
Cold-start Playlist Recommendation with1

Multitask Learning2

Dawei Chen1,2, Cheng Soon Ong2,1, and Aditya Krishna Menon∗1
3

1Research School of Computer Science, Australian National University, Canberra, ACT,4

Australia5

2Machine Learning Research Group, Data61, CSIRO, Canberra, ACT, Australia6

Corresponding author:7

Dawei Chen8

Email address: dawei.chen@anu.edu.au9

ABSTRACT10

Playlist recommendation involves producing a set of songs that a user might enjoy. We investigate
this problem in three cold-start scenarios: (i) cold playlists, where we recommend songs to form new
personalised playlists for an existing user; (ii) cold users, where we recommend songs to form new
playlists for a new user; and (iii) cold songs, where we recommend newly released songs to extend users’
existing playlists. We propose a flexible multitask learning method to deal with all three settings. The
method learns from user-curated playlists, and encourages songs in a playlist to be ranked higher than
those that are not by minimising a bipartite ranking loss. Inspired by an equivalence between bipartite
ranking and binary classification, we show how one can efficiently approximate an optimal solution of
the multitask learning objective by minimising a classification loss. Empirical results on two real playlist
datasets show the proposed approach has good performance for cold-start playlist recommendation.

11

12

13

14

15

16

17

18

19

20

1 INTRODUCTION21

Online music streaming services (e.g., Spotify, Pandora, Apple Music) are playing an increasingly22

important role in the digital music industry. A key ingredient of these services is the ability to automatically23

recommend songs to help users explore large collections of music. Such recommendation is often in the24

form of a playlist, which involves a (small) set of songs.25

We investigate the problem of recommending a set of songs to form personalised playlists in cold-26

start scenarios, where there is no historical data for either users or songs. Conventional recommender27

systems for books or movies (Sarwar et al., 2001; Netflix, 2006) typically learn a score function via28

matrix factorisation (Koren et al., 2009), and recommend the item that achieves the highest score. This29

approach is not directly suited to cold-start settings due to the lack of interaction data. Further, in playlist30

recommendation, one has to recommend a subset of a large collection of songs instead of only one top31

ranked song. Enumerating all possible such subsets is intractable; additionally, it is likely that more than32

one playlist is satisfactory, since users generally maintain more than one playlist when using a music33

streaming service, which leads to challenges in standard supervised learning.34

We first study the setting of recommending personalised playlists for a user by exploiting the (implicit)35

preference from her existing playlists. We call this setting cold playlists, since we do not have any36

contextual information about the new playlist. We find that learning from a user’s existing playlists37

improves the accuracy of recommendation compared to suggesting popular songs from familiar artists38

(i.e., artists in the user’s listening history). We further consider the setting of cold users (or new users, i.e.,39

users with no listening history), where we recommend playlists for new users given playlists from existing40

users. We find it challenging to improve recommendations beyond simply ranking songs according41

to their popularity if we know nothing except the identifiers of new users, which is consistent with42

previous discoveries (McFee et al., 2012; Bonnin and Jannach, 2013, 2015). However, improvement can43

∗This work has been done when the author was at the Australian National University, the author now works at Google Research.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

user 1 user 2 user 3 user 4

Songs

Playlists

(a) Cold Playlists

user 1 user 2 user 3 user 4

Songs

Playlists

(b) Cold Users

user 1 user 2 user 3 user 4

Songs

Playlists

(c) Cold Songs

Figure 1. Illustration of the three settings of cold-start playlist recommendation. In each setting, a row
represents a song, and a column represents a playlist, which is a binary vector where an element denotes
whether the particular song is in the corresponding playlist. Playlists are grouped by user. Light Cyan
represents playlists or songs in the training set, and dark Magenta represents playlists or songs in the
test set. (a) Cold Playlists: recommending personalised playlists for each user given the users’ existing
playlists; (b) Cold Users: recommending playlists for new users given the playlists from existing users;
(c) Cold Songs: recommending newly released songs to extend users’ existing playlists.

be achieved if we know a few simple attributes (e.g., age, gender, country) of a new user. Lastly, we44

investigate the setting of recommending newly released songs (i.e., cold songs) to extend users’ existing45

playlists. We find that the set of songs in a playlist are particularly helpful in guiding the selection of new46

songs to be added to the given playlist.47

Figure 1 illustrates the three cold-start settings for playlist recommendation that we study in this work.48

In the cold playlists setting, a target user (i.e., the one for whom we recommend playlists) maintains a49

number of playlists that can be exploited by the learning algorithm. In the cold users setting, however, we50

may only know a few simple attributes of a new user or nothing except her user identifier. The learning51

algorithm can only make use of playlists from existing users. Finally, in the cold songs setting, the52

learning algorithm have access to content features (e.g., artist, genre, audio data) of newly released songs53

as well as all playlists from existing users.54

We propose a novel multitask learning method that can deal with playlist recommendation in all three55

cold-start settings. It optimises a bipartite ranking loss (Freund et al., 2003; Agarwal and Niyogi, 2005)56

that ranks the set of songs in a playlist above songs that are not in it. This results in a convex optimisation57

problem with an enormous number of constraints. Inspired by an equivalence between bipartite ranking58

and binary classification (Ertekin and Rudin, 2011), we efficiently approximate an optimal solution of the59

constrained objective by minimising an unconstrained classification loss. We present experiments on two60

real playlist datasets, and demonstrate that our multitask learning approach improves over existing strong61

baselines for playlist recommendation in cold-start scenarios.62

2 MULTITASK LEARNING FOR PLAYLIST RECOMMENDATION63

We first introduce a multitask learning objective and then show how the problem of playlist recommen-64

dation can be handled in each of the three cold-start settings. We discuss the challenge in optimising65

the multitask learning objective via convex constrained optimisation and show how one can efficiently66

approximate an optimal solution by minimising an unconstrained objective.67

2.1 Multitask learning objective68

Suppose we have a dataset D with N playlists from U users, where songs in every playlist are from a69

music collection with M songs. Content features (e.g., artist, genre, audio data) of all songs are available,70

and we use d ∈ Z+ to denote the number of features for each song. Depending on the playlist dataset,71

a few simple attributes of users (e.g., age, gender, country) could be provided, or nothing except the72

identifiers of users are known. We assume each user has at least one playlist, and each song in the73

collection appears in at least one playlist.74

Let Pu denote the set of (indices of) playlists from user u ∈ {1, . . . ,U}. We aim to learn a function75

f (m,u, i) that measures the affinity between song m ∈ {1, . . . ,M} and playlist i ∈ Pu from user u. Given76

2/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

the feature vector xm ∈ Rd of song m, suppose the affinity function f : Rd → R takes the form of a linear77

function, i.e., f (m,u, i) = w>u,ixm where wu,i ∈ Rd are the weights of playlist i from user u.78

Inspired by Ben-Elazar et al. (2017) where the weights of a playlist are decomposed into user weights
and artist weights, we decompose wu,i into three components

wu,i = αααu +βββ i +µµµ, (1)

where αααu ∈ Rd are weights for user u, βββ i ∈ Rd are weights specific for playlist i, and µµµ ∈ Rd are the79

weights shared by all users (and playlists). This decomposition allows us to learn the user weights αααu80

using all her playlists, and exploit all training playlists when learning the shared weights µµµ .81

