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Plant-associated microbes are critical players in host health, fitness and productivity.

Despite microbes9 importance in plants, seeds are mostly sterile, and most plant microbes

are recruited from an environmental pool. Surprisingly little is known about the processes

that govern how environmental microbes assemble on plants in nature. In this study we

examine how bacteria are distributed across plant parts, and how these distributions

interact with spatial gradients. We sequenced amplicons of bacteria from six plant parts

and adjacent soil of Scaevola taccada, a common beach shrub, along a 60 km transect

spanning O»ahu island9s windward coast, as well as within a single intensively-sampled

site. Bacteria are more strongly partitioned by plant part as compared with location. Within

S. taccada plants, microbial communities are highly nested: soil and rhizosphere

communities contain much of the diversity found elsewhere, whereas reproductive parts

fall at the bottom of the nestedness hierarchy. Nestedness patterns suggest either that

microbes follow a source/sink gradient from the ground up, or else that assembly

processes correlate with other traits, such as tissue persistence, that are vertically

stratified. Our work shines light on the origins and determinants of plant-associated

microbes across plant and landscape scales.
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28 Abstract

29 Plant-associated microbes are critical players in host health, fitness and productivity. 

30 Despite microbes9 importance in plants, seeds are mostly sterile, and most plant microbes are 

31 recruited from an environmental pool. Surprisingly little is known about the processes that 

32 govern how environmental microbes assemble on plants in nature. In this study we examine how 

33 bacteria are distributed across plant parts, and how these distributions interact with spatial 

34 gradients. We sequenced amplicons of bacteria from six plant parts and adjacent soil of Scaevola 

35 taccada, a common beach shrub, along a 60 km transect spanning O»ahu island9s windward 

36 coast, as well as within a single intensively-sampled site. Bacteria are more strongly partitioned 
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37 by plant part as compared with location. Within S. taccada plants, microbial communities are 

38 highly nested: soil and rhizosphere communities contain much of the diversity found elsewhere, 

39 whereas reproductive parts fall at the bottom of the nestedness hierarchy. Nestedness patterns 

40 suggest either that microbes follow a source/sink gradient from the ground up, or else that 

41 assembly processes correlate with other traits, such as tissue persistence, that are vertically 

42 stratified. Our work shines light on the origins and determinants of plant-associated microbes 

43 across plant and landscape scales.

44

45 Introduction
46

47 Many of what we formerly considered <plant= traits we now know to be the direct 

48 or indirect result of a consortium of microbial species that colonize the inside and 

49 outside of plant tissues. Known as the phytobiome, these microscopic organisms from 

50 throughout the tree of life play critical roles in plant chemistry, health, fitness and 

51 phenology (Glick, 2014; Bulgarelli et al., 2015; Hacquard et al., 2015; Panke-Buisse et 

52 al., 2015). Given microbes9 central role in plant health, it is remarkable that most 

53 microbes are not inherited by birthright (like chloroplasts or mitochondria). Instead, most 

54 hosts emerge physically decoupled from their microbiomes, which are accumulated 

55 from the surrounding environment (Hodgson et al., 2014). This process may convey 

56 some advantages, as it enables a population to adapt to a local habitat more quickly 

57 than would be possible relying on the comparatively slow process of evolution (Lau and 

58 Lennon, 2012). For this reason, a plant9s location can be a strong determinant of 

59 phytobiome composition (O'Rorke et al., 2015). However, microbial composition can be 

60 conserved within plant parts across multiple host species and environments (Lundberg 

61 et al., 2012; Ottesen et al., 2013; Bodenhausen et al., 2013; Lambais et al., 2014; Leff 
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62 et al., 2015; Müller et al., 2016; Laforest-Lapointe et al., 2016). Two leaves, though 

63 oceans apart, might nevertheless recruit a similar consortia of microbes. 

64 While researchers have expended considerable effort to study the assembly 

65 dynamics driving phytobiome structure and diversity, researchers have yet to uncover 

66 from where these microbes derive and which processes govern their assembly on 

67 plants. Here, we examined how two factors: plant part identity and geographic distance, 

68 partition microbial communities. We chose these variables because they represent 

69 strongly deterministic and stochastic processes respectively, and because they are 

70 reasonably easy to isolate on a volcanic island when aspect and elevation are held 

71 constant. 

