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Abstract

The Northern Andean Block harbors high biodiversity, being one of the most

important areas in the Neotropics, but the settlement of several human populations

has triggered rapid transformations of the ecosystems, leading to the extinction or

endangerment of many species. Phylogenetic diversity indices quantify the

distinctness between species and, therefore, they are an adequate tool to evaluate

conservation priority areas. Here we present a plausible phylogenetic scenario for

conservation in the North Andean Block and the contribution of the protected areas

to the phylogenetic diversity. Our results showed that the Average Taxonomic

Distinctness index had the lowest correlation with richness and therefore it is the

most suitable index. We found the highest index values in the areas of Magdalena,

Páramo, and Cauca. Endemic species and protected areas did not contribute

significantly to phylogenetic diversity. It is preferable to prioritize areas within

adjacent and complementary cells, which belong to the upper quantile of the index

value.

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27381v1 | CC BY 4.0 Open Access | rec: 26 Nov 2018, publ: 26 Nov 2018



Introduction

The Northern Andean Block (hereafter NAB) is a tectonic subplate formed by

northeastern Ecuador, the Pacific, the Caribbean, and the Andean regions of

Colombia, along with the Venezuelan Andes (Kellogg et al., 1995; Bird, 2003). The

region harbors a high number of species, making it one of the most important areas

in the Neotropics (Myers, 1988; Myers et al., 2000).

Its amazingly varied climes and availability of resources have promoted the

settlement of several human populations that have grown over time, making the

NAB into one of the most populated regions in South America (Goldewijk, 2005), and

therefore, a place for rapid ecosystem transformations, that had driven to the

extinction of at least 17 species and the endangerment of many others (Extinct in

the wild: 7 species. critically endangered: 496 species, endangered: 1110 species.

Data from the IUCN website as June 28 of 2017).

These perils had been the reason to create what we could call an initiative of

Protected Areas (hereinafter PAs) for conservation purposes, and the main criteria

for their delimitation has been ecological indices (e.g. PNN Bahia Portete-Kaurrele,

Guajira, Colombia. Resolución 2096, 19 de Diciembre 2014, which follows

Diaz-Pulido (2000) and Diaz-Pulido and Díaz-Ruíz (2003) analyses). Nonetheless,

this approach has not taken into account the history and evolutionary information

contained in a phylogeny (Vane-Wright et al., 1991; Faith, 1992), therefore, the

critical information on the evolutionary history of the species that inhabit the area

has not been considered in the conservation decisions.
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From an evolutionary perspective, it is important to link the distinction between

species when it is necessary to prioritize areas for conservation. Phylogenetic

diversity indices evaluate the distinctness between species by quantifying the

information contained in a topology (Vane-Wright et al., 1991; Faith, 1992;

Schweiger et al., 2008), and between areas given the species distribution and their

phylogenetic information value (Vane-Wright et al., 1991; Posadas et al., 2001;

Cue-Bar et al., 2006), therefore, phylogenetic diversity indices allow us to shelter

not only the most distinctive species but also include a greater number of species in

fewer areas (Vane-Wright et al., 1991), when it is accompanied by a complementarity

index (Colwell and Coddington, 1994). Since 1991, most publications regarding

phylogenetic diversity indices have focused on their applicability and statistical

properties (Vane-Wright et al., 1991; Redding and Mooers, 2006; Schweiger et al.,

2008), rather than on proposing actual recommendations aimed at conservation

(Rolland et al., 2012), which could be used to protect areas using phylogenetic

information. Therefore, our objectives in this work were:

(1) present a plausible priority scheme in the NAB for conservation purposes,

(2) evaluate the correlation between phylogenetic diversity indices and richness,

(3) quantify the contribution of endemic species to the NAB’s phylogenetic diversity,

and

(4) quantify the phylogenetic diversity and contribution of the PAs to the total

phylogenetic diversity in the NAB.
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Methods

Taxa

We selected taxa distributed in the NAB with at least three genes available in the

GenBank for a least 50 % of the known species for the taxon. We obtained

occurrences from the Global Biodiversity Information Facility (GBIF). Although

invasive species were included in the phylogenetic analyses, the occurrences of such

species were not considered in the distributional data to avoid bias generated by

widespread species due to human activity.