Let θ denote all parameters in
{
{αααu}Uu=1,{βββ i}N

i=1,µµµ
}

. The learning task is to minimise the empirical
risk of affinity function f on dataset D over parameters θ, i.e.,

min
θ

Ω(θ)+Rθ(f ,D), (2)

where Ω(θ) is a regularisation term and Rθ(f ,D) denotes the empirical risk of f on D . We call the82

objective in problem (2) the multitask learning objective, since we jointly learn (parameters θ) from83

multiple tasks where each one involves recommending a set of songs given a user or a playlist.84

We further assume that playlists from the same user have similar weights and the shared weights µµµ

are sparse (i.e., users only share a small portion of their weights). To impose these assumptions, we apply
`1 regularisation to encourage sparse parameters in βββ i and µµµ . The regularisation term in our multitask
learning objective is

Ω(θ) = λ1

U

∑
u=1
‖αααu‖2

2 +λ2

N

∑
i=1
‖βββ i‖1 +λ3‖µµµ‖1, (3)

where constants λ1,λ2,λ3 ∈ R+, and the `2 regularisation term is to penalise large values in user weights.85

We specify the empirical risk Rθ(f ,D) in Section 3.86

2.2 Cold-start playlist recommendation87

Once parameters θ have been learned, we make a recommendation by first scoring each song according to
available information (e.g., an existing user or playlist), then form or extend a playlist by either taking
the set of top-K scored songs or sampling a set of songs with probabilities proportional to their scores.
Specifically, in the cold playlists setting where the target user u is known, we score song m as

r(a)m = (αααu +µµµ)>xm. (4)

Further, in the cold users setting where simple attributes of the new user are available, we first
approximate the weights of the new user using the average weights of similar existing users (i.e., users
whose attribute vectors are similar to that of the new user in terms of e.g., the cosine similarity), then we
can score song m as

r(b)m =

(
1
|U | ∑

u∈U
αααu +µµµ

)>
xm, (5)

where U is the set of (e.g., 10) existing users that are most similar to the new user. On the other hand, if
we know nothing about the new user except her identifier, we can simply score song m as

r(b)m = µµµ
>xm, (6)

where µµµ is the shared weights that can be interpreted as a prior from a Bayesian point of view.88

Lastly, in the cold songs setting where we are given a specific playlist i from user u, we therefore can
score song m using both user weights and playlist weights, i.e.,

r(c)m = (αααu +βββ i +µµµ)>xm. (7)

3/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

3 EFFICIENT OPTIMISATION89

We now specify the empirical risk Rθ(f ,D) in problem (2) and develop methods to efficiently optimise90

the multitask learning objective.91

3.1 Constrained optimisation with ranking loss92

We aim to rank songs that are likely to be in a playlist above those that are unlikely to be chosen when
making a recommendation. To achieve this, we optimise the multitask learning objective by minimising a
bipartite ranking loss. In particular, we minimise the number of songs that are not in a training playlist but
are ranked above the lowest ranked song in it. This is known as the Bottom-Push (Rudin, 2009) and the
penalty of the affinity function f for playlist i from user u is

∆ f (u, i) =
1

Mi
−

∑
m′:yi

m′=0

J min
m:yi

m=1
f (m,u, i)≤ f (m′,u, i)K, (8)

where Mi
− is the number of songs not in playlist i, binary variable yi

m denotes whether song m appears in93

playlist i, and indicator function J·K represents the 0/1 loss.94

The empirical risk when employing the bipartite ranking loss ∆ f (u, i) is

RRANK
θ

(f ,D) =
1
N

U

∑
u=1

∑
i∈Pu

∆ f (u, i). (9)

There are two challenges to optimise the multitask learning objective with the empirical risk RRANK
θ

,
namely, the non-differentiable 0/1 loss and the min function in ∆ f (u, i). To address these challenges, we
first upper-bound the 0/1 loss with one of its convex surrogates, e.g., the exponential loss Jz≤ 0K≤ e−z,

∆ f (u, i)≤
1

Mi
−

∑
m′:yi

m′=0

exp
(

f (m′,u, i)− min
m:yi

m=1
f (m,u, i)

)
. (10)

One approach to deal with the min function in ∆ f (u, i) is introducing slack variables ξi to lower-bound
the scores of songs in playlist i and transform problem (2) with empirical risk RRANK

θ
into a convex

constrained optimisation problem

min
θ

Ω(θ)+
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

∑
m′:yi

m′=0

exp
(

f (m′,u, i)−ξi
)

s.t. ξi ≤ f (m,u, i),

u ∈ {1, . . . ,U}, i ∈ Pu, m ∈ {1, . . . ,M}∩{m : yi
m = 1}.

(11)

Note that the number of constraints in problem (11) is ∑
U
u=1 ∑i∈Pu ∑

M
m=1 Jyi

m=1K, i.e., the accumulated95

playcount of all songs, which is of order O(LN) asymptotically, where L is the average number of songs in96

playlists (typically less than 100). However, the total number of playlists N can be enormous in production97

systems (e.g., Spotify hosts more than 2 billion playlists (Spotify, 2018)) which imposes a significant98

challenge in optimisation. This issue could be alleviated by applying the cutting-plane method (Avriel,99

2003) or the sub-gradient method. Unfortunately, we find both methods converge extremely slowly for this100

problem in practice. In particular, the cutting plane method is required to solve a constrained optimisation101

problem with at least N constraints in each iteration, which remains challenging.102

3.2 Unconstrained optimisation with classification loss103

Alternatively, we can approximate the min function in ∆ f (u, i) using the well known Log-sum-exp func-

tion (Boyd and Vandenberghe, 2004), i.e., min
j

z j = −max
j
(−z j) = − lim

p→+∞

1
p

log∑
j

exp(−pz j), which

allows us to approximate the empirical risk RRANK
θ

(with the exponential surrogate) by R̃RANK
θ

defined as

R̃RANK
θ

(f ,D) =
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

[
δ f (u, i)

] 1
p

, (12)

4/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

where hyper-parameter p ∈ R+ and

δ f (u, i) = ∑
m:yi

m=1

 ∑
m′:yi

m′=0

exp(−(f (m,u, i)− f (m′,u, i)))

p

. (13)

We further observe that δ f (u, i) can be transformed into the objective of the standard P-Norm
Push (Rudin, 2009) by simply swapping the positives {m : yi

m = 1} and negatives {m′ : yi
m′ = 0}. Inspired

by the connections between bipartite ranking and binary classification (Menon and Williamson, 2016), we
swap the positives and negatives in the objective of the P-Classification (Ertekin and Rudin, 2011) while
taking care of signs. This results in an empirical risk with a classification loss:

RMTC
θ

(f ,D) =
1
N

U

∑
u=1

∑
i∈Pu

(
1

pMi
+

∑
m:yi

m=1

exp(−p f (m,u, i))+
1

Mi
−

∑
m′:yi

m′=0

exp(f (m′,u, i))

)
, (14)

where Mi
+ is the number of songs in playlist i.104

Lemma 1. Let θ
∗ ∈ argmin

θ
RMTC

θ
(assuming minimisers exist), then θ

∗ ∈ argmin
θ

R̃RANK
θ

.105

Proof. See Appendix A for a complete proof. Alternatively, we can use the proof of the equivalence106

between the P-Norm Push and the P-Classification (Ertekin and Rudin, 2011) if we swap the positives107

and negatives in RMTC
θ

and R̃RANK
θ

.108

By Lemma 1, we can optimise the parameters of the multitask learning objective by solving a (convex)
unconstrained optimisation problem:1

min
θ

Ω(θ)+RMTC
θ

(f ,D). (15)

