hardin 2003) advances better science, and computational models are heuristical because we strive for a
reasonable representation of natural systems by building them from data (Patterson and Whelan 2017).
Use of computational tools advances data literacy because we need to be able to read data as humans (and
as machines) and comprehend significance to build models.
(4) Author inclusivity
Patterns in authorship are an important form of meta-science that can help identify biases and changes in
ecology and evolution (Edwards, Schroeder, and Dugdale 2018; Fox, Ritchey, and Paine 2018). Cognitive
diversity is a relatively new form of diversity for team science composition focussed on the inclusion
of individuals with unique thinking approaches. Teams comprised of greater variation in this specific
form of diversity are more creative (Shin et al. 2012) and more rapid in solving problems (Shin et al.
2012). Collaborations between computational and field ecologists for instance likely enjoy many of the
same benefits including an extended range and scope of questions. Inclusivity is also advanced through
computation in ecology and evolution because increasingly common tools in our field such as R and
Python programming languages are free. GitHub is a software development platform that is also free,
and it has now become a website and collaboration tool that provides version control, online capacities to
share work, and project management. To some extent, this alleviates barriers to access advanced data and
statistical tools because of cost but also because free computation tools and services enable a diverse and
distributed population of scientists to engage with the thinking associated with statistics (Hector 2017)
and data science (Lortie 2017).
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(5) Social good
Hackathons, data derbies, codefests, and kaggle challenges are common in computation. This culture
of collaborative and crowd sourced problem solving is not dissimilar from citizen science in ecology
and evolution but is typically very solution driven. Computation can provide a big picture, quantitatively
(Markowetz 2017), and synthesis science is a critical form of advancement in ecology and evolution
(Carpenter et al. 2009; Hampton and Parker 2011; Sidlauskas et al. 2009). A continued scientific focus
on the benefit to the largest number of people in significant ways through primary and synthetic research
engenders better decision making, and computation is a natural pathway to aggregate and summarize
natural processes for social good. Purpose defines change.
(6) Novel ideation opportunities
Inspiration and insight are personal. Some ideate and embrace design thinking (Brown 2008, 6089) in our
field through experiential interactions with natural systems whilst others are more abstract. Understanding,
observing, ideating, and testing can be expeditions in natural history, experimentation, or computation
via models and simulations. Big ideas that make connections and help solve mysteries can come from
computation (Nussinov 2015). Gaps in data (O’Leary et al. 2017), true versus false zeros (Martin et
al. 2005), and the ‘residuals’ of exploratory data analyses can all ignite new ideas. At times, seeing the
forest from the trees involves counting all the trees, crunching the numbers, and discovering the forest.
Computation also allows us to prototype ideas and hypotheses through training models, simulation, and
threshold analyses. Knowing the limits of good ideas is an important outcome for ecology and evolution.

IMPLICATIONS
We need to be holistic. We never could ignore the big picture, and data literacy with statistical reasoning
are more critical than ever as the public struggles to reconcile evidence of global change with political
discourse. There does not have to be a disconnect between evidence and decisioning or the heart and the
head or the ecologist and the computational biologist. Predicted scenarios of change are computational.
Ecology and evolution can inform many of these models, and we need both experiences with nature and
with data to educate and inspire others and affirm what we see, what we know, and what we care about.
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