72 Factors contributing to differences among plant parts are highly deterministic and 

73 form microhabitats that vary considerably at small spatial scales. Rhizospheres, for 

74 example, combine physiochemical properties of soils with nutrient and moisture inputs 

75 from plants, whereas leaf surfaces can be hydroscopic and nutrient poor. Nectar 

76 producing flowers, on the other hand, often provide a sugar-rich, low water potential, 

77 acidic habitat. Tissue longevity further differentiates plant microbes. Whereas stems 

78 may persist for the entire life of a plant, most other tissues have more limited lifespans. 

79 In some species (i.e. Hibiscus trionum, the so-called flower-of-an-hour), flowers are 

80 open for less than a single day, a seemingly short timeframe in which to recruit and 

81 establish a resident microbiome. Distance, in contrast, serves as proxy for dispersal 

82 limitation (Peay et al., 2012) or priority affects (Kennedy et al., 2009; Cadotte et al., 

83 2012), which are stochastic environmental drivers assuming that other environmental 

84 conditions are held constant.
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85 Further, we sought to determine whether within-plant distributions of microbes 

86 are consistent with microbial source sink dynamics. We hypothesized that soil and 

87 rhizosphere microbial communities serve as a reservoir for above-ground plant parts. 

88 By conceptualizing plant parts as nodes in a bipartite network we can determine 

89 whether microbial communities in ephermeral and late-emerging plant parts are 

90 compositionally nested within early-developing and long-lived plant parts, consistent 

91 with the hypothesis that a plant effectively inoculates itself from the ground up. 

92 To address these questions, we examined how distance and plant part identity 

93 structure the surface bacteria of beach Naupaka, Scaevola taccada, a widespread 

94 littoral shrub native to Hawai»i and much of the tropics. Sampling at three scales (within 

95 plant, within site, and across island) we examine how distance and plant part shape 

96 phytobiomes, and make comparisons with adjacent soil communities that assemble 

97 independent of a biological host. Using a multivariate modeling framework, we 

98 determine the extent to which community variance is partitioned by site and by plant 

99 part.  Finally, to gain insight into phytobiome source sink dynamics, we determine 

100 whether microbial communities are compositionally nested with respect to plant part.  

101         We find that communities appear to be more sensitive to within-plant location, 

102 than to site differences. We find, unsurprisingly, a split between below-ground and 

103 above-ground samples, and distinct community structure on vegetative and 

104 reproductive plant parts, suggesting that plant part function and longevity may 

105 contribute to these differences. Phytobiomes within plants are compositionally nested, 

106 and demonstrated hierarchical structuring consistent with expectations of soils as plant 

107 microbial reservoirs. 
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108

109 Materials & Methods

110

111 Sampling

112 We selected our plant species and sites to minimize environmental 

113 heterogeneity.  S. taccada is an evergreen shrub, native to Hawai»i, which produces 

114 fruits and flowers across seasons.  It is also one of the most common littoral plants on 

115 Oahu9s East (windward) shore, enabling sampling at regular spatial intervals. The 

116 coastal habitat was selected because local climates at this elevation are minimally 

117 influenced by land topography, and because all coastlines are accessible to the public 

118 by virtue of state law. All samples were collected on January 26, 2017. A single S. 

119 taccada individual was sampled from each of 10 locations along the windward shore of 

120 O»ahu at 6 km intervals (Fig. 1). Generally, there were few individuals containing both 

121 reproductive parts (fruits and flowers) at a given site, and if more than one was present 

122 the sampled individual was selected haphazardly. Within the Kailua site, nine additional 

123 individuals were selected haphazardly within a 50 m2 plot. Plant locations were 

124 recorded with a Garmin Rhino GPS. A single mature, disease-symptom free leaf, flower, 

125 fruit, stem and axil was sampled by swabbing with a sterile cotton swab that had been 

126 moistened with an alkaline Tris extraction buffer (containing EDTA and KCL; 

127 comparable to Extract-N-Amp solution Sigma Aldrich, St. Louis). At two locations we 

128 were unable to locate and sample flowers. Root (rhizosphere) samples were collected 

129 by selecting an area of the root with diameter 0.5-1.7cm, and buried 2-10 cm below the 

130 surface. Swabs of soil were taken within 10cm of the plant base, at a depth of 2-5 cm. 