Problem (15) can be efficiently optimised using the Orthant-Wise Limited-memory Quasi-Newton109

(OWL-QN) algorithm (Andrew and Gao, 2007), an L-BFGS variant that can address `1 regularisation110

effectively. We refer to the approach that solves problem (15) as Multitask Classification (MTC). As a111

remark, optimal solutions of problem (15) are not necessarily the optimal solutions of minθ Ω(θ)+ R̃RANK
θ

112

due to regularisation. However, when parameters θ are small (which is generally the case when using113

regularisation), optimal solutions of the two objectives can nonetheless approximate each other well.114

4 RELATED WORK115

We summarise recent work most related to playlist recommendation and music recommendation in cold-116

start scenarios, as well as work on the connections between bipartite ranking and binary classification.117

4.1 Playlist recommendation118

There is a rich set of recent literature on playlist recommendation, which can be summarised into two119

typical settings: playlist generation and next song recommendation. Playlist generation is to produce a120

complete playlist given some seed. For example, the AutoDJ system (Platt et al., 2002) generates playlists121

given one or more seed songs; Groove Radio can produce a personalised playlist for the specified user122

given a seed artist (Ben-Elazar et al., 2017); or a seed location in hidden space (where all songs are123

embedded) can be specified in order to generate a complete playlist (Chen et al., 2012). There are also124

works that focus on evaluating the learned playlist model, without concretely generating playlists (McFee125

and Lanckriet, 2011, 2012). See this survey (Bonnin and Jannach, 2015) for more details.126

Next song recommendation predicts the next song a user might play after observing some context.127

For example, the most recent sequence of songs with which a user has interacted was used to infer128

the contextual information, which was then employed to rank the next possible song via a topic-based129

sequential model learned from users’ existing playlists (Hariri et al., 2012). Context can also be the artists130

in a user’s listening history, which has been employed to score the next song together with the frequency131

of artist collocations as well as song popularity (McFee et al., 2012; Bonnin and Jannach, 2013). It132

is straightforward to produce a complete playlist using next song recommendation techniques, i.e., by133

picking the next song sequentially (Bonnin and Jannach, 2013; Ben-Elazar et al., 2017).134

1We choose not to directly optimise the empirical risk R̃RANK
θ

, which involves the objective of P-Norm Push, since classification
loss can be optimised more efficiently in this scenario (Ertekin and Rudin, 2011).

5/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

4.2 Cold-start recommendation135

In the collaborative filtering literature, the cold-start setting has primarily been addressed through suitable136

regularisation of matrix factorisation parameters based on exogenous user- or item-features (Ma et al.,137

2008; Agarwal and Chen, 2009; Cao et al., 2010). Regularisation techniques for deep neural networks138

(e.g., dropout) have also been shown to help cold-start recommendation (Volkovs et al., 2017). The novel139

idea of jointly factorising a document-term matrix and a document-user matrix (Saveski and Mantrach,140

2014) achieved promising cold-start document recommendations, especially with regularisation that141

encourages local smoothness in the learned embeddings.142

Content-based approaches can handle the recommendation of new songs, typically by making use of143

content features of songs extracted either automatically (Seyerlehner et al., 2010; Eghbal-Zadeh et al.,144

2015) or manually by musical experts (John, 2006). Further, content features can also be combined with145

other approaches, such as those based on collaborative filtering (Yoshii et al., 2006; Donaldson, 2007;146

Shao et al., 2009), which is known as the hybrid recommendation approach (Burke, 2002; Aggarwal,147

2016). Another popular approach for cold-start recommendation involves explicitly mapping user- or item-148

content features to latent embeddings (Gantner et al., 2010). This approach can be adopted to recommend149

new songs, e.g., by learning a convolutional neural network to map audio features of new songs to the150

corresponding latent embeddings (Oord et al., 2013), which were then used to score songs together with151

the latent embeddings of playlists. The problem of recommending music for new users can also be tackled152

using a similar approach, e.g., by learning a mapping from user attributes to user embeddings.153

A slightly different approach to deal with music recommendation for new users is learning hierarchical154

representations for genre, sub-genre and artist. By adopting an additive form with user and artist weights,155

it can fall back to using only artist weights when recommending music to new users; if the artist weights156

are not available (e.g., a new artist), this approach further falls back to using the weights of sub-genre or157

genre (Ben-Elazar et al., 2017). However, the requirement of seed information (e.g., artist, genre or a seed158

song) restricts its direct applicability to the cold playlists and cold users settings. Further, encoding song159

usage information as features makes it unsuitable for recommending new songs directly.160

4.3 Connections between bipartite ranking and binary classification161

It has been well known that bipartite ranking and binary classification are closely related (Ertekin and162

Rudin, 2011; Menon and Williamson, 2016). In particular, Ertekin and Rudin (2011) showed that the163

objective of the P-Norm Push and that of the P-Classification share the same minimiser(s). Further, the164

P-Norm Push is an approximation of the Infinite-Push (Agarwal, 2011), or equivalently, the Top-Push (Li165

et al., 2014), which focuses on the highest ranked negative example instead of the lowest ranked positive166

example in the Bottom-Push adopted in this work.167

Compare to the Bayesian Personalised Ranking (BPR) approach (Rendle et al., 2009; McFee et al.,168

2012) that requires all positive items to be ranked higher than those unobserved ones, the adopted approach169

only penalises unobserved items that are ranked higher than the lowest ranked positive item, which can be170

optimised more efficiently when only the top ranked items are of interest (Rudin, 2009; Li et al., 2014).171

5 EXPERIMENTS172

We present empirical evaluations for cold-start playlist recommendation on two real playlist datasets, and173

compare the proposed multitask learning method with a number of well known baseline approaches.174

5.1 Dataset175

We evaluate on two publicly available playlist datasets: the 30Music (Turrin et al., 2015) and the AotM-176

2011 (McFee and Lanckriet, 2012) dataset. The Million Song Dataset (MSD) (Bertin-Mahieux et al.,177

2011) serves as an underlying dataset where songs in all playlists are intersected (i.e., filtering out songs178

not in the MSD); additionally, song and artist information in the MSD are used to compute song features.179

30Music Dataset is a collection of listening events and user-generated playlists retrieved from180

Last.fm.2 We first intersect the playlists data with songs in the MSD, then filter out playlists with less181

than 5 songs. This results in about 17K playlists over 45K songs from 8K users.182

AotM-2011 Dataset is a collection of playlists shared by Art of the Mix3 users during the period183

from 1998 to 2011. Songs in playlists have been matched to those in the MSD. It contains roughly 84K184

2https://www.last.fm
3http://www.artofthemix.org

6/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Table 1. Statistics of music playlist datasets

