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ABSTRACT11

Site-specific evolutionary rates can be estimated from codon sequences or from amino-acid sequences.

For codon sequences, the most popular methods use some variation of the dN/dS ratio. For amino-acid

sequences, one widely-used method is called Rate4Site, and it assigns a relative conservation score to

each site in an alignment. How site-wise dN/dS values relate to Rate4Site scores is not known. Here we

elucidate the relationship between these two rate measurements. We simulate sequences with known

dN/dS, using either dN/dS models or mutation–selection models for simulation. We then infer Rate4Site

scores on the simulated alignments, and we compare those scores to either true or inferred dN/dS values

on the same alignments. We find that Rate4Site scores generally correlate well with true dN/dS, and

the correlation strengths increase in alignments with higher sequence divergence and higher number of

taxa. Moreover, Rate4Site scores correlate nearly perfectly with inferred dN/dS values, even for small

alignments with little divergence. Finally, we verify this relationship between Rate4Site and dN/dS in a

variety of natural sequence alignments. We conclude that codon-level and amino-acid-level analysis

frameworks are directly comparable and yield near-identical inferences.
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INTRODUCTION25

Different sites in a protein evolve at different rates (Kimura and Ohta, 1974; Perutz et al., 1965), and these26

rate differences are shaped by the interplay of functional and structural constraints each site experiences27

(Echave et al., 2016). For example, protein surface sites tend to evolve faster than interior sites of a protein28

(Franzosa and Xia, 2009; Shahmoradi et al., 2014; Yeh et al., 2014b,a; Huang et al., 2014; Ramsey et al.,29

2011; Dean et al., 2002; Scherrer et al., 2012; Mirny and Shakhnovich, 1999; Zhou et al., 2008). Active30

sites in enzymes tend to be highly conserved (Jack et al., 2016; Dean et al., 2002; Kimura and Ohta, 1973;31

Huang et al., 2015), and sites involved in protein–protein interactions are somewhat more conserved than32

other surface sites (Mintseris and Weng, 2005; Kim et al., 2006; Franzosa and Xia, 2009; Jack et al.,33

2016).34

Analyses of sequence variation in a structural context frequently make use of site-specific evolutionary35

rate estimates, and a wide variety of different methods exist to infer such rates from either codon or36

amino-acid sequences (Nielsen and Yang, 1998; Yang and Nielsen, 2002; Kosakovsky Pond et al.,37

2005; Kosakovsky Pond and Muse, 2005; Yang et al., 2000; Murrell et al., 2012; Lemey et al., 2012;38

Pupko et al., 2002; Fernandes and Atchley, 2008; Huang and Golding, 2014, 2015; Mayrose et al.,39

2004). The most widely applied methods for codon sequences are based on dN/dS, the rate of non-40

synonymous substitutions per non-synonymous site dN divided by the rate of synonymous substitutions41

per synonymous site dS. The dN/dS ratio is commonly used to infer purifying (dN/dS < 1) or positive42

selection (dN/dS > 1) in protein-coding genes (Nielsen and Yang, 1998; Goldman and Yang, 1994). The43

most popular method for rate inference in amino-acid sequences is Rate4Site (Pupko et al., 2002; Mayrose44

et al., 2004). Rate4Site assigns a score to a site as a proxy for the rate of evolution at that site. Rate4Site45
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is typically used to locate active sites on the protein structure, such as protein–protein interaction or46

protein–ligand interaction sites and catalytic sites (Mousson et al., 2005; Fischer et al., 2008; Tuncbag47

et al., 2009; Bradford et al., 2006; Guney et al., 2008). How dN/dS inference methods relate to Rate4Site48

scores is not known.49

The relationship between protein structure and evolutionary variation has been investigated in many50

different protein families and many different datasets of varying divergence levels and taxonomic origin,51

and some studies have used codon sequences and codon-related methods to infer the rate of evolution52

(Franzosa and Xia, 2009; Shahmoradi et al., 2014; Scherrer et al., 2012; Zhou et al., 2008; Kim et al.,53