131 Because soil was likely the most heterogeneous component of our study, bulk soil 

132 samples were also collected for soil description; including soil taxonomy and pH. Finally, 
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133 sterile swabs dipped in extraction solution were exposed to the air for approximately 20 

134 seconds as extraction negative controls. After sampling, swabs were immersed in 200 

135 ¿L extraction buffer and stored in a cooler until DNA extraction later in the day.  

136 Although soil is not technically a plant part, we refer to it as such when differentiating 

137 sample types above.

138  

139 Nucleic Acid Extraction and Library Preparation

140         Swabs were incubated in 50 ¿L of the extraction buffer at 65ºC for 10 minutes 

141 and at 95°C for an additional 10 minutes. After brief centrifugation, swabs were 

142 removed from the buffer, and 200 ¿L of 3% BSA was added to each sample. DNA 

143 extractions were purified and concentrated using a carboxylated paramagnetic bead 

144 solution. Briefly, 100 ¿L of gDNA was mixed with 80 ¿L of bead solution, immobilized 

145 with magnets, washed twice with 70% ethanol, and suspended in 30 ¿L of 0.1x TE 

146 buffer.

147

148 DNA library preparation and sequencing

149         PCRs targeted the v4 region of the 16S rRNA gene using the primers 515f and 

150 816r with overhangs complementary to a construct containing dual 8bp indices and the 

151 Illumina i5 and i7 adaptors following the standard Illumina 16S Metagenomic 

152 Sequencing Library Preparation protocol. The first and second PCRs contained twenty-

153 five and eight cycles respectively.  

154         Negative PCR controls were added to the library preparations. PCR products 

155 were purified and normalized to equimolar concentrations using the just-a-plate 96 PCR 
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156 Purification and Normalization Kit (Charm Biotech, San Diego, California, USA). 

157 Normalized PCR products were pooled and sequenced at the Hawai9i Institute of Marine 

158 Biology CORE Laboratory using the Illumina MiSeq V3, 600 cycle, paired-end protocol. 

159 Sequence data were deposited to the SRA as PRJNA385181.

160

161  Data processing 

162 Average reverse sequence quality scores declined to <25 after ca 150 bp and 

163 were, therefore, not further considered. Chimeras were detected and removed from 16S 

164 sequences using VSEARCH (Rognes et al., 2016). Sequences were filtered by length 

165 (75 bp min) and quality score (mean score 25) and demultiplexed within the QIIME 

166 environment (Caporaso et al., 2010). OTU binning at 97% identity and taxonomic 

167 assignments were conducted in QIIME9s <open reference= workflow using default 

168 parameters (Caporaso et al., 2010). Taxa that were not assigned to bacteria (mostly 

169 chloroplasts) were removed from datasets, as were OTUs represented by ten or fewer 

170 sequences. None of the extraction negative controls or the PCR negative controls 

171 produced sequence data.

172         Because of uneven sequencing depth across our dataset, data were down-

173 sampled to 1,000 reads per sample, a cutoff that included the majority of samples.  

174 Although there is no consensus about how best to treat uneven sampling depth, down-

175 sampling to a common depth is generally robust for multivariate comparisons of 

176 community compositions (Weiss et al., 2017).  Eighty-five samples containing greater 

177 than 1,000 reads were retained for subsequent analysis.

178
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179 Data Analyses   

180 To determine which factors (site and/or plant part) predicted community 

181 composition, binary Jaccard distances were used in a single PERMANOVA model 

182 (function <adonis= in the vegan package (Oksanen et al., 2013)) considering marginal 

183 values of both factors and their interactions.  In order to balance the number of samples 

184 among sites, a single individual plant was selected for the Kailua site. This analysis was 

185 repeated, including all samples from the Kailua site with qualitatively similar results. 

