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Abstract 10 

The rapid decrease in DNA sequencing cost is revolutionizing medicine and science. In medicine, 11 
genome sequencing has revealed millions of missense variants that change protein sequences, yet we 12 
only understand the molecular and phenotypic consequences of a small fraction. Within protein 13 
science, high-throughput deep mutational scanning experiments enable us to probe thousands of 14 
mutations in a single, multiplexed experiment. We review efforts that bring together these topics via 15 
experimental and computational approaches to determine the consequences of missense mutations in 16 
proteins. We focus on the role of changes in protein stability as a driver for disease, and how 17 
experiments, biophysical models and computation are together providing a framework for 18 
understanding and predicting how mutations affect cellular protein stability. 19 
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Highlights 24 

• Human exome sequencing is revealing millions of missense variants that change protein 25 
sequences, but their phenotypic consequences are mostly unknown 26 

• Deep mutational scanning and other high-throughput experiments provide simultaneous insights 27 
into the effects of thousands of variants 28 

• Loss of protein stability is a common origin of inherited diseases, and computational predictions 29 
of protein stability are useful for assessing variant consequences 30 

• Cellular protein quality control provides a mechanistic link between altered protein stability and 31 
cellular protein levels and degradation 32 

• Computational biophysics, evolutionary sequence analyses and machine learning methods each 33 
provide information about variant consequences and may potentially be combined 34 

• Mechanistic models for how mutations give rise to disease provide a starting point for 35 
therapeutic strategies 36 

  37 
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Introduction 38 

Technological advances in DNA sequencing have made human genome sequencing on large scales not 39 
only feasible, but also affordable. The resulting data avalanche has highlighted the challenge of 40 
interpreting the phenotypic consequences of genetic variants [1,2]. Variant interpretation is particularly 41 
challenging since more than half of the distinct variants found in an analysis of >60.000 human exomes 42 
were only observed in a single individual [3] and since many diseases have a complex, polygenic origin 43 
[4]. Although the problem is difficult and complicated, the potential to improve the understanding, 44 
diagnosis and treatment of human diseases is enormous. 45 

In this review, we focus on missense variants that result in a change from one amino acid to another 46 
(henceforth called variants). Further, we focus on recent efforts to understand and predict the effects 47 
these variants have on biophysical properties of proteins, and, consequently, their effect on function. 48 
While protein-coding regions only make up ~1.5% of the genome, around 5-10% of hits in genome-49 
wide association studies fall into them, although linkage disequilibrium (joint inheritance of elements 50 
proximal on a chromosome) makes it challenging to identify precisely which of multiple nearby 51 
variants is causal [5]. Beyond diagnosis, we may use existing knowledge of proteins and their cellular 52 
pathways to help elucidate the disease-causing mechanisms. Because proteins can be targeted by small 53 
molecules or peptides, these insights can potentially open up therapeutic avenues. 54 

Interpreting missense variation 55 

Missense variants represent over 40% of the unique variants observed in the Exome Aggregation 56 
Consortium database [3], yet their phenotypic consequences are often difficult to predict. This is in 57 
contrast to nonsense or frameshift variants that cause large changes to the encoded protein and 58 
consequently are usually deleterious. As an example, systematic mutagenesis studies of the highly 59 
conserved protein ubiquitin have shown that many single missense mutations only have a minor impact 60 
on protein function in a cellular assay [6]. An analysis of similar high-throughput data across multiple 61 
proteins suggest that indeed about two thirds of single amino acid changes have only a minor effect on 62 
function [7]. Some variants are, however, severely detrimental and cause essentially complete loss of 63 
function. An interesting observation from further studies on ubiquitin is that, at least for this protein, 64 
there can be substantial variation of the effect of a mutation depending on the cellular status and 65 
conditions, so that most variants are detrimental under at least one condition [8]. 66 
In a clinical setting it would be useful to have robust methods and sufficient data for interpretation of 67 
genetic variants and accurate classifications of whether they are pathogenic or benign [9]. This is 68 
particularly important for diseases where such information can lead to clinical action [10]. To further 69 
our understanding of the origins of disease it would also be extremely valuable to have reliable 70 
predictors of the underlying mechanisms by which variants lead to disease. 71 
There are several conceptual frameworks available to study, model and predict the phenotypic 72 
consequences and pathogenicity of mutations. For example, one may use cellular or biochemical assays 73 
to quantify the effects of the mutations on function and other properties, and recent developments are 74 
enabling such studies in high-throughput and with full coverage [11]. Another framework is to use 75 
bioinformatics and machine learning methods to integrate existing data, in particular information about 76 
sequence conservation, to interpret what sequence variation is compatible with function [12]. Finally, 77 
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one may use the accumulated knowledge about protein structure, function and folding to determine the 78 
likely effect of a variant [13]. These different approaches are not mutually exclusive and ongoing 79 
efforts indeed aim to combine them. 80 