30Music AotM-2011

Playlists 17,457 84,710
Users 8,070 14,182
Avg. Playlists per User 2.2 6.0

Songs 45,468 114,428
Avg. Songs per Playlist 16.3 10.1

Artists 9,981 15,698
Avg. Artists per Playlist 11.5 9.0
Avg. Songs per Artist 4.6 7.1

playlists over 114K songs from 14K users after filtering out playlists with less than 5 songs. Table 1185

summarises the two playlist datasets used in this work.186

The histograms of the number of playlists per user as well as song popularity (i.e., the accumulated187

playcount of the song in the training set) of the two datasets are shown in Figure 2 and Figure 3,188

respectively. We can see that both the number of playlists per user (Figure 2) and song popularity189

(Figure 3) follow a long-tailed distribution, which imposes further challenge to the learning task as the190

amount of data is very limited for users (or songs) at the tail.191

0 10 20 30 40 50 60 70 80

Playlist / User

100

101

102

103

104

F
re

qu
en

cy
 (

lo
g

sc
al

e)

30Music

0 200 400 600 800

Playlist / User

100

101

102

103

104

AotM­2011

Figure 2. Histogram of the number of playlists per user

0 50 100 150 200 250 300 350 400

Song Popularity

100

101

102

103

104

F
re

qu
en

cy
 (

lo
g

sc
al

e)

30Music

0 100 200 300 400 500 600 700 800

Song Popularity

100

101

102

103

104

105

AotM­2011

Figure 3. Histogram of song popularity

7/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Table 2. Statistics of datasets in three cold-start settings.

Training Set Test Set

Users Playlists Songs Users Playlists Songs

Cold Playlists 30Music 8,070 15,262 45,468 1,644 2,195 45,468
AotM-2011 14,182 75,477 114,428 2,722 9,233 114,428

Cold Users 30Music 5,649 14,067 45,468 2,420 3,390 45,468
AotM-2011 9,928 76,450 114,428 4,254 8,260 114,428

Cold Songs 30Music 8,034 17,342 40,468 8,034 8,215 5,000
AotM-2011 14,177 84,646 104,428 14,177 19,504 10,000

5.2 Features192

Song metadata, audio data, genre and artist information, as well as song popularity and artist popularity193

(i.e., the accumulated playcount of all songs from the artist in the training set) are encoded as features.194

The metadata of songs (e.g., duration, year of release) and pre-computed audio features (e.g., loudness,195

mode, tempo) are from the MSD. We use genre data from the Top-MAGD genre dataset (Schindler et al.,196

2012) and tagtraum genre annotations for the MSD (Schreiber, 2015) via one-hot encoding. If the genre197

of a song is unknown, we apply mean imputation using genre counts of songs in the training set.198

To encode artist information as features, we create a sequence of artist identifiers for each playlist in199

the training set, and train a word2vec4 model that learns embeddings of artists. We assume no popularity200

information is available for newly released songs, and therefore song popularity is not a feature in the201

cold songs setting. Finally, we add a constant feature (with value 1.0) for each song to account for bias.202

5.3 Experimental setup203

We first split the two playlist datasets into training and test sets, then evaluate the performance of the204

proposed method (on the test set), and compare it against several baseline approaches in each of the three205

cold-start settings.206

Dataset split In the cold playlists setting, we hold a portion of the playlists from about 20% of users in207

both datasets for testing, and all other playlists are used for training. The test set is formed by sampling208

playlists where each song has been included in at least four other playlists among the whole dataset. We209

also make sure each song in the test set appears in the training set, and all users in the test set have a few210

playlists in the training set.211

In the cold users setting, we sample 30% of users and hold all of their playlists for testing in both212

datasets. Similarly, we require songs in the test set to appear in the training set, and a user will thus not be213

used for testing if holding all of her playlists breaks this requirement.214

Lastly, in the cold songs setting, we hold 5K of the latest released songs in the 30Music dataset, and215

10K of the latest released songs in the AotM-2011 dataset where more songs are available. We remove216

playlists where all songs have been held for testing.217

Table 2 summaries the dataset splits in three cold-start settings.218

Baselines We compare the performance of our proposed method (i.e., MTC) with the following baseline219

approaches in each of the three cold-start settings:220

• The Popularity Ranking (PopRank) method scores a song using only its popularity in the training set.221

In the cold songs setting where song popularity is not available, a song is scored by the popularity222

of the corresponding artist.223

• The Same Artists - Greatest Hits (SAGH) (McFee et al., 2012) method scores a song by its popularity224

if the artist of the song appears in the given user’s playlists (in the training set); otherwise the song225

is scored zero. In the cold songs setting, this method only considers songs from artists that appear226

in the given playlist, and scores a song using the popularity of the corresponding artist.227

4https://github.com/dav/word2vec

8/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

• The Collocated Artists - Greatest Hits (CAGH) (Bonnin and Jannach, 2013) method is a variant228

of SAGH. It scores a song using its popularity, but weighted by the frequency of the collocation229

between the artist of the song and artists that appear in the given user’s playlists (in the training230

set). In the cold users setting, we use the 10 most popular artists instead of artists in the user’s231

listening history (which is not available), and the cold songs setting is addressed in the same way as232

in SAGH (i.e., considering only those artists that appear in the given playlist).233

We also compare with a variant of Matrix Factorisation (MF) in each setting, which first learns the234

latent factors of songs, playlists or users, then scores each song by the dot product of the corresponding235

latent factors. Recommendations are made as per the proposed method. To be specific,236

• In the cold playlists setting, we factorise the song-user playcount matrix using the weighted matrix237

factorisation (WMF) algorithm (Hu et al., 2008), which learns the latent factors of songs and users.238

We call this method WMF.239

• In the cold users setting, we first learn the latent factors of songs and users by factorising the240

song-user playcount matrix using WMF, then approximate the latent factors of a new user by the241

average latent factors of the k (e.g., 100) nearest neighbours (in terms of the cosine similarity242

between user attribute vectors) in the training set. We call this method WMF+kNN.5243

• In the cold songs setting, we factorise the song-playlist matrix to learn the latent factors of songs244

and playlists, which are further employed to train a fully-connected neural network that maps the245

content features of a song to its corresponding latent factors (Gantner et al., 2010; Oord et al., 2013).246

We can then obtain the latent factors of a new song as long as its content features are available. We247

call this method MF+MLP.248

Evaluation We first evaluate all approaches using two accuracy metrics that have been adopted in249

playlist recommendation tasks: HitRate@K and Area under the ROC curve (AUC).250

HitRate@K (Hariri et al., 2012), which is also known as Recall@K, is the number of correctly251

recommended songs amongst the top-K recommendations over the number of songs in the observed252

playlist. It has been widely employed to evaluate playlist generation and next song recommendation253

methods (Hariri et al., 2012; Bonnin and Jannach, 2013, 2015; Jannach et al., 2015).254

Area under the ROC curve (AUC) (Manning et al., 2008), which is the probability that a positive255

instance is ranked higher than a negative instance (on average). AUC has been primarily used to measure256

the performance of classifiers. It has been applied to evaluate playlist generation methods when the task257

has been cast as a sequence of classification problems (Ben-Elazar et al., 2017).258

It is believed that useful recommendations need to include previously unknown items, and this ability
can be measured by Novelty (Herlocker et al., 2004; Zhang et al., 2012; Schedl et al., 2017),

Novelty@K =
1
U

U

∑
u=1

1
|Ptest

u |
∑

i∈Ptest
u

∑
m∈Si

K

− log2 popm

K
, (16)

where Ptest
u is the (indices of) test playlists from user u, Si

K is the set of top-K recommendations for test259

playlist i and popm is the popularity of song m. Intuitively, the more popular a song is, the more likely a260

user is to be familiar with it, and therefore the less likely to be novel.261

We also adopt another beyond-accuracy metric called Spread (Kluver and Konstan, 2014), which
measures the ability of a recommender system to spread its attention across all possible items. It is defined
as the entropy of the distribution of all songs,

Spread =−
M

∑
m=1

P(m) logP(m), (17)

where P(m) denotes the probability of song m being recommended, which is computed from the scores of262

all possible songs using the softmax function in this work.263

5The WMF+kNN method does not apply to the AotM-2011 dataset in the cold users setting, since such user attributes (e.g.,
age, gender and country) are not available in the dataset.