186 Because the analysis can be sensitive to dispersion of beta-diversity values, these were 

187 evaluated separately for plant parts. Following a globally significant RDA analysis 

188 showing that community dissimilarity was predicted by site, habitat and their interaction, 

189 a variance partitioning approach was used to determine the proportion of variance 

190 explained by each.

191         To address whether soil or plant parts might serve as a microbial reservoir for 

192 self-inoculation, we used two measures of nestedness, both of which indicate the extent 

193 to which OTUs present in species-poorer plant parts are contained in those with higher 

194 species richness. A bipartite matrix was calculated by summing all reads within each 

195 plant part and then downsampling to the lowest sample sum. We calculate the 

196 nestedness temperature (Atmar and Patterson, 1993), a popular, though older, method 

197 calculating nestedness as a range from 0 (perfectly nested) to 100 (perfectly random) 

198 based on hierarchical entropy order and presence absence data.  We also calculated 

199 nestedness based on overlap and decreasing fill (NODF; Almeida-Neto et al., 2008) 

200 scaled from 0 to 1.  Both were compared with a distribution of randomized null 

201 communities generated using the quasiswap method in vegan. Differences in 
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202 community membership among habitats were decomposed into nestedness and 

203 turnover components using the nestedbetajac function in vegan.

204         The extent to which certain plant parts <select for= microbes, was calculated 

205 using the network-wide H2 index (Blüthgen et al., 2006), which returns a value from 0 

206 (generalized) to 1 (specialized) based on potential associations given OTU abundance 

207 totals. Significant deviations from null expectations were quantified using a distribution 

208 of null community matrixes calculated using the quantitative r2dtable method in vegan in 

209 which marginal totals are maintained. We calculated the related d9 statistic (Blüthgen et 

210 al., 2006) to assess selectivity of individual plant parts.

211         To test for dissimilarity by distance patterns, binary Jaccard community 

212 dissimilarities were compared with geographic distances between samples using Mantel 

213 correlations (tests using Bray Curtis indices were qualitatively identical).  So that the 

214 intensively sampled Kailua site did not skew detected spatial structure, we randomly 

215 selected a single Kailua individual for analysis (Mantel correlations including all samples 

216 showed similar effect sizes, except for above ground plant parts, which no longer 

217 showed a significant pattern; Table S2). 

218         Indicator species analysis was calculated using the indicspecies package (De 

219 Caceres and Jansen, 2016) on single groups (multi-group combinations were 

220 suppressed due to the high number of OTUs). 

221

222 Results

223

224 Sequencing results

225         Illumina sequencing of the V4 region of bacteria 16S gene generated 15,354,523 

226 reads. Following demultimplexing, quality score filtering and chimera detection 
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227 8,901,385 bacteria reads remained.  Removal of OTUs identified as chloroplasts, and 

228 OTUs present in read abundances <10 resulted in 4,643,809 reads and 2,192 bacteria 

229 OTUs retained for subsequent analysis.

230  Specialization and nestedness of habitats

231         Bacteria were significantly more nested than null expectations (Table 1; Fig. 1) 

232 and nestedness contributed 44.7% of total between-sample dissimilarity. Nestedness 

233 hierarchy followed the vertical structure of the plant: below-ground samples contained 

234 the highest species richness, above-ground vegetative structures were intermediate, 

235 and reproductive structures were lowest in the hierarchy (Fig. 2). 

236 Microbes significantly specialized on particular plant parts. We examine the 

237 degree and nature of specialization across plant parts using a bipartite network 

238 architecture index, and also within plant part using an indicator species analysis. 

239 Network-wide degrees of specialization were high and 762 <indicator species= were 

240 statistically associated with plant parts (SI). The d9 statistic, which measures degree of 

241 specialization for individual habitats, showed that soil and rhizosphere were the most 

242 specialized parts.

243

244 Plant part and abiotic drivers of community composition

245         A PERMANOVA model demonstrated that both plant part and location shape S. 

246 taccada phytobiomes (Table 2), but that there was no interaction between those terms. 