Loss of protein stability as origin of disease 81 

Protein stability is one of the most basic properties of a protein, and may be strongly affected by a 82 
missense mutation. As most proteins need to be folded to function, loss of stability may lead to loss of 83 
function. In the context of a biophysical or biochemical experiment stability generally refers to the 84 
thermodynamic or kinetic stability between a fully folded and globally unfolded state, but in a cellular 85 
and disease context many other factors and protein conformations play a role. These factors include 86 
interactions with the cellular protein quality control system, protein-protein interactions, cellular 87 
trafficking and post-translational modifications. Analyses linking the effect of a mutation on the 88 
thermodynamic stability of a protein with its cellular stability and pathogenicity suggest that loss of 89 
stability could be a main driver and origin of inherited diseases [14-18]. Thus, an improved 90 
understanding of the complex relationship between protein sequence, structure, folding and cellular 91 
stability could provide new possibilities for diagnosis and even treatment. 92 
Experimental studies of protein folding and stability in vitro and in vivo may provide detailed, 93 
quantitative descriptions and mechanistic insights of the effects of mutations. Until recently, however, 94 
they were limited to studying the effects of a few mutations, generally limiting studies to retrospective 95 
analyses of variants already seen in patients. Recent developments in high-throughput experiments are, 96 
however, beginning to provide us with orders-of-magnitude more data to improve our models and 97 
understanding of protein stability, and to perform prospective studies of variants not yet seen in patients 98 
[19]. By leveraging the same advances in DNA sequencing that are enabling cheap sequencing of 99 
human genomes, deep mutational scanning (DMS) experiments are making it possible to study the 100 
effects of mutations on a scale not previously possible [20]. Combined with genetic selection systems, 101 
DNA sequencing methods can also be used to study the mechanisms and sequence specificity of 102 
cellular protein quality control [21]. 103 

Together, these developments are now being put to use to improve the predictions of clinical outcomes 104 
and to provide mechanistic models for diseases. Below we review recent developments in these areas, 105 
focusing on the role that loss of protein stability and resulting loss of function plays in human diseases. 106 
We begin with an overview of the cellular protein quality control system which recognizes unstable or 107 
misfolded proteins and target them for degradation, and thus is the mechanistic link between loss of 108 
stability and decreased cellular abundancy of proteins. We proceed to describe how DMS experiments 109 
are transforming our ability to study functional and mechanistic consequences of mutations. We then 110 
describe recent developments in using computational methods to predict the consequences of 111 
mutations, and end by describing how insights into the mechanisms underlying loss of cellular protein 112 
stability may be used to develop new therapies. 113 