Phylogenetic reconstruction

We selected the best evolutionary nucleotide model under the Akaike Information

Criterion (AIC) (Akaike, 1974) for each gene. We made a partitioned phylogenetic

reconstruction under the Maximum Likelihood criterion as implemented in RAxML

v8.2.X (Stamatakis, 2014), using the nucleotide model GTR+GAMMA for all genes,

and then a branch length optimization on the partitioned data in PhyML v3.0

(20160310) (Guindon et al., 2010), using the calculated nucleotide model for each

gene. Data-sets containing more than 100 terminals, were analyzed using EXaML

v3.0 (Kozlov et al., 2015) instead of RAxML.
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Areas

We used two approaches, the areas of endemism as proposed by Morrone (2014)

modified for the NAB (Fig. 1), and three grid cell sizes: 0.25◦, 0.50◦, and 1◦.

GBIF information

In order to quantify the quality of the GBIF data used, we calculated the

Half-Ignorance Index (Ruete, 2015), generating a scale ranging from 0 (no or

minimal ignorance) to 1 (maximum or total ignorance). For the O0.5 parameter of the

Half-Ignorance Index, we assumed 10 as the minimum number of occurrences to

trust the presence of a species, following Chazdon et al. (1998). Finally, we created

a raster image depicting the information on each cell.

Prioritization based on phylogenetic indices

We used the most robust index for each category (Krajewski, 1994; Schweiger et al.,

2008): the Taxonomic Distinctness (TD), a topological based index (Vane-Wright

et al., 1991), the Phylogenetic Diversity (PD), a minimum spanning tree based index

(Faith, 1992), and the Average Taxonomic Distinctness (AvTD), a pair-wise distance

based index (Clarke and Warwick, 1998). As AvTD is not defined for an area with a

single species, we calculated the pair-wise distance between the terminal and the

root (Rodrigues and Gaston, 2002).

We evaluated the correlation of the phylogenetic diversity index values with species

richness using a Bayesian Simple Linear Regression (hereafter BSLR) (Kruschke,
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2014). We used two approaches for richness: Total Richness (TR), considering all

the species that occur within the area as calculated from the GBIF data, and

Richness based on the phylogeny (PR), considering the total number of terminals in

a specific phylogeny (e.g. Maxillaria has 75 species occurring in the area (TR), but

only 32 of them are in the phylogeny (PR)).

The area of endemism with the highest index value was considered as the most

important, while, for the grid cells, the values for the selected index were divided

into five quantiles. Cells with an index value in the upper quantile (hereafter Q5)

were considered the most important and therefore used to calculate the

complementarity index among cells.

We calculated the correlation between complementarity and the geodesic distance

(Vincenty, 1975) between cells using a BSLR (Kruschke, 2014), and the number of

Q5 cells that are within those areas of endemism.

Endemic species

In order to evaluate the influence of endemic species in the prioritization of areas,

we performed a Jack-knife analysis with 100 replicates, removing randomly from the

analyses 25%, 50% or 75% of the species restricted to one area of endemism

(endemic); also, we removed once, all endemic species. For each replicate, we

recalculated the index values.
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Protected areas

To determine the contribution of the Protected Areas to the phylogenetic diversity in

the NAB, we quantified the number of Q5 cells that are within the PAs. Also, the

three indices were recalculated considering only the PAs, and the NAB excluding the

PAs. We used the differences between the total phylogenetic diversity of the PAs and

the NAB without the PAs to quantify the contribution of the PAs to the total

phylogenetic diversity. We used as reference the polygons from the World Database

of Protected Areas project (IUCN, 2014).

The data-sets analyzed during the current study are available in the PhyloDiversity

repository: https://github.com/oleon12/PhyloDiversity.

Results

Taxa

We reconstructed 93 phylogenies at different taxonomic levels, that included 1255

species inhabiting the NAB: Bryophyta (33 species), Marchantiophyta (7 species),

Gymnospermae (89 species), Magnoliopsida (213 species), Liliopsida (157 species),

Insecta (115 species), Squamata (98 species), Testudines (3 species), Amphibia

(188 species), Aves (159 species), and Mammalia (193 species) (Table S1).
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Data quality: Phylogenies

We have strong confidence in our results, as adding new phylogenies to the data

would not drastically modify the results. The ranking of the three most important

areas of endemism remains the same regardless the number of phylogenies included.

