
An open source software package for primality testing of

numbers of the form p2^n+1, with no constraints on the

relative sizes of p and 2^n

Tejas R. Rao Corresp.

Corresponding Author: Tejas R. Rao

Email address: tejas_rao@comcast.net

We develop an efficient software package to test for the primality of p2^n+1, p prime and

p>2^n. This aids in the determination of large, non-Sierpinski numbers p, for prime p, and

in cryptography. It furthermore uniquely allows for the computation of the smallest n such

that p2^n+1 is prime when p is large. We compute primes of this form for the first one

million primes p and find four primes of the form above 1000 digits. The software may also

be used to test whether p2^n+1 divides a generalized fermat number base 3.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

An open source software package for1

primality testing of numbers of the form2

p2n+1, with no constraints on the relative3

sizes of p and 2n
4

Tejas R. Rao5

ABSTRACT6

We develop an efficient software package to test for the primality of p2n +1, p prime and p > 2n. This aids

in the determination of large, non-Sierpinski numbers p, for prime p, and in cryptography. It furthermore

uniquely allows for the computation of the smallest n such that p2n + 1 is prime when p is large. We

compute primes of this form for the first one million primes p and find four primes of the form above 1000

digits. The software may also be used to test whether p2n +1 divides a generalized fermat number base

3.

7

8

9

10

11

12

INTRODUCTION13

Prime numbers are used in a large number of applications. For example, RSA authentication relies on14

large prime numbers and has numerous uses in cryptography (Ferguson, N. and Schneier, B. , 1994).15

Securing communications between computers and large networks rely on this research. The novel idea16

presented in the article is explored for feasibility of finding additional large prime numbers to aid in17

encryption.18

Only recently was the first polynomial time algorithm, the AKS, created for primes regardless of form,19

and it is still highly inefficient (Agrawal, M. and Kayal, N. and Saxena, N. , 2004). However, there20

are many specific forms of prime numbers with their own primality tests (Grantham, J. (2001)). Of21

these, some of the least computationally complex are the Proth test and the Sophie-Germaine test, for22

finding primes of the form k2n +1, k odd and 2n > k, and 2p+1, p prime, respectively (Matthew, G. and23

Williams, H. C. (1977), Dubner, H. (1996)). In addition to the efficiency of the tests, they are of special24

importance to Sierpinski numbers of the second kind.25

Sierpinski numbers of the second kind are odd numbers k where k2n +1 is composite for all n (Baillie, R.26

and Cormack, G. and Williams, H. C. (1981)). For large k, it is computationally prohibitive to test for the27

primality of k2n +1 without utilizing either Proth’s test or the Sophie-Germaine test. However, these tests28

restrict the numbers able to be tested to k2n +1 where n = 1 or where 2n > k (Matthew, G. and Williams,29

H. C. (1977), Dubner, H. (1996)). Thus, there is a unique need for an efficient algorithm for finding the30

primality of k2n +1 for n > 1 and 2n < k. In this paper, we introduce such an algorithm for numbers of31

the form p2n +1, p prime. Throughout this paper, p will refer to primes.32

METHODS33

The method section will be divided into two parts: the theory and the software package.34

Theory35

A necessary concept is that of multiplicative order. The multiplicative order of a modulo n is defined as36

the first positive integer m such that37

am ≡ 1 mod n.38

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

Alternatively, one may think of multiplicative order as the first m such that am −1 is divisible by n. For a

prime p, we take the definition of Legendre’s symbol,

(
a

p

)
≡ a

p−1
2 mod p. (1)

Also written as (a|p), its possible values are contained in the set {−1,0,1}. Additionally, we utilize

Gauss’s quadratic reciprocity,

(
a

p

)
= (−1)

p−1
2

a−1
2

(p

a

)
, (2)

provided both a and p are prime (Lemmermeyer, F. (2000)). Proth’s Theorem is well known: where39

P = k2n +1, k odd, and 2n > k,40

a
P−1

2 ≡−1 mod P ⇐⇒ P prime,41

for all a where (a|p) = −1. The theory section extends a similar criterion to that of Proth’s theorem42

for all numbers of the form p2n +1, n > 1. Also, we utilize the definition of primover numbers found43

in (Shevelev, V. (2012)). Primover numbers in a base are numbers whose factors share the same44

multiplicative order modulo that base. Recognize that primover numbers are a type of probable prime45

(may be composite or prime). We furthermore denote GF(a,z) = a2z
+1, the generalized Fermat numbers46

of base a. Finally we take the following two lemmas from (Shevelev, V. (2012)) and (Lemmermeyer, F.47