Cellular protein quality control 114 

Since structurally destabilized or misfolded proteins may form various toxic inclusions or aggregates, 115 
all organisms have evolved a number of protective measures to guard against these potentially harmful 116 
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proteins. Collectively these mechanisms are known as protein quality control (PQC) systems, with the 117 
two main strategies being either refolding or degradation of the misfolded proteins [22,23]. 118 
During or after synthesis proteins may undergo transitions through various metastable folding 119 
intermediates towards the native state and be protected from aggregation by molecular chaperones; in a 120 
similar manner chaperones may also catalyse the refolding of proteins that become damaged after 121 
synthesis [22]. Degradative PQC, on the other hand, relies on proteases to irreversibly clear the 122 
intracellular environment of non-native proteins. Both of these PQC systems must be highly specific 123 
for incorrectly folded proteins, but also be broadly inclusive to ensure that many structurally diverse 124 
proteins can be targeted. Accordingly, defects in either of these systems can lead to accumulation of 125 
toxic protein species which in turn may trigger diseases, including several neurodegenerative disorders 126 
[24,25]. Conversely, an overaggressive destruction of structurally destabilized, but functional, proteins 127 
has been linked to various hereditary diseases, including cystic fibrosis [26,27] and Lynch syndrome 128 
[17,28,29]. It therefore becomes clear that substrate selection is a trade-off between specificity and 129 
recognition of a wide variety of substrates. 130 
In eukaryotes, most protein degradation occurs in the cytosol and nucleus via the ubiquitin-proteasome 131 
system (UPS) or the autophagy-lysosomal pathway [30], with the latter system typically responsible for 132 
the degradation of highly misfolded and insoluble protein aggregates. Aggregation has also been linked 133 
to a number of diseases; however this is beyond the scope of this review and and we refer the reader to 134 
a recent review [31]. The UPS generally targets soluble or partially soluble proteins through a process 135 
involving conjugation of a polyubiquitin chain to the substrate protein, thus targeting it to degradation 136 
by the 26S proteasome. Ubiquitin conjugation is catalysed by an enzymatic cascade that includes 137 
substrate specific E3 ubiquitin-protein ligases that add the ubiquitin chains to the target protein. The 138 
discriminating feature in a destabilized protein that elicits its recognition by E3s and degradation, the 139 
so-called degron, is despite tremendous recent efforts [21,32,33] not completely understood, but it is 140 
likely to involve hydrophobic regions that are buried in the native protein, but exposed in misfolded 141 
proteins (Fig. 1). We refer the reader to recent reviews of the role and components of the PQC that are 142 
important to the degradation of misfolded proteins [34,35]. 143 
In the context of disease-causing mutations, a key question is how much structural destabilization is 144 
tolerated before the PQC system kicks in? Recently, it was shown that the degree of protein 145 
destabilization correlates with the turnover rate in the Lynch-syndrome related protein MSH2 [17]. 146 
Surprisingly, however, as little as 3 kcal mol-1 was sufficient to trigger degradation [17]. Although this 147 
figure is likely to vary from protein to protein, depending on how stable the wild type protein is, a 3 148 
kcal mol-1 destabilization is certainly not dramatic, compared to, for example, the average stability of 5 149 
kcal mol-1 for a series of small proteins [36]. It is, however, in agreement with genetic studies in yeast 150 
that have shown that the PQC system operates by following a better-safe-than-sorry principle and is 151 
thus highly diligent and prone to target proteins that are only slightly perturbed and still functional 152 
[29,37,38]. 153 

A key problem to tackle in the future is to understand better what structural features are actually 154 
recognized by the PQC system. For example, it is unclear whether cells generally recognize global or 155 
local unfolding events, and what the relationship is between such unfolding events and transient 156 
exposure of degron sequences (Fig. 1). In this context, a mutation causing a destabilization of a few 157 
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kcal mol-1 could cause substantial increase in the population of locally unfolded structures, which in 158 
turn would lead to degradation and insufficient levels of the affected protein. 159 

Deep Mutational Scanning 160 

Much of what we know about how proteins fold and are stabilized has been learned by studying 161 
individual amino acid changes. However, this one-at-a-time approach probes only a tiny fraction of the 162 
possible genetic variation we could observe in an individual, and hence limits our understanding and 163 
ability to predict phenotypic consequences. DMS experiments leverage cheap DNA sequencing to 164 
probe the effects of hundreds or thousands of variants in a single, multiplexed assay [20,39]. First, 165 
selection for a protein property of interest is applied to a large library of variants. Selections used so far 166 
include coupling protein activity to cell growth, coupling protein activity or stability to a fluorescent 167 
reporter, or selecting for ligand binding using phage or yeast display. Variants in the library change in 168 
frequency depending on how well they able to perform under selective conditions. Finally, the 169 
frequency of each variant before and after the selection is read out using next-generation DNA 170 
sequencing and each variant’s change in frequency is used to compute a functional score. 171 

Most applications of DMS have employed selection for a biological function of the protein that can be 172 
probed in high throughput. For example, in a recent tour de force, the effect of variants of the BRCA1 173 
gene were assayed using saturation genome editing. Here, approximately 4,000 variants were 174 
introduced into 13 of BRCA1’s 24 exons using CRISPR/Cas9 editing of the genomic copy of BRCA1 in 175 
a haploid cell line. The functional consequences of each variant on cell viability was measured using 176 
next-generation sequencing, and correlated strongly with existing expert-based assessment of 177 
pathogenicity. Variants that are common in the human population were more likely to be scored as 178 
functional in the assay. Importantly, this experiment also provided functional data for the several 179 
thousand variants that have not yet been seen in any patient. These unseen variants are of unknown 180 
pathogenicity, so the functional data will be of immediate use if any of them are seen in the future. An 181 
interesting observation was also that ~90% of all loss-of-function variants had no substantial changes in 182 
mRNA levels, suggesting that most missense variants—at least in BRCA1—affect function at the 183 
protein level. As observed from the results on ubiquitin discussed in the introduction, as well as a dual-184 
assay DMS study of BRCA1 [40], different assays and conditions might reveal different mutational 185 
sensitivities. 186 

