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The aim of this research was to study seagrass classification by using aerial photography

with Visible Atmospherically Resistant Index (VARI) in the Kung Krabaen Bay, Chanthaburi,

Thailand, which covers an area of 5.59 km2 and has an average depth of 2.5 m in the

shallow zone. The classification based on VARI resulted in three classes, namely (i) long-

leaved species (E. acoroides), (ii) short-leaved species (H. pinifolia and H. uninervis), and

(iii) other objects. Results showed that aerial photographs could clearly differentiate

seagrass species having different digital number value ranges with the VARI approach. The

overall accuracy of visual interpretation (86.36%) was higher than that of supervised

classification (46.97%). This technique could be useful for seagrass species mapping in

other areas. The results also showed that H. pinifolia and H. uninervis were distributed on

sandy clay and seashell substrates while E. acoroides was distributed only on sandy areas.
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24 Abstract

25 The aim of this research was to study seagrass classification by using aerial photography 

26 with Visible Atmospherically Resistant Index (VARI) in the Kung Krabaen Bay, Chanthaburi, 

27 Thailand, which covers an area of 5.59 km2 and has an average depth of 2.5 m in the shallow 

28 zone. The classification based on VARI resulted in three classes, namely (i) long-leaved species 

29 (E. acoroides), (ii) short-leaved species (H. pinifolia and H. uninervis), and (iii) other objects. 

30 Results showed that aerial photographs could clearly differentiate seagrass species having 

31 different digital number value ranges with the VARI approach. The overall accuracy of visual 

32 interpretation (86.36%) was higher than that of supervised classification (46.97%). This 

33 technique could be useful for seagrass species mapping in other areas. The results also showed 

34 that H. pinifolia and H. uninervis were distributed on sandy clay and seashell substrates while E. 

35 acoroides was distributed only on sandy areas.
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47 Introduction

48 The seagrass bed is a fertile coastal ecosystem with high biodiversity, and is necessary 

49 habitat for many marine creatures (Paibulkichakul, Jansang & Paibulkichakul, 2016). It is one of 

50 the most productive ecosystems, providing shelter and food for animal communities from tiny 

51 invertebrates to large fishes, crabs, turtles, marine mammals, and birds. Seagrasses provide many 

52 economically valuable services to people as well, such as commercial and recreational fisheries, 

53 nature and wildlife tourism (Duffy, 2006).

54 A study of the distribution of seagrass beds in the Gulf of Thailand found the most 

55 seagrass along the coastal zone and islands. The total seagrass area is about 55.2 km2, which 

56 includes the provinces of Trat, Chanthaburi, Rayong, Chon Buri, Phetchaburi, Prachuap Khiri 

57 Khan, Chumphon, Surat Thani, Nakhon Si Thammarat, Phatthalung, Songkhla, Pattani, and 

58 Narathiwat (Department of Marine and Coastal Resources, 2016). Reports on the seagrass 

59 situation in Thailand show that the current number of seagrass beds have been continuously 

60 decreasing (Waycott et al., 2009) because of human activities including anchoring, mining, 

61 coastal construction (breakwaters or seawalls), fishing (using illegal gear) and toxic waste 

62 release. The seagrass degradation affects growth, spawning, and survival of marine animals in 

63 coastal marine ecosystems. Seagrass disappearance may increase the impact of currents and 

64 trigger coastal erosion in some areas. The growing concern about seagrass loss and degradation 

65 has made government agencies, coastal and marine resources conservation networks, and private 

66 organizations work together to perform the conservation and restoration of seagrass areas 

67 (Department of Marine and Coastal Resources, 2016).

68 Geo-informatic technology refers to the integration of Geographic Information System 

69 (GIS), Remote Sensing (RS), and Global Positioning System (GPS). RS technology has rapidly 
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70 developed in terms of its abilities, such as very high spatial resolution (Kushwaha, 2008). 

71 Seagrass exploration using RS technology is based on two data sources, namely satellite imagery 

72 and aerial photography. Satellite imagery is suitable for study of a wide area that does not need 

73 high spatial resolution. On the other hand, aerial photography is appropriate for smaller areas 

74 where very high spatial resolution is required (Mumby et al., 1997).

75 Most vegetation indices combine information contained in two spectral bands, the red and 

76 near-infrared (NIR). The Normalized Difference Vegetation Index (NDVI) is one of the common 

77 techniques that uses the visible and NIR bands to analyze remote sensing images and assess live 

78 green vegetation (Lebourgeois et al., 2008). A limitation of NDVI indices is that this technique 

79 can’t be used to classify objects under water, because NIR light is able to penetrate only a small 

80 distance into the water (Adi, 2015). 

