
Reusing microarray clinical data  

from a complex disease with bioinformatics tools 

 

Eugenio Del Prete1,2,3, Angelo Facchiano2, Pietro Liò3 

 

1 Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 83100 Potenza, Italy  

2 National Research Council, Institute of Food Science (CNR-ISA), via Roma 64, 85100 Avellino, Italy 

3 Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, CB3 0FD Cambridge, UK 

Email of Corresponding author: eugenio.delprete@unibas.it; eugenio.delprete@isa.cnr.it  

 

 

Abstract 

Clinical bioinformatics, translational bioinformatics and personalised medicine are connected by the common 

task of analysing and integrating clinical data and results, in order to find important biomarkers related to 

pathologies and facilitate their prediction, diagnosis and treatment. New technologies provides the possibility 

to have more and more clinical data available in online databases. This data can be reused for studying complex 

disease from novel point of views. This work show how it is possible considering online microarray data from 

coeliac disease and some of its comorbidities, combining both the data and the results. The main goal is the 

extraction of common evidences among the selected pathologies, from genes to different kinds of functional 

annotation, showing which biological processes are more involved in these autoimmune disorders and 

quantifying the similarity between coeliac disease and its comorbidities. The pipeline of the work is developed 

in R language, and it is semi-automated. Methodologically, the advantage of this work is the possibility of 

performing the entire analysis starting from a different pathology; clinically, scientists can have the possibility 

of using data already published to highlight old and new evidences, with the possibility of improve the 

knowledge on a complex disease according to the availability of new microarray data. 

 

Introduction  

Clinical bioinformatics deals with the elaboration of clinical data by using bioinformatics methodologies. The 

data are a set of miscellaneous information related to the patients, collected and made available from 

physicians and researchers. The main goal is the extraction of latent knowledge about a disease that is hard to 

obtain with standard techniques of analysis. The underlying features can improve not only the strategy to cope 

with a selected pathology, but even provide some branches to other diseases connected to the primary [1]. 

Clinical bioinformatics mostly concerns the theoretical aspects about the integration of clinical data, by means 

of bioinformatics methodologies and tools, to understand biological mechanisms and design suitable therapies. 

Starting from this prospective, clinical bioinformatics should help physicians in dealing with omics data and 

support the researchers in reusing them to find new evidences. The design of the pipeline and the choice of 

the bioinformatics tools are, therefore, two of the main key points in clinical bioinformatics. Translational 

bioinformatics and personalised medicine are terms strictly related to clinical bioinformatics. Without entering 

into details, translation bioinformatics can be interpreted as synonymous of clinical bioinformatics, with 

particular emphasis on storage, analysis and interpretation of biomedical data, e.g. genomic data, in order to 

enhance all the fields of health management [2]. An intelligent application of bioinformatics on healthcare, 

essentially, reduces costs and improves outcomes, facilitating a predictive and preventive medicine [3] 
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The availability of data from new high-throughput technologies and the increasing computational power 

provide the possibility of improve tools and methods that clean, aggregate, integrate and analyse multi-omics 

data. The idea is considering each omic field as a layer, searching for the principal interconnections inter/intra 

layers, in order to model biological system, and generate findings, such as clinical outcomes, useful for 

improving personalised medicine [4]. Several omics challenges cope with the comparison of two biological 

states, usually two main phenotypes, which need to be clustered by their features data, in order to understand 

underlying differences. Determining these states means revealing the causation of a system response, a very 

big challenge in bioinformatics and biostatistics analyses [5]. 

A complex disease is a phenotype caused by many individual gene events, with an important influence from 

the environment. Briefly, complex disease can be resumed with few points: a) caused by a combination of 

genetic, environmental and lifestyle factors; b) heritable, even if it has not simple patterns of inheritance; c) 

the insurgence or the transmission are difficult to predict; d) complicated way of treatment. Difficulties in 

complex diseases are in characterising genes and their interaction in a pathophysiology context [6]. The 

identification of important genes in complex diseases can provide precious evidences about disease 

pathogenesis and help in therapeutic treatment, indexing the primary cause of the disease and not only the 

surface symptoms. The discovery of genetic factors can be transformed in the use of biomarkers for patients 

clusterization and prognostic categorization. Moreover, if these genetic factors are present at the birth, it can 

be possible to take immediately action [7]. Coeliac disease is a pathology identified in the small bowel that 

can be described with five principal keywords: 1) autoimmune, the immune system has an abnormal reaction 

against a normal body part; 2) inflammatory, the immune system tries to block the inflammation triggering 

and repair the damage; 3) systemic, there is a high probability of co-occurrence (comorbidity) of other 

autoimmune disease localised in many parts of the body; 4) complex, as previously explained; 5) 

multicomponent, with an environmental (triggering) component, the gluten, and a genetic component, 

particular kinds of haplotypes in HLA-DQ cell surface receptor protein [8,9]. 