The three most important areas of endemism kept their positions in all replications if

we included only 67 phylogenies, randomly selected, out of 93 total phylogenies (Fig.

S1). The congruence from different taxa is more important than the number of

phylogenies itself, as two different taxa might tell different evolutionary histories

(Richardson and Pennington, 2016), and therefore prioritize different areas.

Data quality: Distributions

The mean Ignorance value was low (mean=0.26, sd=0.27, CI95%= 0.24-0.28), and

only 38% cells presented high Ignorance values (red cells) (Fig. 2). The phylogenetic

indices implemented here only take into account the presence or absence of species,

avoiding the potential problems generated by the number of observations, so the

algorithms are not biased by this parameter. In the worst case scenario, where a

species has just one observation per unit of observation is low. Approximately 44%

of our species have 20 or more observations per cell, a common number used in

niche modeling analysis (Feeley and Silman, 2011; Troudet et al., 2017); moreover,

considering only 10 observation as an appropriate number Chazdon et al. (1998) we

obtain about 60% of the species with enough information. Therefore, if we consider

only those species as the most credible, given their number of observations, there
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will be no difference with our results, as we observed that removing a third of the

data set from the analyses did not affect the results (Fig. S1).

Prioritization

The Taxonomic Distinctness (TD) and the Phylogenetic Diversity (PD) indices were

highly correlated to richness (posterior slope means 0.99 and < 0.77 respectively,

Fig. S2), while the Average Taxonomic Distinctness index (AvTD) exhibited lower

correlation with either the phylogenetic richness (PR) or total richness (TR) values

(posterior slope mean < 0.41), therefore we evaluated areas of endemism and grid

cells using AvTD. The endemism areas of Magdalena, Paramo and Cauca had the

highest AvTD values, while Magdalena and Cauca were persistent in all indices (Table

S2), and about 64% of the Q5 cells were within these two areas (Fig. 3). The Q5

cells obtained using AvTD for the three grid cell sizes used were similar. The 0.50◦

and the 1◦ cell sizes overlapped 83%, and 0.25◦ with 0.50◦ overlapped 78%;

likewise, the 0.25◦ and 1◦ overlapped by 63% (Fig. 4). We used the 0.25◦ size, as it

allowed the most detailed analyzes.

Most cells with low Ignorance values matched the Q5 cells calculated using the AvTD

index (Fig. 2a), and corresponded with many richness cells (Fig. 5). About 76% of

AvTD Q5 cells were located in the Andean, and lowland regions of Colombia and

Ecuador. In Colombia, the cells in the Andean region were located in the north of the

eastern, central and western Cordillera, and the middle of the western and eastern

Cordillera. While in the lowlands region were located in the north and middle zone of
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the Magdalena Valley, Cauca Valley, Pacific lowlands and the Piedemonte. On the

other hand, in Ecuador, the Q5 cells were located across the western and eastern

Cordillera (Andean region), and the west Amazonian and Pacific lowlands. The

remaining Q5 cells were located in several places across the NAB, in locations like

the ”Nudo de los Pastos”, the south of the central, western and eastern Cordilleras,

and the Cauca Valley. In the north of the NAB, there were some Q5 cells distributed

across the Venezuelan Andes, the west of the Caribbean region of Colombia and the

lowlands close to the Sierra Nevada (Fig. 3a).

The complementary values among all cells and among Q5 cells were high, with

averages from 0.86 to 1.0 (all) or 0.85 to 0.99 (Q5 cells), while the correlation

between geographical distance and complementarity was low (0.25).

Endemic species

The general the area ranking did not change when the endemic species were

removed. Although the three index values are affected by the number of endemic

species included, the absolute numbers behave differently according to the index

used, being AvTD the most stable index. However, the pattern showed by AvTD is

the opposite to TD or PD, as for some areas -like Choco-Darien, Guajira, Venezuela

and Napo-, the index values increased when the number of endemic species

removed increased. Notoriously, Cauca and Paramo increased their index values in

the absence of endemic species, compared with their initial values (Fig. S3).
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Protected Areas

We found that the phylogenetic richness is larger inside than outside the protected

areas, as found by Gray (Gray et al., 2016), while the total richness was very

homogeneous within and outside the PAs (Table 1).

Within the PAs, there was higher proportion of the total phylogenetic diversity, for TD

(59%) or PD (64%) than for AvTD, where we found the opposite, less phylogenetic

diversity within PAs, representing only 0.8% of the total phylogenetic diversity and

this pattern was also evident in PR (Table 1).