81 The Visible Atmospherically Resistant Index (VARI) was developed for the regional 

82 estimation of crop conditions. The VARI was more sensitive to the vegetation fraction due to the 

83 introduction of blue reflectance (Gitelson et al., 2002a). This is the reason why VARI technique 

84 is more suitable for seagrass classification than NDVI technique. Furthermore, it is suitable with 

85 the consumer-grade cameras used on Unmanned Aerial Vehicles.

86 The objective of this study is to apply the aerial photographs taken by an Unmanned 

87 Aerial Vehicle (UAV) for seagrass classification by using VARI. The results of seagrass species 

88 classification based on VARI will be used to assess seagrass species bed area. This research is 

89 useful for planning and management for seagrass conservation.

90

91 Materials and methods
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92 The process of analyzing seagrass classification and status consisted of five steps as 

93 shown in Fig.1, namely; (i) aerial photography by using UAV (DJI Mavic Pro) with autonomous 

94 flight application on mobile device; (ii) image mosaicking; (iii) data pre-processing, including 

95 geometric correction; (iv) detection and classification of seagrass distribution; (v) accuracy 

96 assessment by using ground-truth data.

97

98 Aerial Photography

99 Aerial photographs were taken at 10:00 – 15:00 on 4 July 2017 by using DJI Mavic Pro 

100 (UAV) with DroneDeploy application software in a free explorer plan which offers unlimited 

101 flight, 500 photos/map, and 5 cm/pixel 2D resolution (DroneDeploy, 2018). The UAV flies to 

102 take each photograph in each flight line or strip so it overlaps the adjacent photographs. The 

103 amount of frontlap on each photograph is about 75% and sidelap on each photograph is about 

104 65%. The aerial photos were taken at an altitude of about 500 meters above mean sea level. Four 

105 flights were made covering an area of about 7.02 km2, and a total of 139 images were taken (Fig. 

106 2). The resolution of a mosaicked image was 16.6 cm/pixel and the root-mean-square error 

107 (RMSE) was 5.4 meters. The aerial photographs were geometrically corrected by using 1st order 

108 polynomial transformation with RMSE of 1.67 meters to maintain the intensity of the pixels.

109

110 VARI algorithm

111 The aerial photograph uses the red, green, and blue channels to make a natural color 

112 composite image. The colors are used to calculate VARI scores for the pixel ranging between -1 

113 and +1, based on the following equation: 

114
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115 VARI =  (Rgreen - Rred )/(Rgreen + Rred - Rblue),

116

117 where Rx is the reflectance of the canopy for color x. The resulting VARI image is 

118 presented in Fig. 3.

119

120 Image classification

121 The processes of image classification applied in this study were supervised classification 

122 and visual interpretation. Visual interpretation is a complex process, involving the meaning of 

123 the image content in order to classify spatial and landscape patterns (Albertz, 2007). Supervised 

124 classification based on the maximum likelihood decision rule, depended on the researcher who 

125 defined the spectral characteristics of the classes from selected training areas (Sagawa et al., 

126 2010) in the VARI image, as shown in Fig. 4. Comparison of VARI images from the selected 

127 study areas were compared with the true color images by seagrass leaf type (short-leaved or 

128 long-leaved).

129

130 Accuracy assessment

131 Accuracy assessment is a general term for comparing the classified image to reference 

132 sites that are considered to be accurate based on ground-truth data. Forty-three sampling points 

133 were selected on random raster elements in the classified image and the reference site (Fig. 5). 

134 The sampling point and reference data were compared for overall accuracy, producer’s accuracy 

135 (omission errors), user’s accuracy (commission error), and kappa coefficient. The comparison 

136 was done by creating an error matrix from which different accuracy measures were calculated 

137 (Dekker, Brando & Anstee, 2005).
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138 Results

139 The visual interpretation can be used to identify three classes of seagrass zones: long-

140 leaved species (E. acoroides), short-leaved species (H. pinifolia and H. uninervis) and other 

141 objects. The resulting supervised classification image and visual interpretation image are shown 

142 in Fig. 6 and Fig.7, respectively. The accuracy assessment results are shown in Table 1. The 

143 seagrass identification of each class showed that the long-leaved species could be clearly 

144 classified because leaf size was wide, very long length and distributed the cluster. The short-

145 leaved species was difficult to be classified because leaf size was so small, low leaf density and 

146 distributed widely.

147 The classification results show that the overall accuracy of visual interpretation of aerial 

148 photographs by using UAV for (i) E. acoroides, (ii) H. pinifolia and H. uninervis, and (iii) other 

149 objects was 86.36% and Kappa coefficient of this method was 0.809. The overall accuracy of 

150 supervised classification was 46.97% and Kappa coefficient of this method was 0.438.