2006) while others have used amino-acid sequences (Ramsey et al., 2011; Yeh et al., 2014b,a; Huang54

et al., 2014, 2015; Jack et al., 2016; Mirny and Shakhnovich, 1999). Because of these differences in55

datasets and analysis approaches, it is not obvious to what extent results from different studies can be56

compared. To the extent that different studies produce contradictory results, and they frequently do,57

are these contradictions due to fundamental differences in the analyzed datasets (e.g., highly diverged58

sequences from many taxonomic groups vs. weakly diverged sequences from a single population) or in59

the employed methods to infer evolutionary rates (e.g., inference based on amino-acid sequences vs. on60

codon sequences)?61

Here we address the second question, to what extent analyses at the codon level are comparable to62

analyses at the amino-acid level. Specifically, we use extensive simulations to ask how similar Rate4Site63

scores are to site-specific dN/dS values. We simulate sequence divergence both under dN/dS models64

and under mutation–selection models, and we then ask how inferred Rate4Site scores for these simulated65

alignments compare to (i) the true simulated dN/dS values at each site and (ii) the inferred dN/dS values66

obtained from the simulated alignments. We find that Rate4Site scores generally correlate well with67

dN/dS, in particular if both quantities are inferred from sequence data. We verify this observation on68

rates inferred from natural sequence alignments, and we conclude that amino-acid level and codon-level69

analysis of rate variation will generally yield comparable results.70

RESULTS71

Both Rate4Site scores and per-site dN/dS values are measures of the extent to which selection acts72

on individual protein sites. The Rate4Site model decomposes evolutionary distances in amino-acid73

alignments into a site-specific component rk and a branch-specific component ti, such that the total74

divergence at site k along branch i can be written as rkti. Here, rk is the Rate4Site score at site k and ti is75

the branch length of branch i in the phylogenetic tree. Importantly, rk is the same at all branches in the76

tree and ti is the same at all sites for each branch i. Because the rate decomposition is invariant under a77

rescaling of r′k =Crk and t ′i = ti/C, Rate4Site scores are not unique unless an additional normalization78

condition is specified as well. The Rate4Site software solves this uniqueness problem by turning the rk79

into z-scores. However, the more natural normalization is to divide all rk by their mean, r′k = rk/∑ j r j,80

where the sum runs over all sites in the protein. These normalized r′k scores have the simple interpretation81

of providing the relative increase or decrease in substitution rate at site k compared to the average rate of82

substitution in the rest of the protein.83

In contrast to Rate4Site scores, which are calculated from amino-acid alignments, dN/dS ratios are84

calculated on nucleotide alignments. They estimate the rate of non-synonymous divergence relative to85

the rate of synonymous divergence. However, just like in Rate4Site, in a site-specific dN/dS model86

evolutionary divergence is decomposed into a site-specific dN/dS value and a site-independent branch87

length. Thus, Rate4Site and site-specific dN/dS measure fundamentally the same quantity. The main88

difference is the input data (amino-acid sequences vs. codon sequences) and the normalization (relative to89

mean across sites vs. relative to the synonymous divergence rate dS).90

Relationship between Rate4Site scores and true dN/dS91

To determine the relationship between Rate4Site and dN/dS models, we began by simulating sequence92

evolution with known, site-specific dN/dS values and then comparing these true dN/dS values to93

Rate4Site scores inferred from the simulated alignments (Figure 1). We first considered the case of94

constant dS among all sites. Thus, for each site in each alignment, we randomly drew a dN from a uniform95

distribution ranging from 0.1 to 1.6. We set dS = 1 for all sites, such that the dN/dS ratios similarly96

varied from 0.1 to 1.6. We ran simulations along a set of 25 balanced trees with different branch lengths97

and numbers of taxa, as used previously in a study of dN/dS inference (Spielman et al., 2016). Simulated98
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sequences were 100 codon sites long, and we generated 50 replicate simulations for each simulation99

condition.100

We calculated the correlation between each site’s true dN/dS and its inferred Rate4Site score to assess101

how well the Rate4Site scores agreed with the simulated rates. We then plotted the mean correlation102

strengths in replicate simulations against the simulations’ branch lengths and number of taxa. We found103

that correlation strengths systematically increased with both increasing branch lengths and number of104

taxa (Figure 2A). While correlations were low to moderate for the least-diverged and smallest alignments,105

for larger and/or more diverged alignments correlations approached values ranging from 0.8 to 1.0.106