The main goal of the work is reusing coeliac disease online data together with some of its comorbidities online 

data, in order to strengthen known evidences and find new ones, with focus on which genes and ontology 

terms can be assumed as the most important biomarkers for the selected pathologies.  

 

Methods 

Microarray 

Nowadays, microarray technology is still one of the most used in molecular biology, with the advantage of 

analyse more than one gene at time. In a nutshell, microarray is a technology which analyses the expression 

of thousands of genes, in a quantitative way. Each spot in a rectangular microarray contains pieces of DNA 

from a particular gene. Samples to analyse consist of mRNA copies that can bind to DNA pieces, i.e. the gene 

from the transcribed mRNA is highly expressed.  The quantification is possible by using fluorescence or 

radioactive tags, which highlights the bind of multiple copies [10]. The Gene Expression Omnibus (GEO) is 

one of the most important public online repository for microarray, next generation sequencing (NGS) and 

other high-throughput data, with a prevalence of gene expression data [11]. The cooperation among microarray 

data, statistical methods and R language is reported in many scientific work, such as in [12]. 

Gene Set Enrichment Analysis and Semantic Similarity 

Gene Set Enrichment Analysis (GSEA) is a set of statistical methods to establish if a group of differential 

expressed genes (DEG), among two or more phenotypes, are effectively describing differences in expression. 

In other words, GSEA provides the statistical significance on the genes expression between two conditions or 

states, usually sick individuals and healthy control, and the identification of gene sets previously considered 

unrelated [13]. A list of advices is presented: getting and cleaning data process is necessary before performing 

GSEA; select a suitable annotation (e.g., pathways, PPI network or GO), coherent with biological 
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expectations; integrate different annotations for a robust knowledge in gene function, checking if they are 

upgraded; filter genes in a proper way (small or large gene set); control the mapping between the original 

source (e.g. SNPs, miRNAs) and the genes; choose a suitable GSEA method and control the statistical 

evaluations; provide details on gene sets and statistical algorithms; report the biological context to facilitate 

the interpretation of gene set annotation; select good visual representation. 

A complex disease can be thought as system with a number of redundant components: if a subset of these 

components are defective, disease state occurs. The genes are the components, and a subset of them is more 

important than single genes in analysing a disease. One perspective of similarity concept among diseases is to 

share underlying molecular process. Relation between symptoms and shared genes are reported in scientific 

literature, but many diseases with different symptoms can have gene sets in common. Functional-based 

methods of semantic similarity generally associate a set of biomolecules (e.g. genes) to each disease and 

compare the sets for quantifying the similarity [14]. Wang’s method determines the semantic similarity of two 

terms (genes, Gene Ontology or Disease Ontology) based on both the locations of these terms in a hierarchical 

graph and their relations with their ancestor terms [15]. This method is a hybrid approach, because each edge 

is weighted according to reported relationships and the semantic contribution of all the common ancestors are 

summed for each term (normalised with total semantic contribution of ancestors) [16]. 

Overview on the pipeline  

The pipeline proposed in Figure 1 has been developed in R language, with the libraries (packages) downloaded 

from Bioconductor online repository [17]. 

 

Figure 1. Pipeline of the work on a complex disease. The R packages downloaded from Bioconductor online repository and used 

for the integration and analysis of data are reported in red for each step. 

Briefly, the selection of datasets is up to the user, but they can be downloaded inside the pipeline or recall from 

a local folder. Selection criteria should be discussed: in this work, microarray data with at least 8 samples 

(sick, healthy and treated) have been chosen. The second step is the extraction of the DEG from the comparison 

of the two states, and the third step is the application of GSEA to these genes. The fourth step is the calculation 

of the similarity among the datasets, by using DEG, related GO terms and Disease Ontology terms (previously 

provided inside the script). Moreover, the DEG are used for an enrichment with functional annotations from 

KEGG database [18]. Finally, the results are collected in form of table, GO terms tree, similarity matrix and 

bubble plot. 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27398v1 | CC BY 4.0 Open Access | rec: 30 Nov 2018, publ: 30 Nov 2018



Results  

Selection of datasets 

The microarray datasets selected from GEO on coeliac disease are 7, divided into 10 different comparisons. 