The results of growth-based saturation genome editing experiments like those described for BRCA1 187 
above depend on the combined effects that a mutation may have on numerous properties including 188 
RNA splicing, expression levels, protein function, protein-protein interaction, post-translational 189 
modifications and protein folding and stability. Because the cellular growth rate may capture many of 190 
the biologically-relevant effects of variants it can be extremely accurate and useful for assessing the 191 
pathogenicity. On the other hand, the results may be less informative for disentangling the mechanism 192 
by which each variant exerts an effect, and the knowledge obtained is not easily transferable to 193 
studying the effects of variants in other proteins. 194 
To enable more widespread analysis of variant consequences without needing to establish protein-195 
specific assays, and to learn more general rules regarding the relationship between protein stability and 196 
cellular abundance, we have recently developed Variant Abundance by Massively Parallel sequencing 197 
(VAMP-seq, Fig. 2). VAMP-seq measures the impact of variants on the steady-state cellular abundance 198 
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of a protein [41]. Here, a library of variants of the protein of interest is fused to GFP (Fig. 2a). Then, 199 
the library is expressed in cultured mammalian cells such that each cell expresses one and only one 200 
variant (Fig. 2b). The stability of the variant dictates the stability of the GFP fusion, so each cell’s GFP 201 
fluorescence reports on the abundance of the protein variant. Cells are sorted into bins based on their 202 
fluorescence, next-generation sequencing is used determine the frequency of every variant in each bin, 203 
and variant frequencies are used to compute abundance scores (Fig. 2c). Thus, a single VAMP-seq 204 
experiment provides quantitative abundance data for thousands of variants simultaneously and enables 205 
one to separate mutations with modest effects on stability from those that are substantially destabilizing 206 
(Fig. 2d). 207 
In the context of enabling computational prediction methods, it is worth highlighting that a single 208 
VAMP-seq experiment provides information about a number of variants comparable in size the entire 209 
database used to train current state-of-the-art models for predicting protein stability [42,43] (Fig. 2e). 210 
Another advantage is that DMS experiments generally target most or all of the 19 possible amino acid 211 
substitutions at each position. This comprehensive data is useful in the clinic because it can be used to 212 
aid the interpretation of any variant. Moreover, unlike the majority of available biophysical data that is 213 
highly biased [44] and mostly consist of side chain truncations to alanine or glycine (Fig. 2e), 214 
comprehensive functional and stability data can both be used to provide insight into a specific protein 215 
and can also be used to guide the development of improved pathogenicity prediction methods. DMS is 216 
already a widely-applied method, and will become even more useful as methods for generating and 217 
sequencing variant libraries improve and decrease in cost. We also note that DMS and related high-218 
throughput experiments may provide very useful information for understanding and improving protein 219 
function and stability for example in protein engineering and design [45,46]. 220 