We also performed a comparison of the magnitude of Rate4Site scores and dN/dS scores, by calculat-107

ing root-mean-square deviations (RMSD) between these scores. Because these two types of scores are not108

measured in the same units, this comparison may not seem meaningful. However, we can convert both109

types of scores into normalized, relative scores by dividing them by their mean score. These normalized110

scores have comparable interpretations and RMSDs between them are meaningful quantities.111

We found that RMSD values were generally moderate, between 0.1 and 0.6 (Figure 2B). They112

declined with both increasing number of taxa and increasing sequence divergence. However, overall113

RMSD depended more strongly on branch length than on the number of taxa. Visual inspection of114

normalized Rate4Site scores plotted against normalized dN/dS scores revealed no major systematic115

differences between these scores (Figure 3). Differences seemed to be driven primarily by the sampling116

noise inherent in estimating site-specific evolutionary rates.117

We repeated the same analysis but now using simulations in which dS was allowed to vary among118

sites as well. The dN/dS range was kept the same as before (0.1 to 1.6), but now each site had its own119

unique dS, randomly chosen from a uniform distribution ranging from 0.5 to 2. Overall, we found similar120

patterns in the variable dS case as we had seen for constant dS (compare Figures 2C, D to Figures 2A,121

B). However, correlations were generally somewhat weaker (Figure 2C) and RMSD values somewhat122

higher (Figure 2D) than what we had observed for constant dS. These results were to be expected, since123

Rate4Site as an amino-acid based metric does not take synonymous variation into account, and thus the124

dS variation acts simply as added random noise on the dN/dS scores compared to Rate4Site scores.125

Relationship between Rate4Site scores and scaled selection coefficients126

The dN/dS model is not a particularly realistic model of sequence evolution, because it does not have the127

notion of an underlying fitness landscape. A mutation increasing fitness should fix much more rapidly than128

the reverse mutation decreasing fitness. However, in a dN/dS model, both mutations fix at the same rate.129

To increase realism in our analysis, we next investigated Rate4Site in the context of sequences simulated130

with mutation–selection (MutSel) models. MutSel models are specified by scaled selection coefficients,131

which describe the relative fitness of different amino acids (or codons) at each site in a sequence. We132

can derive expected dN/dS values from these scaled selection coefficients (Spielman and Wilke, 2015b;133

dos Reis, 2015) and hence we can ask how Rate4Site scores compare to the predicted dN/dS values in134

MutSel models.135

For this analysis, we employed previously published sequence alignments from Spielman et al. (2016).136

These alignments had been simulated using the Halpern and Bruno model (HB98) (Halpern and Bruno,137

1998) along the same 25 phylogenetic trees we employed in our previous analysis (five branch lengths in138

all pairwise combinations with five numbers of taxa). As before, there were 50 replicates per simulation139

condition, and we again had one dataset with constant dS and one with variable dS. In the dataset with140

constant dS, all synonymous codons have the same fitness (neutral synonymous codons). In the dataset141

with variable dS, there are fitness differences among synonymous codons (non-neutral synonymous142

codons). See Spielman et al. (2016) for details of parameter choices.143

Our results for sequences simulated with MutSel models were broadly similar to our results for144

sequences simulated with dN/dS models (Figure 4). As before, correlations increased and approached 1145

with increasing branch lengths and numbers of taxa, and RMSDs commensurately decreased. However,146

correlation strengths were consistently lower and RMSD values higher for the MutSel datasets than for147

the dN/dS datasets at the same sequence divergence and number of taxa (compare Figure 4 to Figure 2).148

As before, differences between normalized Rate4Site scores and normalized true dN/dS values seemed149

to be driven primarily by the sampling noise inherent in estimating site-specific evolutionary rates (Figure150

5). Finally, we found only minor differences between simulations with neutral synonymous codons and151

simulations with non-neutral synonymous codons. However, in the latter case, correlations were generally152
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slightly lower and RMSD values somewhat higher (compare Figure 4C and D to Figure 4A and B).153