9/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Table 3. AUC for playlist recommendation in three cold-start settings. Higher values indicate better
performance.

Cold Playlists Cold Users Cold Songs

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank 94.0 93.8 PopRank 88.3 91.8 PopRank 70.9 76.5
CAGH 94.8 94.2 CAGH 86.3 88.1 CAGH 68.0 77.4
SAGH 64.5 79.8 SAGH 54.5 53.7 SAGH 51.5 53.6
WMF 79.5 85.4 WMF+kNN 84.9 N/A MF+MLP 81.4 80.8
MTC 95.9 95.4 MTC 88.8 91.8 MTC 86.6 84.3

Novelty and Spread are two of the beyond-accuracy metrics that are specifically tailored to recom-264

mender systems. Unlike the AUC and Hit Rate, where higher values indicate better performance, here265

moderate values are usually preferable for these two beyond-accuracy metrics (Kluver and Konstan, 2014;266

Schedl et al., 2017).267

5.4 Results268

We analyse the empirical results of the proposed method (i.e., MTC) as well as many baselines in terms269

of both accuracy metrics (i.e., HitRate and AUC) and beyond accuracy metrics (i.e., Novelty and Spread).270

Accuracy Table 3 shows the performance of all methods in terms of AUC. We can see that PopRank271

achieves good performance in all three cold-start settings. This is in line with results reported in (Bonnin272

and Jannach, 2013, 2015). Artist information, particularly the frequency of artist collocations that is273

exploited in CAGH, improves recommendation in the cold playlists and cold songs settings. Further,274

PopRank is one of the best performing methods in the cold users setting, which is consistent with previous275

discoveries (McFee et al., 2012; Bonnin and Jannach, 2013, 2015). The reason is believed to be the276

long-tailed distribution of songs in playlists (Cremonesi et al., 2010; Bonnin and Jannach, 2013). The MF277

variant does not perform well in the cold playlists setting, but it performs reasonably well in the cold users278

setting when attributes of new users are available (i.e., in the 30Music dataset), and it works particularly279

well in the cold songs setting where both song metadata and audio features of new songs are provided.280

Lastly, MTC is the best performing method in all three cold-start settings on both datasets. Interestingly,281

it is the tied best on the AotM-2011 dataset in the cold users setting (recall that this dataset does not282

provide user attributes such as age, gender and country), and it achieves the same performance as PopRank283

in the cold users setting on the AotM-2011 dataset, which suggests that MTC might degenerate to simply284

ranking songs according to the popularity when making recommendations for new users; however, when285

simple attributes of new users are available, it can improve the recommendations by exploiting information286

learned from existing users.287

Figure 4 shows the Hit Rate of all methods in three cold-start settings when the number of recom-288

mended songs K varies from 5 to 1000. As expected, the performance of all methods improves when the289

number of recommendations increases. We can see from Figure 4a that SAGH and CAGH perform better290

than PopRank (except for SAGH on the 30Music dataset when K is larger than 300) in the cold playlists291

setting, which confirms that artist information is helpful in retrieving songs in ground truth playlists (i.e.,292

improving recall). It is interesting to observe that the performance of WMF is always between SAGH and293

CAGH on both datasets, although the performance of both SAGH and CAGH vary significantly across294

datasets. This might suggest that this variant of matrix factorisation is more robust than approaches based295

on ranking according to song popularity and artist information.296

It is challenging to improve upon simply ranking by song popularity in the cold users setting, as297

shown in Figure 4b, which is in line with previous discoveries (McFee et al., 2012; Bonnin and Jannach,298

2013, 2015). In contrast, learning-based approaches (i.e., MTC and MF+MLP) always perform better299

than other baselines that use only artist information in the cold songs setting (Figure 4c). PopRank works300

surprisingly well; it even outperforms CAGH which exploits artist collocations on the 30Music dataset.301

The fact that CAGH always performs better than SAGH confirms that artist collocation is helpful for302

music recommendation.303

In summary, MTC outperforms all other methods by a big margin on both datasets in the cold songs304

setting (Figure 4c). It performs as well as PopRank in the cold users setting; however, MTC can improve305

10/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

(a) Cold Playlists

(b) Cold Users

(c) Cold Songs

Figure 4. Hit Rate of playlist recommendation in three cold-start settings. Higher values indicate better
performance.

the recommendations when attributes of new users are available (Figure 4b). We also observe that MTC306

outperforms other baselines in the cold playlists setting (Figure 4a), although the margin is not as big as307

that in the cold songs setting. This demonstrates the effectiveness of the proposed approach for cold-start308

playlist recommendation.309

11/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Table 4. Spread for playlist recommendation in three cold-start settings. Moderate values are preferable.

Cold Playlists Cold Users Cold Songs

Method 30Music AotM-2011 Method 30Music AotM-2011 Method 30Music AotM-2011

PopRank 9.8 10.5 PopRank 9.8 10.5 PopRank 7.4 7.8
CAGH 5.8 2.3 CAGH 4.2 5.3 CAGH 4.3 4.6
SAGH 10.3 10.4 SAGH 10.0 10.7 SAGH 6.5 5.9
WMF 10.7 11.6 WMF+kNN 10.7 N/A MF+MLP 8.5 9.2
MTC 9.4 10.4 MTC 9.9 11.4 MTC 7.9 8.3

Beyond accuracy Table 4 shows the performance of all recommendation approaches in terms of Spread.310

In the cold songs setting, CAGH and SAGH focus on songs from artists in users’ listening history (and311

similar artists), which explains the relative low Spread. However, in the cold playlists and cold users312

settings, SAGH improves its attention spreading due to the set of songs it focuses on is significantly313

bigger (i.e., songs from all artists in users’ previous playlists and songs from the 10 most popular artists,314

respectively). Surprisingly, CAGH remains focusing on a relatively small set of songs in both settings.315

Lastly, in all three cold-start settings, the MF variants have the highest Spread, while both PopRank and316

MTC have (similar) moderate Spread, which is considered better.317

Figure 5 shows the Novelty of all methods in three cold-start settings. The values of Novelty of all318

methods raise as the number of recommendations increases. We can see from Figure 5a that PopRank has319

the lowest Novelty in the cold playlists setting, which is not surprising given the definition (Equation 16).320