Predicting the consequences of missense variation 221 

While experimental testing of variants is expanding in scope and scale, computational predictions of 222 
variant consequences will continue to be the only widely applicable method to assess pathogenicity for 223 
the foreseeable future. A number of predictors have been trained specifically for this purpose, often 224 
using known benign and pathogenic variants [47]. Here, we instead focus on three distinct approaches 225 
developed to address more general questions concerning how changes in the protein sequence affect, 226 
for example, protein stability or general functional properties. These methods have not been 227 
specifically trained on pathogenic variants; instead, they were created to capture thermostability of 228 
folding, evolutionary tolerance, and patterns observed in DMS experiments, respectively. To illustrate 229 
the outcome and performance of these three classes of prediction methods, we show the results of 230 
stability calculations (Fig. 3a), a sequence likelihood model (Fig. 3b) and the DMS-based prediction 231 
method (Fig. 3c) on the protein MSH2, and discuss them in more detail below. 232 
Modelling amino acid substitution(s) directly in a protein’s 3-dimensional structure should, in 233 
principle, enable an accurate assessment of the resulting change in folding energy. Two tools that take 234 
this approach are FoldX [43] and Rosetta [48], which each predict mutational effects on stability with 235 
an accuracy of about 1 kcal mol-1 and a correlation coefficient of ~0.7 (depending on test set [42]). In 236 
addition to predicting stability effects, these and related methods have been shown to successfully 237 
identify pathogenic variants in several proteins [14,17]. In selected cases, experimental validation 238 
yielded a correlation between the predicted loss of stability and cellular protein levels [17,41,49]. In 239 
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addition to classifying unstable variants as pathogenic, stability predictions have the additional 240 
advantage of indicating the likely underlying mechanism; this information is useful when developing 241 
therapeutic strategies (see below). 242 
Prediction methods that focus on a specific mechanism such as loss of stability will, of course, not 243 
capture variants that give rise to disease via different mechanisms. Thus, stability predictions are most 244 
useful when combined with other predictors [47] [50-52]. Analysis of the conservation patterns in a 245 
multiple sequence alignment of a protein family is a powerful and general approach to identify 246 
substitutions that are pathogenic by their paucity in, or absence from, the alignment, and indeed is used 247 
in most prediction methods [47]. A recent development is the construction of higher-order statistical 248 
models that examine both conservation at individual sites and also between multiple sites [53-56]. 249 
While these latter approaches generally provide greater accuracy than methods that analyse each site 250 
independently [57], they require a larger number of homologous sequences. This restriction arises 251 
because the methods involve building global sequence models rather than examining each site 252 
independently. Analyses that consider both site conservation and pairwise co-varying positions have 253 
successfully been applied to predict variant pathogenicity [57,58], and more recently, more general 254 
models have been introduced [12]. 255 

Because evolutionary conservation across a protein family is likely to capture residues required for the 256 
protein’s core function, these approaches can identify variants that affect many protein properties 257 
including stability, enzymatic activity, post-translational modifications or protein-protein interactions. 258 
Thus, a conserved variant may be neutral from the perspective of thermodynamic folding energy but 259 
have strong functional consequences. On the other hand, evolutionary sequence analysis may miss 260 
pathogenic changes where the residue in question is critical only for human biology, or in a small 261 
branch of the protein family’s phylogenetic tree. In this context, recent analyses focusing on mutational 262 
tolerance in non-human primates are particularly interesting [59]. 263 
As an alternative to analyses of conservation through deep multiple sequence alignments, one may use 264 
other sources of data to learn what kind of amino acid changes typically lead to perturbed function. 265 
Here, DMS experiments now provide us with a large collection the functional effects of tens of 266 
thousands of substitutions across a diverse set of proteins [7]. Annotation of this functional data with 267 
biochemical and coarse-grained structural features was combined with machine learning to create 268 
Envision, a tool for quantitative prediction of the effect of missense variants [60]. In contrast to the 269 
biophysical modelling and sequence conservation analysis approaches discussed above, Envision does 270 
not require specific data on the protein in question beyond its sequence, and is thus more widely 271 
applicable than stability calculations and statistical sequence analysis, yet it successfully identified 272 
many pathogenic variants in a recent benchmark [60]. 273 

As an example of the power of using these three prediction paradigms, we show their application to the 274 
protein MSH2, where mutations may lead to cancer predisposition (Lynch syndrome) (Fig. 3). 275 
Specifically, as previously described [17], we used FOLDX [43] to calculate changes in protein 276 
stability from the structure of MSH2 and Gremlin [54] to analyse a multiple sequence alignment of 277 
MSH2. Finally, we used a Envision [60], the abovementioned machine learning method trained on 278 
DMS data, structure and sequence features, to predict the consequences of mutations. In contrast to our 279 
previous work that focus on a smaller set of mutations, we here used ClinVar [61] to select 21 280 
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pathogenic and 66 benign variants, and also analysed the 587 missense variants of MSH2 found in 281 
gnomAD [3]. 282 
The results show clearly that, although these methods have not been trained on population genetics data 283 
or disease mutations, they are able to separate known disease-causing variants from benign variants 284 
with relatively high accuracy. For example, benign variants generally have modest effects on stability, 285 
whereas many pathogenic variants are highly destabilizing. It is also worth noting that only three of the 286 
XX pathogenic variants seen in ClinVar have actually been observed in the ~150.000 genome and 287 
exome sequences available in gnomAD. Thus, there is a clear trend that more common population 288 
variants are predicted to have milder effects, whereas many uncommon variants and pathogenic 289 
variants are predicted to have more dramatic effects (Fig. 3A). These observations imply that there is a 290 
clear difference in the distribution of predicted scores between benign and pathogenic variants (Fig. 291 
3B) which in turn can be transformed into relatively accurate predictions (Fig. 3C). Nonetheless, the 292 
analyses also show that these predictions of functional effects are not yet alone sufficient to fully 293 
separate benign from pathogenic variation. 294 