Relationship between Rate4Site scores and inferred dN/dS154

The preceding analyses asked to what extent Rate4Site scores reflect the known underlying parameters155

used to generate the sequence alignments. An alternative question, possibly more applicable to practical156

sequence analysis, is to what extent Rate4Site scores mirror dN/dS values inferred on the same sequence157

data. To address this second question, we inferred site-wise dN/dS values for all sites in all alignments158

studied in the previous two subsections. The dN/dS values were inferred using the one-rate fixed-effects159

likelihood method (FEL1) implemented in HyPhy (Kosakovsky Pond et al., 2005). The FEL1 method160

assigns one dN value per site and one dS value across all sites in the sequence (Spielman et al., 2016).161

Therefore, the variation in the inferred dN/dS values is captured entirely by dN.162

We found that Rate4Site scores were very highly correlated to inferred dN/dS across all datasets and163

simulation conditions (Figures 6 and 7). For sequences simulated with the dN/dS model, correlations for164

all branch lengths exceeded 0.8 and approached 1 as the sequence divergence increased (Figure 6A, C).165

RMSD values were large for the smallest and least-diverged alignments but declined rapidly as either166

branch length or number of taxa increased (Figure 6B, D). There was little difference between alignments167

simulated with constant dS and with variable dS (Figure 6A vs. 6C and Figure 6B vs. 6D). Results168

for sequences simulated with MutSel models were similar (Figure 7). The main difference was that169

correlation coefficients were more sensitive to the number of taxa. For the lowest number of taxa (128)170

correlation coefficients were systematically lower when sequences were simulated with MutSel models171

rather than with dN/dS models. The pattern reversed for the highest number of taxa (2048). RMSDs172

however were systematically higher for sequences simulated with MutSel models rather than with dN/dS173

models. In all cases, there was little difference between sequences simulated with neutral synonymous174

codons and with non-neutral synonymous codons (Figure 7A vs. 7C and Figure 7B vs. 7D).175

Finally, we asked to what extent the results found for simulated sequences carry over to natural176

sequence alignments. We inferred both Rate4Site scores and site-wise dN/dS in two distinct datasets,177

one consisting of several membrane proteins in mammals (taken from Spielman and Wilke (2013)) and178

one consisting of several alignments of HIV-1 genes (taken from Meyer and Wilke (2015b)). For both179

datasets, we found that Rate4Site scores and dN/dS were highly correlated, with correlation coefficients180

exceeding 0.8 in all cases (Figure 8). We concluded that our simulation results carry over to natural181

sequence alignments, and that Rate4Site scores are generally comparable to inferred dN/dS values.182

DISCUSSION183

We have compared codon-level site-specific evolutionary rates estimated via dN/dS to amino-acid level184

site-specific rates estimated via Rate4Site. We have found that Rate4Site scores correlate well with the185

known true dN/dS values both in sequences simulated with a dN/dS model and in sequences simulated186

with a MutSel model. Correlations generally increase and approach 1 for more diverged sequence187

alignments and for alignments with more taxa. Correlations are generally somewhat stronger when there188

is no variation in dS among sites, though this effect is minor. We have also compared Rate4Site scores to189

inferred dN/dS values and have found nearly perfect correlations between the two measures, even for190

less diverged and smaller alignments. Finally, we have verified the relationship between Rate4Site scores191

and dN/dS in a set of natural alignments, and again have found nearly perfect correlations between the192

two rate estimates.193

Surprisingly, even in scenarios of low sequence divergence or few taxa, when Rate4Site scores are194

only weakly correlated with the true dN/dS, we have found that they nevertheless correlate highly with195

inferred dN/dS. For all levels of sequence divergence and numbers of taxa the two rate measurements196

had nearly perfect correlations. Moreover, dS variation seemed to have a negligible influence on the197

correlation strengths. A strong relationship between these two rate measurements was also evident in198

natural sequence alignments. For the majority of alignments that we considered, correlation coefficients199

were in excess of 0.9. For the two alignments with the lowest correlation coefficients, of 0.83 for both200

alignments, the number of sequences were 19 and 22 and sequence divergence was low. Thus, unless201

alignments are very small and/or have very little divergence, Rate4Site scores and site-specific dN/dS202

can be expected to correlate strongly in all cases. These findings demonstrate that Rate4Site and dN/dS203

approaches have comparable ability to infer rates from sequence alignments. For sufficiently diverged204
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alignments, both methods accurately recover the true underlying rates. And for alignments with less205

divergence, mis-estimate the underlying rates in a similar fashion.206

The dN/dS metric is frequently used to identify sites under positive selection in viruses (Vijaykrishna207

et al., 2008; Wood et al., 2009; Demogines et al., 2013; Meyer and Wilke, 2015a). By contrast, Rate4Site208

has been mostly applied to identify conserved sites that correspond to protein–protein interaction sites or209

active sites in enzyme (Mousson et al., 2005; Fischer et al., 2008; Tuncbag et al., 2009; Bradford et al.,210