(2000)), respectively.48

Lemma 1. All factors of GF(a,z) are primover in base a with 2z+1 as the multiplicative order of a49

modulo every factor.50

Lemma 2. Where r is the multiplicative order of a modulo N, r|z if and only if N|az −1.51

Let R = p2n +1, p > 3 prime and n > 1.52

Proposition 1. For all such R,53

3
R−1

2 ≡−1 mod R ⇐⇒ R is prime or R divides GF(3,n−1) and is primover.54

For necessity, first assume R is prime. We can also assume 3 ∤ R, because then the equivalence above

would not hold. Since p > 3, we thus have that k ≡ ±1 mod 3 and 2n ≡ ±1 mod 3. We cannot have

k 6≡ 2n mod 3, because then 3|R. Therefore,

R ≡ 1+1

≡−1−1

≡−1 mod 3.

This means that (R|3) =−1, by Equation 1. Additionally, we have R ≡ 1 mod 4 since n > 1. This means

we can write R = 4m+1, for m ∈ N. Using Equation 2,

(
3

R

)
= (−1)

3−1
2

R−1
2

(
R

3

)

= (−1)(1)
4m
2 (−1)

= (−1)2m+1

=−1.

Since we assume R is prime, the necessity for prime numbers follows from Equation 1. For the second55

part of the necessity, if R is composite but divides GF(3,n− 1), the order of 3 modulo f is 2n, for all56

factors f of R, from Lemma 1.57

2/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

For sufficiency, we assume R is composite and does not divide GF(3,n−1). Due to the conditions, we58

have 3R−1 ≡ 1 mod R. Therefore, the multiplicative order of 3 mod R divides R− 1 = p2n but does59

not divide p2n−1 by Lemma 2 and the conditions specified in the theorem. The multiplicative order is60

thus precisely 2n. Furthermore, 3
R−1

2 ≡ −1 mod R implies that all factors of R divide 3
R−1

2 + 1. This61

means that no factors divide 3
R−1

2 − 1. But since the order of 3 modulo R is 2n, all factors of R must62

therefore share this order. Therefore all of the factors f of R have multiplicative order of 3 modulo f as63

2n. Therefore we can write64

32n
−1 = (32n−1

−1)(32n−1
+1)≡ 0 mod R.65

and deduce that 32n−1
+1 ≡ 0 mod R by Lemma 2. We arrive at a contradiction: a composite solution66

must divide GF(3,n−1). Since all divisors of Fermat numbers are primover, we prove the conditions.67

Remark 1. If the conditions of Proth’s theorem are satisfied and/or if p > 1/2(32n
+1), we know R is68

prime iff it satisfies the above condition.69

Remark 2. We can alternatively check that the number R is not a Fermat factor of GF(3,n−1) to prove70

that R is prime after it passes the initial test.71

Code72

First, it is necessary to understand and utilize the BigInteger Java class, which is a class of immutable,73

arbitrary-precision integers (Oracle (n. d.)). In addition to handling arbitrarily large integers, the class also74

contains multiple optimization techniques for modular multiplication, such as the Schönhage–Strassen75

algorithm.76

Next, we must utilize repeated modular exponentiation to find the large power of 3, for any number with77

over a thousand digits will overload most systems as an exponent. By repeatedly squaring and reducing78

modulo R at each step, one can calculate 32n
mod R:79

public static BigInteger result (BigInteger base, int n, BigInteger R) {80

for (int i = 0; i < n; i++) {81

base = base.pow(2).mod(R);82

}83

return base;84

}85

It is a well known result that every integer can be written as the sum of powers of two. To write a number86

in binary, simply decompose it as the sum of powers of 2 as follows. The code returns an array of the87

powers of 2 that make up R from least to greatest. For example, if R = 11, then the method will return88

[0,1,3], because 11 = 23 +21 +20.89

private static Integer [] findpowers (BigInteger R) {90

int c = 0;91

ArrayList<Integer> list = new ArrayList<Integer>();92

String r = R.toString(2);93

for (int i = 0; i < r.length(); i++) {94

if (r.charAt(i) == ’1’) {95

list.add(r.length()-(i+1));96

}97

}98

arrlis = list.toArray(new Integer[list.size()]);99

Integer[] arrlisFlipped = new Integer[arrlis.length];100

for (int i = arrlis.length - 1; i >= 0; i--) {101

arrlisFlipped[c++] = arrlis[i];102

}103

return arrlisFlipped;104

}105

3/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

This methodology becomes useful in discerning 3
R−1

2 mod R, which is what we must compute. We106

find the binary form of R−1
2

and then calculate and multiply together 3 to the resulting powers of 2. For107

example, we can simplify as follows:108

311 mod R = (323
mod R)∗ (321

mod R)∗ (320
mod R) mod R.109

Therefore, after finding the array of powers of two, we implement modular exponentiation through110