Both SAGH and CAGH start with low Novelty and grow as the number of recommended songs increases,321

but the Novelty of CAGH saturates much earlier than that of SAGH. The reason could be that, when322

the number of recommendations is larger than the total number of songs from artists in a user’s existing323

playlists, SAGH will simply recommend songs randomly (which are likely to be novel) while CAGH will324

recommend songs from artists that are similar to those in the user’s existing playlists (which could be325

comparably less novel). Further, MTC achieves lower Novelty than WMF and CAGH, which indicates326

that MTC tends to recommend popular songs to form new playlists.327

It is interesting to observe that MTC and PopRank perform identically in the cold users setting, as328

shown in Figure 5b. SAGH has the largest Novelty on both datasets, likely for similar reasons to those in329

the cold playlists setting. CAGH and WMF+kNN have moderate Novelty, which are considered to be330

better. The performance of different methods (in terms of Novelty) in the cold songs setting (Figure 5c)331

are similar to those in the cold playlists setting (Figure 5b); however, there are two differences: (i) The332

Novelty of SAGH saturates after the number of recommendations reaches a certain value (roughly 60), the333

reason could be that, on average, the total number of songs from the set of artists in a playlist is about 60334

(Table 1); (ii) MTC achieves higher Novelty than WMF and CAGH, which might suggest that MTC tends335

to recommend new songs that will be (comparably) less popular.336

To conclude, MTC and CAGH have moderate Novelty in both the cold playlists and cold songs337

settings, and therefore perform better than other approaches. On the other hand, in the cold users setting,338

CAGH and the MF variant are preferred. Lastly, in both the cold playlists and the cold songs settings, the339

MF variants also achieve decent recommendations (in terms of Novelty).340

6 DISCUSSION341

We discuss the relationship between multitask learning, bipartite ranking and binary classification (from342

the perspective of loss function). In addition, we also remark several design choices adopted in this work343

and compare our problem setup with a closely related setting considered in a recent RecSys challenge.344

6.1 Multitask learning, bipartite ranking and binary classification345

Multitask learning is a method that learns more than one tasks in parallel by using a shared representation346

to achieve inductive transfer between tasks, it could improve generalisation accuracy of a particular task347

by leveraging additional signals from related tasks (Caruana, 1993, 1997). Sharing representation among348

multiple tasks, which is the central idea of multitask learning, allows us to jointly learn the parameters of349

users and playlists, as well as the shared parameters from multiple recommendation tasks, which further350

enables us to deal with the problem of recommending a set of songs in three cold-start settings.351

12/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

(a) Cold Playlists

(b) Cold Users

(c) Cold Songs

Figure 5. Novelty of playlist recommendation in three cold-start settings. Moderate values are
prefereable.

The bipartite ranking loss adopted in this work (i.e., the Bottom-Push) guides the learning process352

such that the learned parameters will (generally) reflect our intention to rank the set of songs in a playlist353

higher than those that are not. Ideally, we can directly optimise this loss function using training data;354

unfortunately, this is infeasible due to the enormous number of constraints in the involved optimisation355

problem, we therefore resort to minimise an approximation of the constrained objective. It turns out356

13/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

that the approximation6 transforms the Bottom-Push to the P-Norm Push. Although one can optimise357

the objective of the P-Norm Push using standard techniques (e.g., gradient descent), we find that more358

efficient optimisation can be achieved if we make use of the equivalence between bipartite ranking and359

binary classification, which results in an unconstrained objective with a classification loss.360

6.2 Cold-start playlist recommendation versus playlist continuation361

In the cold playlists setting, we recommend more than one playlists for a given user; however, all these362

recommendations are identical as the ranking of songs for a specific user is the same (Equation 4). This is363

due to the fact that no other contextual information for a recommendation is available except the user364

identity. Similarly, in the cold users setting, the same set of songs will always be suggested no matter365

how many times the recommendation have been made because of the lack of contextual information in366

each recommendation. A more plausible and perhaps more realistic setting is to provide one or more367

seed songs for each task,7 and the recommended playlist should be cohesive with the given seed. This368

setup is known as playlist continuation (Schedl et al., 2017), which has been explored in a recent RecSys369

challenge8. One may notice that the setup of playlist continuation is similar to the cold songs setting,370

except that the set of songs to be added to a playlist are not necessarily newly released songs.371

6.3 Information of songs, playlists and users372

In this work, we assume that content features of songs (e.g., metadata, audio data) are provided, even373

for newly released songs. On the other hand, no user (or playlist) feature is available. We may have a374

few simple attributes of users (e.g., age, gender, country) or only user identifiers are known. In practice,375

users might reveal their preferences in profiles, and playlist metadata (e.g., title, description, created time)376

might also be available, which could be exploited by the learning algorithm.377

Further, we treat a playlist as a set of songs by discarding the sequential order. It turns out that378

the sequential order of songs in a playlist has not been well understood (Schedl et al., 2017), some379

work suggest that the order of songs and song-to-song transitions are important for the quality of the380

recommended playlist (McFee and Lanckriet, 2012; Kamehkhosh et al., 2018), while other work discover381

that the order of songs seems to be negligible, but the ensemble (i.e., set) of songs in a playlist do382

matter (Tintarev et al., 2017; Vall et al., 2017).383

As a remark, in the cold users setting, we approximate the weights (or latent factors) of a new user384

using the average weights (or latent factors) of similar users in the training set in MTC (or WMF+kNN).385

One could also use a weighted average (e.g., weighted by the normalised cosine similarity between386

user attribute vectors) of those similar users’ weights (or latent factors), however, we did not find any387

significant difference in performance compared to the arithmetic mean in the experiments.388

7 CONCLUSION AND FUTURE WORK389

We study the problem of recommending a set of songs to form playlists in three cold-start settings:390

cold playlists, cold users and cold songs. We propose a multitask learning method that learns user- and391

playlist-specific weights as well as shared weights from user-curated playlists, which allows us to form392

new personalised playlists for an existing user, and to produce playlists for a new user, or to extend users’393

playlists with newly released songs. We optimise the parameters (i.e., weights) by minimising a bipartite394

ranking loss that ranks the set of songs in a playlist above songs that are not in it. An equivalence between395

bipartite ranking and binary classification further enables efficient approximation of optimal parameters.396

Empirical evaluations on two real playlist datasets demonstrate the effectiveness of the proposed method397

for cold-start playlist recommendation.398

For future work, we would like to explore auxiliary data sources (e.g., music information shared399

on social media) and additional features of songs and users (e.g., lyrics, user profiles) to make better400

recommendations. Further, non-linear models such as deep neural networks have been shown to work401

extremely well in a wide range of tasks, and the proposed linear model with sparse parameters could be402

more compact if a non-linear model were adopted.403

6The approximation also transforms the constrained optimisation problem into an unconstrained optimisation problem.
7The seed information can also be an artist or a genre, as considered in Ben-Elazar et al. (2017).
8http://www.recsyschallenge.com/2018/

14/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

REFERENCES404

Agarwal, D. and Chen, B.-C. (2009). Regression-based latent factor models. In Proceedings of the 15th405

ACM SIGKDD international conference on Knowledge discovery and data mining, pages 19–28.406

Agarwal, S. (2011). The infinite push: A new support vector ranking algorithm that directly optimizes407

accuracy at the absolute top of the list. In Proceedings of the 2011 SIAM International Conference on408

Data Mining, pages 839–850.409

Agarwal, S. and Niyogi, P. (2005). Stability and generalization of bipartite ranking algorithms. In410

International Conference on Computational Learning Theory, pages 32–47.411

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer.412

Andrew, G. and Gao, J. (2007). Scalable training of L1-regularized log-linear models. In Proceedings of413

the 24th international conference on Machine learning, pages 33–40.414

Avriel, M. (2003). Nonlinear programming: analysis and methods. Courier Corporation.415