2006; Guney et al., 2008). Our results here show that for purposes of finding the most conserved or most211

rapidly varying sites in a sequence alignments, both methods would likely identify similar sites. One212

advantage of the dN/dS approach, of course, is the ability to test whether dN/dS is significantly above213

1. When using Rate4Site scores, one can identify the most rapidly varying sites but one cannot run a214

statistical test that would determine whether the site is positively selected or not.215

Recently, there has been considerable interest in linking site-specific rate variation to structural216

features of proteins (Echave et al., 2016). Studies addressing this topic have considered both dN/dS-based217

methods (Scherrer et al., 2012; Franzosa and Xia, 2009; Shahmoradi et al., 2014; Kim et al., 2006; Meyer218

and Wilke, 2015b,a) and Rate4Site scores (Huang et al., 2014; Yeh et al., 2014b,a; Jack et al., 2016;219

Huang et al., 2015), though these studies have generally been done on disparate datasets. The extent to220

which results found with dN/dS carry over to Rate4Site and vice versa has not been clear. Our findings221

here show that since the two methods infer rates that correlate strongly with each other, either type of222

inferred rate should produce comparable correlation strengths with structural features such as solvent223

accessibility.224

We note several caveats to our conclusions. First, our simulated alignments were generally large225

and diverged, even for the smallest number of taxa and lowest branch lengths. Even smaller and/or less226

diverged alignments will yield more noisy, less reliable Rate4Site inferences. Second, all our simulated227

alignments were obtained under the assumption that sites evolve independently from each other and that228

the rate of evolution does not change over time. These assumptions will generally increase the congruence229

between the true, simulated dN/dS and the inferred Rate4Site score. However, the strong correlations230

we observed between Rate4Site scores and dN/dS in several natural alignments demonstrate that neither231

of these assumptions and limitations fundamentally invalidate our main findings. Amino-acid level and232

codon-level analyses of sequence data will generally yield comparable estimates of site-specific rates of233

evolution.234

METHODS235

Generation of simulated alignments236

Our simulation approach was similar to the one employed by Spielman et al. (2016). In brief, we first237

generated a set of balanced, binary trees with different branch lengths and numbers of taxa, using the R238

package ape (Paradis et al., 2004). We then simulated sequence evolution along these trees using the239

python library pyvolve (Spielman and Wilke, 2015a).240

We generated a total of 25 trees, using all pairwise combinations of five different branch lengths and241

five different numbers of taxa. The branch lengths we used were 0.0025, 0.01, 0.04, 0.16, and 0.64. These242

numbers indicate the divergence in mutations per site between two nodes in a tree. The numbers of taxa243

we used were 128, 256, 512, 1024, and 2048.244

To generate alignments with site-specific dN/dS values, we simulated sequences with 100 codon sites245

using a site-specific Muse-Gaut model (Muse and Gaut, 1994). To simulate sequences with constant dS,246

we set dS = 1 at all sites and set dN at each site to a different value randomly drawn from a uniform247

distribution between 0.1 and 1.6. To simulate sequences with variable dS, we assigned each site a distinct248

dN and dS value, by first choosing a randomly drawn dN/dS value, then choosing a randomly drawn dS249

value, and then setting dN = dS× (dN/dS). The dN/dS values were drawn from a uniform distribution250

between 0.1 and 1.6, and the dS values were drawn from a uniform distribution between 0.5 and 2. We251

generated 50 replicate sequence alignments for each combination of branch length, number of taxa, and252

choice of dS (constant or variable), for a total of 2500 sequence alignments.253

For sequences simulated according to MutSel models, we used sequence alignments previously254

published in Spielman et al. (2016), specifically the alignments simulated with unequal nucleotide255

frequencies. These sequences were simulated using the Halpern and Bruno model (HB98) (Halpern and256