repeated squaring to find 3
R−1

2 mod R as desired.111

For sufficiently large R, this process becomes prohibitively slow. When searching for large primes of the112

form p2n +1, many values of n and p must be tested. It is therefore necessary to quickly rule out multiple113

values of n for any given p. To do this, we implement trial division by the first two million primes for each114

p2n +1 before implementing the main test, as many composites are found and ruled out by this method.115

The two expensive operations are repeated squaring and the modular multiplication of 3 to the powers of116

two. To account for this, multithreading is utilized (Intel (n. d.)). In the process of calculating 32a
mod R,117

where a is the highest power of two returned in findpowers(R−1
2

), we save all of the 32z
mod R that have118

z as a value returned from the findpowers method. Because of multi-threading, we can concurrently119

calculate 32a
mod R and multiply each 32z

mod R we save together. Since there will always be a greater120

than or equal amount of modular multiplications in calculating 32a
mod R relative to multiplying each121

32z
mod R together, the whole process will complete in the time it takes to do the one repeated modular122

squaring. In the most extreme situation, when calculating 3M mod R, where M is a Mersenne number123

(one less than a power of two), there are a+1 powers of two in the binary representation of M and thus a124

modular multiplications of 3 to the powers of 2 returned by the findpowers method, the same amount of125

multiplications as calculating 32a
mod R via repeated modular squaring. In this case, if multithreading126

was not used, the time of completion would be roughly doubled. Regardless, in all cases, multithreading127

saves a significant amount of time that positively correlates with the number of powers of two in the128

binary representation of the input.129

We implement similar methodology to check Remark 2 for all numbers that pass the original test. It is left130

up to the user to determine whether Remark 1 is satisfied, if they choose to do so.131

RESULTS132

The theory and methodology culminated in the package referenced below. Its code repository can be133

found in Table 2.134

Figure 1. User interface for primality testing software package.

The first button supplies the primary test: those that pass the test are either prime or primover and divide a135

specific base 3 generalized Fermat number. To test for numbers of the form p2n +1, one must first specify136

4/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

the original prime p. Since these values are often too large for the integer class, they must be specified137

with an integer multiplier, base, pow, and offset in the following format:138

multiplier ∗ basepow + o f f set.139

This is readily accomplished for most of the largest known primes, such as Proth primes and Mersenne140

primes.141

The next row allows for specification of the range of n one would like to test. If values are left unspecified,142

then the test will range from 2 and go on to the maximum integer value Java can store. Additionally, one143

can specify whether the program should stop after finding the first primover number when clicking the144

primover test button. After running, the values of n in the specified range that make p2n +1 primover will145

be returned, as well as the number of digits in each primover p2n +1.146

The second button specifies whether p2n +1 is guaranteed prime or primover and divides GF(3,n−1),147

given that the number passed the primary test. One inputs the original prime p as before, as well as a148

value of n returned from the primary test. The software will return true if it divides GF(3,n−1) and false149

if it does not and is therefore guaranteed prime provided it passes the primary test.150

In a preliminary test of the first 1,000,000 primes p, 696,281 of the first 1,000,000 primes had some151

p2n +1, 2n < p that was prime. The other 303,719 are possible Sierpinski numbers of the second kind.152

Some of them, such as 10223, are proven not to be. Furthermore, all of these primover numbers were153

shown not to divide GF(3,n−1), meaning they are all prime by Remark 2 and not Fermat Divisors base154

3. The list of these primes is provided in the supplemental information section.155

Additionally, in the first week of use, a preliminary result was achieved: four primes above one thousand156

digits were found. Note that, once again, all primes that passed the primary test were guaranteed prime by157

the second.

Original Prime p Exponent n # of Digits

(305136484659)211471 +272 +1 5659 5169

(305136484659)211399 +1 72 3465

(699549860111847)24244 +11 2745 2119

(699549860111847)24244 +7 1030 1603

Table 1. Some primes of the form p2n +1, 2n < p.