Although we found that the percentage of Q5 cells that matched PAs is low (PD =

9.9%, PD and AvTD = 18%; Fig. 2d), we must be aware that PAs are heavily

under-sampled as 15% of the PAs lacked occurrences of species. As stated before,

TD and PD were more correlated with richness than AvTD (posterior slope mean:

0.97, 0.76 and 0.32 respectively).

TD and PD had higher phylogenetic diversity values within the PAs, nevertheless,

AvTD showed the opposite, but as TD and PD cell values were highly correlated with

richness, larger than AvTD, we consider that AvTD presented a better perspective,

showing the low percentage of Q5 cells that matched with PAs (< 18%) (Fig. 3d).
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Discussion

The phylogenetic context in conservation decision policies

The conservation analysis based on a single taxon and other approaches such as

endemic, small ranged or threatened species will probably generate different results.

Generally, endemic species had diversified recently and could be associated with

short branch lengths Hubbell (2001); Richardson et al. (2001); Davies et al. (2011).

We found that the endemic species presented shorter terminal branch lengths

(mean: 0.039, SD: 0.060, CI95%: 0.032-0.046) than widespread species (mean:

0.117, SD: 1.88, CI95%: 0.001-0.237), and endemic species only represent 0.4% of

the accumulated branch lengths, so their contribution to the phylogenetic diversity of

the areas is low, especially for PD and AvTD. Nonetheless, for the low contribution for

TD we must take into account recent divergence, therefore, the endemic species

could be located farther from the root -especially for large phylogenies-, giving them

a low weight Vane-Wright et al. (1991).

Endemic species are more sensitive to environmental disruption and are strong

predictors of local extinction risk (Manne et al., 1999; Jenkins et al., 2013), so using

these species to identify conservation priorities has been common (Silva, 1997;

Stattersfield et al., 1998; Nori et al., 2016). However, these species predicted

phylogenetic priorities incorrectly, because of the short branches involved,

underestimating the phylogenetic diversity for a given area. Therefore, endemic

species should not be considered a single viable estimator.
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Approximately 53% of the 1255 species used in the analyses are cataloged as No

Evaluated (NE) following the IUCN categories (Fig. S4), therefore we found no use in

indexes as the EDGE index (Isaac et al., 2007); nonetheless, 55% of the species

considered as Critically Endangered (CR) or Endangered (EN) are endemic (Fig. S4),

with a low amount of evolutionary history.

Over the years, Protected Areas had been a useful tool for preserving species

richness but failed to preserve the evolutionary history of the NAB. The collectors

usually remain close to areas with research facilities (Nelson et al., 1990), so there is

a sampling and richness correlation, as main roads yields easy access to places close

to cities (Balmford et al., 2001; Reddy and Dávalos, 2003), a pattern also found in

our data where the higher richness was correlated to the main cities (Fig. 5),

affecting the results generated from grid cells, PAs and areas of endemism.

The three most important areas prioritized by PD were those with more accumulated

branch lengths (Table S2), showing another parameter that influenced the analyses.

Moreover, AvTD, although being the less biased, prioritized the richest areas, but the

ranking did not correspond with richness or even the accumulated branch lengths.

The richness bias has already been tested for some indices Schweiger et al. (2008);

Morlon et al. (2011); Howard et al. (2016), but the possible bias for branch lengths

is an open question.

(Sechrest et al., 2002), using two Mammalian orders found out that there was more

evolutionary information within the Andean Hotspot than outside. Herein, we found

that there were important amounts of evolutionary information not only in the
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Andean Valleys, but in Amazonian and Pacific lowlands, outside the Andean Hotspot

(Fig. 3a).

In Colombia, the prioritized areas for conservation are those ecosystems poorly

represented in the actual PAs, such as the Tropical Dry Forest and the Caribbean

Coast (CONPES et al., 2010). Some Q5 cells matched areas of Tropical Dry Forest

(Olson et al., 2001) in the Magdalena and Cauca Valleys, and Ecuadorian eastern

lands. Moreover, other Q5 cells matched areas of Montane and Moist Tropical Forest

whose areas were very diverse and are threatened (Bubb et al., 2004; Hassan et al.,

2005; Bush et al., 2007; Pennington et al., 2010).