Bruno, 1998), and we had alignments for the same tree parameters, dS variation (constant/variable), and257

replicate numbers as our simulations of the dN/dS model, again for a total of 2500 sequence alignments.258
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Rate inference259

To acquire the Rate4Site scores, the simulated sequences were translated into amino acids using260

biopython. The translated sequences were inputted into Rate4Site along with their corresponding trees.261

We ran Rate4Site with the following options:262

rate4site -s aln_file -t tree_file -o norm_rates_file \263

-y orig_rates_file264

Here, aln file is the input fasta file with aligned sequences. The file tree file contains the phylo-265

genetic tree. The file norm rates file is the output file into which Rate4Site writes z-normalized rate266

scores, and orig rates file is the output file into which Rate4Site writes original rate scores. The267

option -y causes Rate4Site to output original scores. (By default, Rate4Site only outputs z-transformed268

scores.) In our analysis we used only the original scores, renormalized such that they had a mean of 1.269

We inferred site-specific dN/dS using the one-parameter fixed-effects likelihood method (FEL1)270

implemented in HyPhy (Kosakovsky Pond et al., 2005). We ran HyPhy using the FEL1 script provided271

in Spielman et al. (2016). After running the dN/dS inference, we explicitly set dN/dS = 0 at all sites272

that did not experience any amino-acid changes. We did so because the FEL1 method assigns a site-wise273

dN/dS of 1 to completely conserved sites that contain no synonymous and no non-synoymous mutations.274

However, dN/dS should equal 0 at such sites in a one-parameter model, which implicitly assumes that dS275

is the same at all sites and hence will be non-zero even at completely conserved sites.276

Analysis of natural sequence alignments277

For analysis of natural sequence alignments, we used data from Spielman and Wilke (2013) and Meyer278

and Wilke (2015b). From Spielman and Wilke (2013), we acquired unaligned sequence data for279

six arbitrarily chosen membrane proteins: Mannose-6-phosphate receptor M6PR (Ensembl transcript280

ID: ENST00000000412), CD74 (Ensembl transcript ID: ENST00000009530), CD4 (Ensembl tran-281

script ID: ENST00000011653), G protein-coupled receptor class C, GPRC5A (Ensembl transcript ID:282

ENST00000014914), Gamma-aminobutyric acid type A receptor, GABRA1 (Ensembl transcript ID:283

ENST00000023897), and TNF receptor superfamily member 17, TNFRSF17 (Ensembl transcript ID:284

ENST00000053243). We aligned the amino-acid sequences using MAFFT 7.305b (Multiple Alignment285

using Fast Fourier Transform) (Katoh and Standley, 2013). We ran MAFFT using default options with:286

mafft input_fasta_file > output_fasta_file287

Here, input fasta file is the fasta file containing sequences to be aligned and output fasta file288

is the output file into which the alignment is written. The aligned amino-acid sequences were subsequently289

back-translated to codon sequences using the unaligned nucleotide sequences.290

For sequence data from Meyer and Wilke (2015b), we used the aligned amino and nucleotide sequence291

files for all of the proteins used in the paper.292

We inferred phylogenetic trees from amino-acid sequences using RAxML (Stamatakis, 2014). We ran293

RAxML with the following options:294

raxmlHPC-PTHREADS-SSE3 -T 48 -s fasta_file -w output_directory \295

-n tree_name -m PROTCATLG -p 1296

Here, fasta file is the input file containing the aligned sequences. RAxML outputs all output files297

into the directory indicated by output directory, and tree name is the name for the output tree298

files. The option -m PROTCATLG picks a protein CAT model with LG matrix for the tree inference, and299

the option -p 1 generates a random number seed for parsimony inference.300

Finally, for all natural sequence alignments, we inferred Rate4Site scores and per-site dN/dS values301

as described in the subsection “Rate inference.”302

Data availability303

Processed data and code can be found at https://github.com/wilkelab/r4s benchmark304
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ATTAGCACC... 

ATTACCGAC... 

ATCACCCCC... 