Ben-Elazar, S., Lavee, G., Koenigstein, N., Barkan, O., Berezin, H., Paquet, U., and Zaccai, T. (2017).416

Groove radio: A bayesian hierarchical model for personalized playlist generation. In Proceedings of417

the 10th ACM International Conference on Web Search and Data Mining, pages 445–453.418

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million song dataset. In419

Proceedings of the 12th International Society for Music Information Retrieval Conference, pages420

591–596.421

Bonnin, G. and Jannach, D. (2013). Evaluating the quality of playlists based on hand-crafted samples.422

In Proceedings of the 14th International Society for Music Information Retrieval Conference, pages423

263–268.424

Bonnin, G. and Jannach, D. (2015). Automated generation of music playlists: Survey and experiments.425

ACM Computing Surveys.426

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.427

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-428

adapted interaction, 12:331–370.429

Cao, B., Liu, N. N., and Yang, Q. (2010). Transfer learning for collective link prediction in multiple430

heterogenous domains. In Proceedings of the 27th international conference on machine learning, pages431

159–166.432

Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias. In Proceedings of433

the 10th International Conference on Machine Learning, pages 41–48.434

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.435

Chen, S., Moore, J. L., Turnbull, D., and Joachims, T. (2012). Playlist prediction via metric embedding.436

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data437

mining, pages 714–722.438

Cremonesi, P., Koren, Y., and Turrin, R. (2010). Performance of recommender algorithms on top-n439

recommendation tasks. In Proceedings of the 4th ACM conference on Recommender systems, pages440

39–46.441

Donaldson, J. (2007). A hybrid social-acoustic recommendation system for popular music. In Proceedings442

of the ACM conference on Recommender systems, pages 187–190.443

Eghbal-Zadeh, H., Lehner, B., Schedl, M., and Widmer, G. (2015). I-vectors for timbre-based music444

similarity and music artist classification. In Proceedings of the 16th International Society for Music445

Information Retrieval Conference, pages 554–560.446

Ertekin, Ş. and Rudin, C. (2011). On equivalence relationships between classification and ranking447

algorithms. Journal of Machine Learning Research, 12:2905–2929.448

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient boosting algorithm for combining449

preferences. Journal of Machine Learning Research, 4:933–969.450

Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., and Schmidt-Thieme, L. (2010). Learning451

attribute-to-feature mappings for cold-start recommendations. In IEEE International Conference on452

Data Mining, pages 176–185.453

Hariri, N., Mobasher, B., and Burke, R. (2012). Context-aware music recommendation based on454

latenttopic sequential patterns. In Proceedings of the 6th ACM conference on Recommender systems,455

pages 131–138.456

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering457

recommender systems. ACM Transactions on Information Systems, 22:5–53.458

15/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In IEEE459

International Conference on Data Mining, pages 263–272.460

Jannach, D., Lerche, L., and Kamehkhosh, I. (2015). Beyond hitting the hits: Generating coherent461

music playlist continuations with the right tracks. In Proceedings of the 9th ACM Conference on462

Recommender Systems, pages 187–194.463

John, J. (2006). Pandora and the music genome project. Scientific Computing, 23:40–41.464

Kamehkhosh, I., Jannach, D., and Bonnin, G. (2018). How automated recommendations affect the playlist465

creation behavior of users. In ACM IUI workshop on Intelligent Music Interfaces for Listening and466

Creation (MILC).467

Kluver, D. and Konstan, J. A. (2014). Evaluating recommender behavior for new users. In Proceedings of468

the 8th ACM Conference on Recommender Systems, pages 121–128.469

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems.470

Computer, 42:30–37.471

Li, N., Jin, R., and Zhou, Z.-H. (2014). Top rank optimization in linear time. In Advances in neural472

information processing systems, pages 1502–1510.473

Ma, H., Yang, H., Lyu, M. R., and King, I. (2008). SoRec: Social recommendation using probabilistic474

matrix factorization. In Proceedings of the 17th ACM conference on Information and knowledge475

management, pages 931–940.476

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge477

University Press.478

McFee, B., Bertin-Mahieux, T., Ellis, D. P., and Lanckriet, G. R. (2012). The Million Song Dataset479

Challenge. In Proceedings of the 21st International Conference on World Wide Web, pages 909–916.480

McFee, B. and Lanckriet, G. R. (2011). The natural language of playlists. In Proceedings of the 12th481

International Society for Music Information Retrieval Conference, pages 537–542.482

McFee, B. and Lanckriet, G. R. (2012). Hypergraph models of playlist dialects. In Proceedings of the483

13th International Society for Music Information Retrieval Conference, pages 343–348.484

Menon, A. K. and Williamson, R. C. (2016). Bipartite ranking: a risk-theoretic perspective. Journal of485

Machine Learning Research, 17:1–102.486

Netflix (2006). Netflix Prize. http://www.netflixprize.com/.487

Oord, A. v. d., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. In488

Advances in neural information processing systems, pages 2643–2651.489

Platt, J. C., Burges, C. J., Swenson, S., Weare, C., and Zheng, A. (2002). Learning a gaussian process prior490

for automatically generating music playlists. In Advances in neural information processing systems,491

pages 1425–1432.492

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). BPR: Bayesian personalized493

ranking from implicit feedback. In Proceedings of the 25th conference on uncertainty in artificial494

intelligence, pages 452–461.495

Rudin, C. (2009). The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of496

the list. Journal of Machine Learning Research, 10:2233–2271.497

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering recommen-498

dation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages499

285–295.500

Saveski, M. and Mantrach, A. (2014). Item cold-start recommendations: learning local collective501

embeddings. In Proceedings of the 8th ACM Conference on Recommender systems, pages 89–96.502

Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., and Elahi, M. (2017). Current challenges and visions503

in music recommender systems research. ArXiv e-prints.504

Schindler, A., Mayer, R., and Rauber, A. (2012). Facilitating comprehensive benchmarking experiments505

on the million song dataset. In Proceedings of the 13th International Society for Music Information506

Retrieval Conference, pages 469–474.507

Schreiber, H. (2015). Improving genre annotations for the million song dataset. In Proceedings of the508

16th International Society for Music Information Retrieval Conference, pages 241–247.509

Seyerlehner, K., Widmer, G., Schedl, M., and Knees, P. (2010). Automatic music tag classification based510

on blocklevel features. In Proceedings of Sound and Music Computing.511

Shao, B., Wang, D., Li, T., and Ogihara, M. (2009). Music recommendation based on acoustic features and512

user access patterns. IEEE Transactions on Audio, Speech, and Language Processing, 17:1602–1611.513

16/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

Spotify (2018). Spotify – Company Info. https://newsroom.spotify.com/companyinfo,514

retrieved September 2018.515

Tintarev, N., Lofi, C., and Liem, C. (2017). Sequences of diverse song recommendations: An exploratory516

study in a commercial system. In Proceedings of the 25th Conference on User Modeling, Adaptation517

and Personalization, pages 391–392.518

Turrin, R., Quadrana, M., Condorelli, A., Pagano, R., and Cremonesi, P. (2015). 30music listening and519

playlists dataset. In Proceedings of the Poster Track of the ACM Conference on Recommender Systems.520