247 Further examination of community partitioning demonstrates that plant part is a stronger 

248 determinant of bacteria community than location. Partitioning of variance, based on 

249 RDA analysis, demonstrated differences in the relative importance contributed by these 
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250 two variables. Plant part accounted for 88% of the explained variance (RDA, DF=50, 

251 F=1.33, P=0.043), although residual variance accounted for 81% of the total, suggesting 

252 that other unmeasured variables may be more predictive of community composition. 

253 NMDS ordination (Fig. 3) demonstrates that bacteria communities assorted into 

254 three principle groups associated with plant parts: belowground (soil and rhizosphere), 

255 mid-plant vegetative (stem and axil), and reproductive (fruit and flower).  Leaf samples 

256 are spread among the other above-ground plant parts. Dispersion of bacteria beta 

257 diversity (bacteria betadispersion ANOVA, DF=6, P=0.08; Fig. S1) did not differ 

258 significantly between any sample types, suggesting that results of the PERMANOVA 

259 analysis reflect differences in multidimensional community <location= rather than spread. 

260 Bacteria were strongly partitioned at the order level by plant parts (Fig. 4). Bacillales 

261 were ubiquitous and abundant in soil and leaf samples, whereas Rhizobiales and 

262 Actinomycetales were abundant across root and vegetative plant parts.

263         While site location was a strong predictor of compositional differences, tests of 

264 dissimilarity by distance for microbial community compositions showed mixed results. 

265 There was a strong distance-decay relationship for below-ground samples and the 

266 relationship for above-ground plant parts and all samples was weaker, though 

267 significant (Table 3). Although geographic distance was generally a poor predictor of 

268 microbial composition, site location strongly impacted community composition (Table 2). 

269 This may be due to a deterministic influence of environmental variables that were not 

270 accounted for in our study, including the influence of the surrounding vegetation. 

271

272 Discussion

273 Distribution of OTUs across the plant
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274         We show that the phytobiome composition of S. taccada is strongly shaped by 

275 plant part. Both community similarity and richness patterns are structured by plant parts: 

276 stem, axil, and reproductive parts were most similar to each other, rhizosphere samples 

277 were most similar to soil samples, and leaves were allied with above-ground parts more 

278 generally.  Segregation of microbial communities by plant part (Junker et al., 2011; 

279 Ottesen et al., 2013; Junker and Keller, 2015) and even within-individual part location 

280 (Leff et al., 2015) has been reported for bacteria previously. Notably, Leff and 

281 colleagues demonstrated that both fungi and bacteria are partitioned by plant part 

282 (seed, rhizosphere and root) among sunflower cultivars (2016). By examining 

283 differences among plant parts within a network context, however, we gain insight into 

284 the potential sources and sinks of plant microbes. 

285 We show that soil may be an important source for plant-surface microbiomes, 

286 including above-ground parts. Our analysis demonstrates that plant microbes are 

287 nested with respect to plant parts, that nestedness accounts for a large proportion of the 

288 among-sample diversity, and that below-ground parts (soil and rhizosphere) are at the 

289 top of the hierarchy. Even putative <soil= dwelling microbes, such as Bacillales, are 

290 found throughout the plant. These results suggest that soils may serve as an important 

291 source for plant-surface microbes, either through initial inoculation as the plant emerges 

292 from the ground, or repeated introduction via wind and water dispersal. An alternative 

293 hypothesis, that soils and plants could both be sinks from an alternative source (such as 

294 airborne bacteria) is also plausible could be tested via experimental manipulations. 

295         Despite nestedness patterns overall, each plant part contained a distinct subset 

296 of indicator bacteria that were not shared. These patterns suggest that distinct assembly 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27393v1 | CC BY 4.0 Open Access | rec: 28 Nov 2018, publ: 28 Nov 2018



297 processes may govern different plant parts. Pollinators, for example, are known to be 

298 effective vectors for microbes found in nectar and other plant parts (Herrera et al., 2010; 

299 Aleklett et al., 2014), although nectar yeasts are the best known examples. Less is 

300 known about the origins or mechanisms of inoculation of other plant parts.