151 The results showed that aerial photograph images could clearly be used to classify the 

152 seagrass species by having different digital signatures with the VARI approach. The overall 

153 accuracy of visual interpretation was higher than that of supervised classification, which could be 

154 useful to estimate seagrass species mapping. The results also showed that H. pinifolia and H. 

155 uninervis were distributed on sandy clay and seashell substrates while E. acoroides was 

156 distributed only on sandy areas.

157

158 Discussion

159 1. Aerial photography using UAV is suitable for seagrass detection in a small area. Aerial 

160 photographs taken from a very low altitude (less than 500 meters), result in higher spatial-
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161 resolution than satellite imagery and have no cloud-cover problems (Dekker et al., 2007). A 

162 UAV, however, has a short flight time of about 20 minutes. Other limitations come from water 

163 reflection and surface waves that obscure underwater objects, including seagrass beds.

164 2. Aerial photographs with VARI can be used to classify only two types of seagrass, 

165 namely short-leaved and long-leaved types due to the differences of their morphology (Marine 

166 and Coastal Resources Research and Development Center, The Eastern Gulf of Thailand, 2006). 

167 The stem length of H. pinifolia and H. uninervis (the short-leaved type) is approximately 5-24 

168 cm and the leaves range in length from approximately 0.6-1.25 cm. However, the stem length of 

169 E. acoroides (the long-leaved type) is approximately 30-150 cm and the leaf length is 

170 approximately 1.25-1.7 cm.

171 3. The overall accuracy of identifying seagrass by visual interpretation was better than by 

172 supervised classification. The results of supervised classification with VARI imagery were poor 

173 because some seagrass beds may have been concealed by coastal sediment. Visual interpretation 

174 can be more accurate because the eye of a human can detect a pattern and texture better than 

175 supervised classification. However, visual interpretation may be problematic for the classifier. 

176 The Object-based image analysis (OBIA) is a new classification technique. It is used to create 

177 objects by grouping pixels that have the same spectral characteristics together and extracting 

178 statistical features from them (Topouzelis & Papakonstantinou, 2016). The OBIA may provide 

179 better results than both visual interpretation and supervised classification.

180 4. In the future, UAVs will be used for more mapping purposes. The first advantage of 

181 UAVs is that the researcher can plan the observation area for mapping and conduct aerial 

182 photography at any time, which is useful for survey frequency and continuity. Aerial 

183 photography using UAV costs less than using satellite imagery (Perez, Aguera & Carvajal, 
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184 2013). In particular, aerial photography using UAV is not affected by cloud cover problems, 

185 which means that this technology can increase data availability.

186

187 Conclusions

188 The aerial photograph images taken for this study could clearly be used to classify 

189 seagrass species having different digital scores using the VARI approach. The overall accuracy 

190 of visual interpretation result (VARI) was higher than that of supervised classification result 

191 (VARI). Supervised classification (VARI) was useful for delineating seagrass beds, but not for 

192 identifying the seagrass species group. Visual interpretation (VARI) was useful for identifying 

193 the long-leaved and short-leaved type group. The supervised classification results were less 

194 useful in seagrass zone classification because of limitations of water reflection and surface 

195 waves. This problem obscures any underwater objects, including seagrass beds.

196

197 Recommendations

198 1. The problems of surface water reflection in aerial photography may be minimized by 

199 applying a polarizing filter to the camera or sensor.

200 2. The newer drone (UAV) technology may increase image resolution and flight time, 

201 which will allow them to cover a larger area per flight and take less time for surveys.

202 3. In case of windy days, the researcher must reduce the flight time because the UAV 

203 needs more energy to return to its home position.

204
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Figure 1

Workflow of aerial photograph analysis for seagrass species classification.
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Figure 2

Aerial photographs of the area, which were taken on 4 July 2017
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Figure 3

A VARI image was calculated using aerial photographs.
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Figure 4

Comparison of VARI images from the selected study areas were compared with the true

color images by seagrass leaf type.

(A) short leaves were shown in the natural color composite image. (B) short leaves were

shown in the VARI image. (C) long leaves were shown in the natural color composite image.

(D) long leaves were shown in the VARI image.
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Figure 5

Location and sampling points map of the study area
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Figure 6

Supervised classification map of the study area
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Figure 7

Visual interpretation map of the study area
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Table 1(on next page)

Comparison of overall accuracy and kappa coefficient using different classification
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User’s accuracy (%) Producer’s accuracy (%)
Classification 

method Long 

leaves

Short 

leaves

other Long 

leaves

Short 

leaves

other

Overall 

accuracy 

(%)

Kappa 

Coefficient

Supervised 

Classification
41.03 83.33 33.33 80.00 26.32 62.50 46.97 0.438

Visual 

interpretation
89.74 83.33 80 92.11 90.91 70.59 86.36 0.809

1
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