158

Software Specifications159

The summary of the main characteristics, availability, and requirements is given in the following table.160

RPrimes Package

Language Java

Operating system Platform independent; requires Java distribution

Dependencies NONE

Software location DOI: 10.5281/zenodo.1560703

Code repository https://github.com/tejasrao42/RPrimes

License MIT

Table 2. Software characteristics, requirements and availability for RPrimes package.

DISCUSSION161

Due to the similarity of this test to Proth’s test, the computational complexity of this test is Õ(log2(N)).162

More importantly, only one modular exponentiation is required. This efficiency makes it as efficient as163

5/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

Proth’s theorem for testing for the largest primes.164

This inclusion bridges the gap between Sophie-Germain and Proth primality tests. Utilizing all three tests,165

one can now determine the first n for which p2n +1 is prime for previously prohibitively large primes p,166

which can greatly improve sequences such as (Sloane, N. J. A. (n. d.)). Additionally, if no n are found167

that make p2n + 1 prime, one has found a large prime p that is under suspicion of being a Sierpinski168

number of the second kind. Usually, small numbers such as 10223 were computationally thought to be169

Sierpinski numbers of the second kind partly because for all 2n < p, the numbers were small enough170

to check for primality using trial division, and no primes were found. Recall that for numbers 2n > p,171

Proth’s test applies. For large p, one cannot use trial division to check primality when 2n < p, so our test172

is of unique significance in those circumstances. Combined with the aforementioned tests, all p2n +1173

may be checked for primality, and large primes p can now be computationally put under suspicion of174

being Sierpinski numbers of the second kind.175

Furthermore, the first million primes p have no p2n +1 that pass the primary test but factor a Generalized176

Fermat number base 3. This additionally held true for the four prime numbers found above 1000 digits.177

The result hints at the overall efficiency of the primary test: it is likely passed predominantly by primes178

numbers and only rarely by composite numbers. For each n, there can only be a small, finite amount179

of p2n + 1 that pass the primary test, but not the second, because they all must factor GF(3,n− 1).180

Furthermore, these numbers (if they exist) may be identified through online resources through finding a181

factorization of GF(3,n−1). For these n, the primary test becomes not only a test for primover numbers,182

but moreover a primality test independent of having to compute the second test for all p where p2n +1 is183

not found in the factorization of GF(3,n−1).184

ACKNOWLEDGMENTS185

I would like to thank the editor and the reviewers for valuable comments contributing to the overall186

improvement of the manuscript.187

REFERENCES188

Agrawal, M. and Kayal, N. and Saxena, N. 2004. Primes Is in P. Annals of Mathematics 160:781-793189

Baillie, R. and Cormack, G. and Williams, H. C. 1981. The Problem of Sierpinski Concerning. Math.190

Comp. 37:229-231191

Dubner, H. 1996. Large Sophie Germain primes. Math. Comp. 65:393-396192

Ferguson, N. and Schneier, B. 1994. Practical Cryptography. New York, Dover Publications193

LCCN:64013458194

Grantham, J. 2001. Frobenius pseudoprimes. Math. Comp. 70:873-891195

Intel. n. d. Intel Hyper-Threading Technology, Technical User’s Guide. Intel196

Lemmermeyer, F. 2000. Reciprocity Laws: from Euler to Eisenstein. Springer ISBN-13:9783642086281197

Matthew, G. and Williams, H. C. 1977. Some new primes of the form. Math. Comp. 31:797–798198

Oracle. n. d. An improved BigInteger class which uses efficient algorithms, including Schönhage–Strassen.199

Oracle200

Shevelev, V. et al. 2012. Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers.201

Journal of Integer Sequences 15202

Sloane, N. J. A. n. d. Smallest m such that (2n−1)2m +1 is prime, or −1 if no such value exists.. The203

On-Line Encyclopedia of Integer Sequences A046067204

6/6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27396v1 | CC BY 4.0 Open Access | rec: 29 Nov 2018, publ: 29 Nov 2018

http://www.ams.org/journals/mcom/1982-39-159/S0025-5718-1982-0658232-0/
http://www.ams.org/journals/mcom/1996-65-213/S0025-5718-96-00670-9/home.html
https://catalog.loc.gov/vwebv/holdingsInfo?searchId=3101&recCount=25&recPointer=0&bibId=12849868
https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/
https://web.archive.org/web/20100821074918/http://cache-www.intel.com/cd/00/00/01/77/17705_htt_user_guide.pdf
https://isbnsearch.org/isbn/9783642086281
https://www.jstor.org/stable/2006013?origin=crossref
https://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
https://cs.uwaterloo.ca/journals/JIS/VOL15/Castillo/castillo2.pdf
http://oeis.org/A046067