301 Factors other than physiochemical plant traits also likely play a role in shaping 

302 phytobiomes. The strong division between below- and above-ground communities, for 

303 example, may result from dispersal limitation in addition to climatic differences. 

304 Furthermore, plant part longevity may play a role in compositional differences. Flowers 

305 and fruits, the plant parts with lowest species richness are also the most ephemeral, 

306 present on a plant for days to weeks. S. taccada flowers studied on the French 

307 Polynesian Island of Moorea, for example, remain open for an average of fewer than 

308 four days (Liao, 2008), seemingly scant time to recruit microbes from the environment.

309         

310 Plant microbial distributions over space

311         In microbial biogeography studies, distance between samples is generally a 

312 reliable predictor of microbial community dissimilarity, particularly among communities 

313 that are not attached to a macro-organism (Martiny et al., 2011; Tedersoo et al., 2014; 

314 Zinger et al., 2014), even at the scale of centimeters (Bell, 2010). The distance decay of 

315 plant-associated microbial similarity is comparatively less resolved compared with 

316 studies of <host-independent= substrates such as ocean, water, or soil. A positive 

317 pattern could be attributed to at least two factors and or their cumulative effects.  First, 

318 dispersal limitation could lead to clinal dissimilarity among communities by enabling 

319 <ecological drift= over relatively short timescales (Martiny et al., 2006). Second, 
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320 geographic distance could correlate with some environmental cline, which selects for a 

321 distinct adapted community.  Factors such as rainfall (O'Rorke et al., 2017), soil pH 

322 (Fierer and Jackson, 2006), soil nutrients, or even host genotypic clines (Bálint et al., 

323 2013) all contribute to community dissimilarity. 

324 Among plant-associated microbes, evidence for the dissimilarity by distance 

325 pattern is mixed. Redford and colleagues (2010) found little evidence of geographic 

326 structure in pine bacteria phyllosphere communities spanning continents, and Meaden 

327 and others (2016) found no evidence for dispersal limitation among Oak phyllosphere 

328 bacteria within a 20 ha plot. In contrast, Stone et al. (2000) found strong isolation by 

329 distance patterns among Magnolia phyllosphere bacteria located within 400 m of each 

330 other. Oono and colleagues (2017) found that low abundance pine needle fungal 

331 endophytes were spatially structured over ~100 km, but that high abundance 

332 communities were not.   

333 In our study, both above-ground and belowground bacteria were correlated with 

334 geographic distance (Table 3), although the latter relationship was stronger. Differing 

335 community turnover rates among plant parts could be attributable to different dispersal 

336 rates since airborne bacteria would presumably travel farther and more quickly due to 

337 prevalent trade winds compared to subsurface soil bound communities. Although there 

338 were no obvious environmental clines along our transect, microbes may have 

339 responded differently to additional unmeasured variables. Multiple studies show that 

340 bacteria are particularly sensitive to soil properties such as pH.  Substrates change 

341 rapidly over short distances from the high tide, and although pH did not covary in a 

342 linear fashion along the transect, pH was variable among sample sites.  At a single site 
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343 for this study, we sampled soils ranging from ph 5.28 to 8.65 (Table S1). Finally, 

344 differences in the distance decay relationship could be driven by interactions with the 

345 host plant. Obligacy or strong host selection of some community members, for example, 

346 could depress turnover if the microbe was required for growth and survival. 

347 Plant-associated microbes are critical players in plant fitness and health. Our 

348 work shows that while both stochastic and deterministic factors play a role in shaping 

349 surface phytobiomes, plant part is the most predictive, with nestedness patterns relating 

350 strongly to vertical stratification. Bacteria are highly differentiated across a plant, with 

351 distance playing a weak, though significant, role in community composition at the scale 

352 examined. Despite these patterns, we were unable to describe the majority of 

353 community variance in this system. Identifying environmental reservoirs for 

354 phytobiomes, particularly those sources for ephemeral reproductive parts, will help in 

355 understanding plant associated microbial distributions and the factors that shape them.      