The studies are of array type, simple or from reverse transcriptase polymerase chain reaction (RT-PCR), with 

samples extracted from peripheral blood or intestinal biopsy. The two condition considered as control are 

healthy individuals or gluten free diet (GFD) treated individuals. The microarray datasets selected from GEO 

on the comorbidities are 14, divided into 17 different comparisons. The selected comorbidities are: alopecia 

areata, arteritis, autoimmune thyroid disease, dermatomyositis, primary biliary cirrhosis, peripheral 

neuropathy, rheumatoid arthritis, and vitiligo. The studies are of array type, with samples extracted from skin 

biopsy, temporal artery biopsy, peripheral blood, skeletal muscle biopsy, and miRNA-mRNA profile. In order 

to perform the semantic similarity not only with genes and Gene Ontology terms, but also among all the entire 

functional hierarchies of the pathologies, Disease Ontology terms are extracted from the website 

http://disease-ontology.org/, with reference to the abovementioned diseases. 

 

Common evidences among coeliac disease and comorbidities 

The comparison of the differential expressed genes between the coeliac disease datasets and the autoimmune 

diseases shows that a group of genes is in common. A cluster network has been generated on the list of genes 

taking into account co-expression, consolidated pathways, co-localization, shared protein domain, predicted 

and physical interactions, using the online tool GeneMania [19]. The most important clusters are related to the 

pathways, involved in the immune system, chemokine and cytokine signalling, to pathologies, such as 

rheumatoid arthritis and influenza A, or to genes, such as CTLA4 and IL12. The comparison between Gene 

Ontology terms from coeliac disease list and autoimmune disorders list highlights the presence of terms in 

common, related to immune system, response to virus, and cytokine pathways (with focus on type I interferon).  

An enrichment with KEGG pathways applied on candidate genes highlights that some functional annotations 

have been already claimed, that is the involvement of natural kill cell and T cell, the signalling pathways from 

chemokines and cytokines, or the relationships with autoimmune thyroid disease and influenza A. Further 

functional annotations are: hepatitis C, herpes simplex infection, measles, NOD-like receptors signalling 

pathway, and prolactin signalling pathway. It is not straightforward to associate coeliac disease with hepatitis 

C [20], even if there can be a connection by means of HLA-DQ2, a secondary pathway with Sjogren’s 

syndrome, or an amino-acid sequence homologous to a gliadin epitope. In [21], herpes simplex has a co-

occurence in a patient with CD, but the correlation is not claimed in term of causality: probably the 

malabsorption of the nutrients is the trigger for a sort of immunodeficiency. A direct relationship between CD 

and measles is lacking in scientific literature, but pathway analysis and PPI network have highlighted common 

functional annotations between measles and rheumatoid arthritis, that is cytokine-cytokine receptor 

interaction, Jak-STAT signalling, T cell receptor signalling, and cell adhesion molecules [22], and all of them 

are involved in CD. Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are related 

to infections and immunity, by recognizing pathogen-associated and damage-associated molecular patterns: 

some SNPs and polymorphisms in NLRs subfamilies have a direct connection with CD [23]. Finally, prolactin 

acts not only as a hormone, but also as a cytokine, and prolactin levels are positively correlated with CD, 

indeed a GFD reduces these levels [24]. 

Finally, the semantic similarity applied on genes, Gene Ontology terms and Disease Ontology terms, after the 

selection of an appropriate threshold, highlights that coeliac disease is mainly connected to dermatomyositis 

and vitiligo, with further connections with primary biliary cirrhosis and alopecia areata, dictated by specific 

datasets and fold change thresholds.  

 

 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27398v1 | CC BY 4.0 Open Access | rec: 30 Nov 2018, publ: 30 Nov 2018



 

Discussion and conclusion 

The reuse of microarray datasets, with further bioinformatics and statistics tools, such as GSEA and semantic 

similarity, is important in finding new evidences by the integration and analysis of both data and results. In 

this case, functional annotations from biological process, pathways and disease have been extracted from the 

comparison between coeliac disease and selected comorbidities. In summary, the results concern immune 

system, inflammatory pathways and virus-related pathologies: all the three topics are coherent with the 

selected autoimmune diseases. Furthermore, the semantic similarity, applied on three different kinds of term 

(genes, Gene Ontology and Disease Ontology), shows how dermatomyositis and vitiligo are the closest 

pathologies to coeliac disease. The methodology and details on the results of this work are widely explained 

in [25]. 

It is important to underline that this work is data-driven, thus more datasets are taken into account, more robust 

are the results. Therefore, the implementation of other datasets, from coeliac disease and its comorbidities, is 

a suggested addition at the beginning of the pipeline. Furthermore, the pipeline is entirely in R language and 

can be modularised in a bigger workflow, in order to completely automate the process. For the clinicians and 

scientists, the availability of new omics data will offer the opportunity to apply the described bioinformatics 

pipeline for a more complete view of molecular mechanisms of other complex disease, with the ultimate aim 

of highlighting biomarkers from different levels (gene, ontology and disease) useful for the improvement of 

prediction, diagnosis and treatment of pathologies. 
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