Vall, A., Schedl, M., Widmer, G., Quadrana, M., and Cremonesi, P. (2017). The importance of song521

context in music playlists. In Proceedings of the Poster Track of the ACM Conference on Recommender522

Systems.523

Volkovs, M., Yu, G., and Poutanen, T. (2017). Dropoutnet: Addressing cold start in recommender systems.524

In Advances in Neural Information Processing Systems, pages 4957–4966.525

Yoshii, K., Goto, M., Komatani, K., Ogata, T., and Okuno, H. G. (2006). Hybrid collaborative and content-526

based music recommendation using probabilistic model with latent user preferences. In Proceedings of527

the 7th International Society for Music Information Retrieval Conference.528

Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., and Jambor, T. (2012). Auralist: introducing serendipity into529

music recommendation. In Proceedings of the 5th ACM international conference on Web search and530

data mining, pages 13–22.531

17/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

A PROOF OF LEMMA 1532

First, we approximate the empirical risk RRANK
θ

(with the exponential surrogate) as follows:

RRANK
θ

(f ,D) =
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

∑
m′:yi

m′=0

exp
(
− min

m:yi
m=1

f (m,u, i)+ f (m′,u, i)
)

=
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

exp
(
− min

m:yi
m=1

f (m,u, i)
)

∑
m′:yi

m′=0

exp
(

f (m′,u, i)
)

≈ 1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

exp

 1
p

log ∑
m:yi

m=1

e−p f (m,u,i)

 ∑
m′:yi

m′=0

exp
(

f (m′,u, i)
)

=
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p

∑
m′:yi

m′=0

e f (m′,u,i)

=
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

 ∑
m′:yi

m′=0

e f (m′,u,i)

p

∑
m:yi

m=1

e−p f (m,u,i)


1
p

=
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 ∑
m′:yi

m′=0

e f (m′,u,i)

p
1
p

=
1
N

U

∑
u=1

∑
i∈Pu

1
Mi
−

 ∑
m:yi

m=1

 ∑
m′:yi

m′=0

e−(f (m,u,i)− f (m′,u,i))

p
1
p

= R̃RANK
θ

(f ,D).

Recall that RMTC
θ

is defined as

RMTC
θ

(f ,D) =
1
N

U

∑
u=1

∑
i∈Pu

 1
pMi

+
∑

m:yi
m=1

e−p f (m,u,i)+
1

Mi
−

∑
m′:yi

m′=0

e f (m′,u,i)

 .

Let θ
∗ ∈ argmin

θ
RMTC

θ
(assuming minimisers exist), we want to prove that θ

∗ ∈ argmin
θ

R̃RANK
θ

.533

Proof. We follow the proof technique in (Ertekin and Rudin, 2011) by first introducing a constant feature534

1 for each song, without loss of generality, let the first feature of xm, m ∈ {1, . . . ,M} be the constant535

feature, i.e., x0
m = 1. We can show that ∂ RMTC

θ

∂ θ
= 0 implies ∂ R̃RANK

θ

∂ θ
= 0, which means minimisers of RMTC

θ
536

also minimise R̃RANK
θ

.537

Let 0=
∂ RMTC

θ

∂ β 0
i

=
1
N

 1
pMi

+
∑

m:yi
m=1

e−p f (m,u,i)(−p)+
1

Mi
−

∑
m′:yi

m′=0

e f (m′,u,i)

 , i∈Pu, u∈ {1, . . . ,U},

we have

1
Mi

+
∑

m:yi
m=1

e−p f (m,u,i)

∣∣∣∣∣
θ=θ∗

=
1

Mi
−

∑
m′:yi

m′=0

e f (m′,u,i)

∣∣∣∣∣
θ=θ∗

, i ∈ Pu, u ∈ {1, . . . ,U}. (18)

Further, let

0=
∂ RMTC

θ

∂ βββ i
=

1
N

 1
pMi

+
∑

m:yi
m=1

e−p f (m,u,i)(−pxm)+
1

Mi
−

∑
m′:yi

m′=0

e f (m′,u,i)xm′

 , i∈ Pu, u∈ {1, . . . ,U},

18/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

we have

1
Mi

+
∑

m:yi
m=1

e−p f (m,u,i)xm

∣∣∣∣∣
θ=θ∗

=
1

Mi
−

∑
m′:yi

m′=0

e f (m′,u,i)xm′

∣∣∣∣∣
θ=θ∗

, i ∈ Pu, u ∈ {1, . . . ,U}. (19)

By Eq. (18) and (19), for i ∈ Pu, u ∈ {1, . . . ,U}, we have

∂ R̃RANK
θ

∂ βββ i

∣∣∣∣∣
θ=θ∗

=
1

NMi
−

 1
p

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p−1

∑
m:yi

m=1

e−p f (m,u,i)(−pxm) ∑
m′:yi

m′=0

e f (m′,u,i)+

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p

∑
m′:yi

m′=0

e f (m′,u,i)xm′


=
−1

NMi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p−1 ∑

m:yi
m=1

e−p f (m,u,i)xm ∑
m′:yi

m′=0

e f (m′,u,i)− ∑
m:yi

m=1

e−p f (m,u,i)
∑

m′:yi
m′=0

e f (m′,u,i)xm′



=
−1

NMi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p−1 ∑

m:yi
m=1

e−p f (m,u,i)xm

Mi
−

Mi
+

∑
m:yi

m=1

e−p f (m,u,i)

− ∑
m:yi

m=1

e−p f (m,u,i)
∑

m′:yi
m′=0

e f (m′,u,i)xm′



=
−1

NMi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p
Mi

−
Mi

+
∑

m:yi
m=1

e−p f (m,u,i)xm− ∑
m′:yi

m′=0

e f (m′,u,i)xm′


= 0.

(20)

We further let

h(u, i) =
1

NMi
−

 ∑
m:yi

m=1

e−p f (m,u,i)

 1
p

∑
m′:yi

m′=0

e f (m′,u,i), i ∈ Pu, u ∈ {1, . . . ,U},

and similar to Eq. (20), we have

∂ h(u, i)
∂ βββ i

∣∣∣∣∣
θ=θ∗

= 0, i ∈ Pu, u ∈ {1, . . . ,U}. (21)

By Eq. (21), for u ∈ {1, . . . ,U}, we have

∂ R̃RANK
θ

∂ αααu

∣∣∣∣∣
θ=θ∗

= ∑
i∈Pu

∂ h(u, i)
∂ αααu

∣∣∣∣∣
θ=θ∗

= ∑
i∈Pu

∂ h(u, i)
∂ βββ i

∣∣∣∣∣
θ=θ∗

= 0, (22)

and

∂ R̃RANK
θ

∂ µµµ

∣∣∣∣∣
θ=θ∗

=
U

∑
u=1

∑
i∈Pu

∂ h(u, i)
∂ µµµ

∣∣∣∣∣
θ=θ∗

=
U

∑
u=1

∑
i∈Pu

∂ h(u, i)
∂ βββ i

∣∣∣∣∣
θ=θ∗

= 0. (23)

Finally, by Eq. (20), (22), and (23), θ
∗ ∈ argmin

θ
R̃RANK

θ
.538

19/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27383v2 | CC BY 4.0 Open Access | rec: 27 Nov 2018, publ: 27 Nov 2018