ATCAGCCCC...
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Rate4Site Scores

dN/dS
Compare

Simulate Translate

Inferred

True

dN/dS
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Figure 1. Analysis approach. We assess the relationships between dN/dS values and Rate4Site scores

by simulating sequences with known dN/dS values and then comparing either known or inferred dN/dS

values for these simulated alignments to the Rate4Site scores inferred on the same alignments.
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Figure 2. Relationship between Rate4Site scores and true site-specific dN/dS for simulations

performed with dN/dS (Muse-Gaut) models. Each point represents the mean over 50 replicate

simulations. The error bars represent the standard error. In nearly all cases, error bars are smaller than the

symbol size. (A) Correlations and (B) RMSD values between Rate4Site scores and true dN/dS, for the

sequences simulated with constant dS = 1. (C) Correlations and (D) RMSD values between Rate4Site

scores and true dN/dS, for the sequences simulated with variable dS.
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Figure 3. Rate4Site scores vs. true normalized dN/dS for a few example alignments simulated with a

dN/dS model. Each point represents one site in the simulated alignment, and the diagonal line represents

the x = y line. Numbers above each subplot indicate the branch length of the alignment, and the number

of taxa was 512 in all cases. (A) Simulations with constant dS = 1. (B) Simulations with variable dS.
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Figure 4. Relationship between Rate4Site scores and true site-specific dN/dS for simulations

performed with MutSel (Halpern-Bruno) models. Each point represents the mean over 50 replicate

simulations. The error bars represent the standard error. In nearly all cases, error bars are smaller than the

symbol size. (A) Correlations and (B) RMSD values between Rate4Site scores and true dN/dS, for the

sequences simulated without codon bias (neutral synonymous codons). (C) Correlations and (D) RMSD

values between Rate4Site scores and true dN/dS, for the sequences simulated with codon bias

(non-neutral synonymous codons).
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Figure 5. Rate4Site scores vs. true normalized dN/dS for a few example alignments simulated with a

MutSel (Halpern-Bruno) models. Each point represents one site in the simulated alignment, and the

diagonal line represents the x = y line. Numbers above each subplot indicate the branch length of the

alignment, and the number of taxa was 512 in all cases. (A) Simulations without codon bias (neutral

synonymous codons). (B) Simulations with with codon bias (non-neutral synonymous codons).
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Figure 6. Relationship between Rate4Site scores and inferred site-specific dN/dS for simulations

performed with dN/dS (Muse-Gaut) models. Each point represents the mean over 50 replicate

simulations. The error bars represent the standard error. In nearly all cases, error bars are smaller than the

symbol size. (A) Correlations and (B) RMSD values between Rate4Site scores and inferred dN/dS, for

the sequences simulated with constant dS = 1. (C) Correlations and (D) RMSD values between Rate4Site

scores and inferred dN/dS, for the sequences simulated with variable dS.

12/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2739v1 | CC BY 4.0 Open Access | rec: 19 Jan 2017, publ: 19 Jan 2017



Figure 7. Relationship between Rate4Site scores and inferred site-specific dN/dS for simulations

performed with MutSel (Halpern-Bruno) models. Each point represents the mean over 50 replicate

simulations. The error bars represent the standard error. In nearly all cases, error bars are smaller than the

symbol size. (A) Correlations and (B) RMSD values between Rate4Site scores and inferred dN/dS, for

the sequences simulated without codon bias (neutral synonymous codons). (C) Correlations and (D)

RMSD values between Rate4Site scores and inferred dN/dS, for the sequences simulated with codon

bias (non-neutral synonymous codons).
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Figure 8. Inferred dN/dS vs. Rate4Site scores for natural sequence alignments. Each dot represents

one site in the respective alignment, and the diagonal line represents the x = y line. Rugs along the x-axis

show sites with dN/dS < 0.001. Correlation coefficients are Spearman ρ , and all correlations are

significant (p < 10−15 throughout). Note that dN/dS values were not normalized to a mean of one here,

unlike Figures 3 and 5. (A) Inferred dN/dS vs. Rate4Site scores for six membrane proteins taken from

Spielman and Wilke (2013). (B) Inferred dN/dS vs. Rate4Site scores for six HIV-1 proteins taken from

Meyer and Wilke (2015b).
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