356

357

358

359 Conclusions

360 Plant-associated microbes are critical players in plant fitness and health. Our 

361 work shows that while both stochastic and deterministic factors play a role in shaping 

362 surface phytobiomes, plant part is the most predictive, with nestedness patterns relating 

363 strongly to vertical stratification. Bacteria are highly differentiated across a plant, with 

364 distance playing a weak, though significant, role in community composition at the scale 

365 examined. Despite these patterns, we were unable to describe the majority of 

366 community variance in this system. Identifying environmental reservoirs for 
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367 phytobiomes, particularly those sources for ephemeral reproductive parts, will help in 

368 understanding plant associated microbial distributions and the factors that shape them.      

369
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Figure 1(on next page)

Each sampling location indicates where seven biological samples were collected (six

plant parts and a soil sample).

Sites were spaced ca. 6 km along the windward coast. Ten sites were sampled in Kailua

(inset). Axes represent decimal degrees. Topography is show to indicate that all samples

were collected at sea level and with a similar aspect.
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Figure 2(on next page)

Nestedness plot of bacteria aggregated by plant part.

Presence of an OTU in a plant part is represented as a rectangle. OTUs are ordered by

occupancy (left to right) across plant parts, and rows are ordered by highest OTU richness

(top to bottom). If all OTUs occurred above the <Fill line= (curved line), the network would be

perfectly nested.
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Figure 3(on next page)

Non-metric multidimensional scaling plots of microbial communities colored by habitat.

Ellipses indicate 95% confidence intervals. Above and below-ground parts are differentiated

along the first axis, with leaves intermediate.
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Figure 4(on next page)

Heatmap of order-level taxa as distributed across plant parts.

Cell values are calculated proportionally across samples (rows).
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Table 1(on next page)

Network stucture of microbial communities.
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Table 1 Network stucture of microbial communities.  The 
d' statistic is a measure of specialization by habitat 
ranging from 0 (not specialized) to 1 (completely 
specialized). H2 is an index of specialization across all 
taxa within the network and is measured on the same 
scale.  Both networks were significantly more specialized 
than randomized null simulations would predict. Plant 
parts are ordered by nestedness structure, with the most 
species-rich communities on the top.  Turnover and 
nestedness proportions describe community dissimilarity 
among plant parts explained by that process.

Sample d' P

Rhizosphere 0.47 0.001

Soil 0.55 0.001

Leaf 0.29 0.001

Axil 0.31 0.001

Stem 0.34 0.001

Flower 0.25 0.001

Fruit 0.30 0.001

Nestedness Temp. 28.21 0.001

NODF 0.24 0.001

H2 0.64 0.001

Turnover 0.11

Nestedness 0.09  

1
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Table 2(on next page)

PERMANOVA examining community compositional variance explained by plant part,

site, or their interaction.
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Table 2 PERMANOVA examining community compositional variance 
explained by plant part, site, or their interaction.

Component
Degrees 
Freedom

Sum of 
Squares F P

Part 6 5.1887 5.8391 0.001

Site 8 2.894 2.4426 0.001

Part:Site 29 6.6346 1.5447 0.012

Residual 4 0.5924
1
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Table 3(on next page)

Mantel tests measure the correlation between geographic distance and microbial

community dissimilarity for Scaevola taccada surface microbes.
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Table 3 Mantel testsmeasure the correlation between 
geographic distance and microbial community 
dissimilarity for Scaevola taccada surface microbes. 
Sample sites occur as 10 locations spanning 60 km on 
the island of Oahu, HI. Mantel9s statistic measure  
Pearson9s product-moment correlation with 999 
permutations. Significant values indicating a relationship 
between spatial distance and community dissimilarity 
are bolded. In this analysis a single plant individual was 
selected from the Kailua site. Above-ground refers to all 
plant parts, whereas belowground refers to rhizospere 
and soil.

Plant part r-value p-value n

All plant parts 0.06538 0.046 48

Above-ground 0.1319 0.017 32

Below-ground 0.3781 0.008 16

Soil 0.1334 0.231 9
1
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