Colombia, the Caribbean, the Pacific and the Andean regions (fully included in the

NAB) were the least intact areas (Echeverría-Londoño et al., 2016). Many Q5 cells

corresponded with those less intact cells, especially in the Andean region, and if

these Q5 cells are selected for preservation, the intactness within will increase from

an average of 77% to 86% by 2095 (Echeverría-Londoño et al., 2016). Therefore,

these Q5 cells that correspond with threatened ecoregions and less intact cells

should be main targets for conservation actions. Also, it is known that species

perform better when grown with more distant or distinct relatives (Burns and

Strauss, 2011; Cadotte, 2013), so the Q5 cells will not only contribute to increasing

the intactness in the NAB and shelter a high amount of evolutionary history, but, at

local level the forest remnants within Q5 cells will possibly present a better

restoration process and will be more productive, especially those remnants which are

close to mature forests (Hermy and Verheyen, 2007).
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An unexpected and interesting result was the high complementary values. For the

Neotropics, the similarity declines when the distance between two forests increases

(Condit et al., 2002), but here the distance did not influence the complementary

values, as some complementary Q5 cells are geographically close (Fig. 3). The

similarity presented could be associated with other factors such as the variation of

climes (Nekola and White, 1999), gradients in the rainfall seasons (Davidar et al.,

2007) or the complex topography and dispersal limitation (Condit et al., 2002;

Leigh Jr et al., 2004) in the NAB. This hypothesis remains to be evaluated. Due to

the high complementary values among Q5 cells, it is preferable to prioritize first

areas inside contiguous and complementary Q5 cells, as these cells will have species

with a high amount of evolutionary history, thereby, the protected areas network will

be reinforced from several biodiversity aspects.

It is worth noting that NAB’s areas that did not correspond with Q5 cells or even with

complementary cells are not useless. In fact, those places should be the focus on

future explorations and checklist works in order to improve our knowledge about

their biodiversity and get more homogeneous sampling effort across the NAB, so in

fact, in the future, we could make better decisions for conservation.

The majority of the Q5 cells matched with Magdalena and Cauca areas, suggesting

that indices were not biased by the shape and size of the areas implemented. If the

previous works which used areas of endemism are reproduced implementing grid

cells, the priority cells would match the same general area. Hence, areas of

endemism are a useful approach for quick and dirty primary approaches but, within

16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27381v1 | CC BY 4.0 Open Access | rec: 26 Nov 2018, publ: 26 Nov 2018



an area of endemism, specific places are truly important and the grid cells allow the

fast identification of those important places.

Conclusion

From an evolutionary perspective, the use of endemic species or even richness for

conservation could be an incorrect estimator and the decisions taken from them will

leave protected areas with low phylogenetic diversity. Here, with the least biased

index (AVTD), we propose a set of cells for future conservation actions that will not

only protect a high number of endangered species and ecoregions, but will also

improve intactness and preserve a significant amount of history evolutionary. It is

necessary to consider that within a cell there will be different landscapes and the

results presented here are an approximation; therefore, the next step would be to

identify specific important areas, within the cells proposed here, following the same

approach, but using populations -distributed at smaller local levels-, thus allowing a

more detailed analysis.
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Tables

Values TD PD AvTD TR PR

Inside PAs 1293.84 172.33 14.06 1509 731

Outside PAs 896.96 95.62 1578.38 1510 524

∆ 396.88 76.71 1564.32 1 207

Table 1: Index values and richness inside and outside Protected Areas. The delta is

defined as the absolute difference for both measures.
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Figure captions

Fig. 1

Areas of endemism modified from Morrone (2014) to fit the NAB.

Fig. 2

Half-Ignorance Index: a. Ignorance map with cells of 0.25◦ colored with their

respective index values, and the Q5 cells. b. the Half-Ignorance Index values for the

NAB.

Fig. 3

Conservation priorities in the NAB based on a grid size of 0.25 degrees: a. Heat map

showing the last four quantiles of the grid cells prioritization with AvTD index. b. The

complementarity values among Q5 cells. c. The complementarity index (CI) values

for Q5 cells. d. The Q5 cells overlapped with the NAB’s protected areas.

Fig. 4

Size of cells used and the overlapped percentage.

Fig. 5

The richness and the main cities in the NAB.
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Figure 1:
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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