Therapeutic possibilities 295 

In addition to the prospect for improved diagnosis via prediction of pathogenicity, the experimental and 296 
computational studies discussed above provide new opportunities for treatment of diseases. For 297 
mutations that gives rise to disease via loss of stability, intracellular degradation and thereby loss of 298 
function, it might be possible to rescue function via restabilization. In particular, because the PQC is 299 
overzealous in targeting potentially functional, but mildly destabilized proteins, many disease-causing 300 
variants might be sufficiently functional that pathogenicity could potentially be averted if the proteins 301 
were stabilized [29] (Fig. 4). 302 
The most dramatic approach is perhaps to inhibit the proteasome, and proteasome inhibitors are indeed 303 
already approved drugs [62]. In many cases, a more direct and elegant approach might be to target the 304 
components in the PQC that are relevant for degrading a specific disease-causing variant. To enable 305 
this approach, we need to map in much greater detail the E3 enzymes and chaperones involved in 306 
recognizing specific substrates and targeting them for degradation. As an example, in yeast, certain 307 
mutant variants of MSH2 linked to Lynch syndrome can be rescued by deleting the E3 ligase that 308 
targets the MSH2 variants for degradation, thus restoring cellular MSH2 protein levels and MSH2 309 
function [28]. Thus, targeting the equivalent, but still unknown [63], human E3 ligase may provide 310 
treatment options for individuals with certain MSH2 variants. Since a number of the PQC E3s display 311 
overlapping substrate specificity [64], this will likely be complicated. Other strategies involve 312 
increasing or decreasing the levels of chaperones that either aid in refolding or degradation [65,66]. 313 
Some protein variants might be so unstable that even inhibiting their degradation would not be 314 
sufficient to restore cellular stability and function. These variants might, however, be rescued via small 315 
molecules that bind directly to the destabilized variant protein [67]. This chemical chaperones or 316 
corrector approach has already been shown to rescue function for example in mutant p53 [68] and 317 
CFTR [69]. 318 
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Outlook 319 

Widespread access to cheap DNA sequencing is transforming medicine and science. Within precision 320 
medicine, genome or exome sequencing provides possibilities for finding causal variants and for 321 
improved diagnosis and possible treatment. Within protein science, DMS experiments are enabling the 322 
study of the effects of thousands of mutations in a single experiment. Recent efforts are bringing these 323 
fields together by using DMS to help classify variants as benign or pathogenic, and by providing data 324 
to benchmark or train prediction methods for variant classification. These approaches may be 325 
particularly important for so-called rare genetic disease that are difficult to diagnose from population-326 
based studies [70]. 327 
So far, these approaches have mostly been applied to simple, monogenic Mendelian disorders. In the 328 
future it will be interesting to investigate whether they can improve polygenic risk scores that aggregate 329 
information across variants in multiple genes. Here it is worth noting how stability predictions for 330 
protein-protein complexes provide a direct mechanism for finding apparently non-additive effects. For 331 
example, two variants that individually only cause a mild change in the stability of the complex may, 332 
when combined, have a dramatic effect because of the non-linear relationship between energy and 333 
population of the complex. 334 
One of the problems in assessing the importance of loss of stability for disease is that we do not fully 335 
understand when and why the current prediction methods fail. This is in part due to the fact that they 336 
were trained and benchmarked on a biased dataset that mostly focuses on mutations where a large 337 
amino acid is mutated to a smaller one, often alanine or glycine. We expect that unbiased functional 338 
data from DMS experiments will be extremely useful in assessing and parameterizing prediction 339 
methods for a much wider set of amino acid changes. An important problem to tackle in the future is to 340 
map genetic variants on to accurate structural models for the entire human proteome [71], and to 341 
develop prediction methods that are robust towards structural noise in homology models. Finally, an 342 
important open question is how the different prediction methods are best combined, and how they can 343 
both provide accurate predictions of pathogenicity and aid in developing mechanistic hypotheses for 344 
the origin of disease. 345 

Outstanding Questions 346 

• What are the structural features of the unfolded and misfolded states, and how are they 347 
recognized by the PQC system? 348 

• Are there generic PQC components including chaperones and E3s that target a wide range of 349 
human missense variants? 350 

• When current predictors fail, why is that? Can we develop confidence scores to identify less 351 
reliable predictions? 352 

• Can biophysics, statistical sequence analysis and machine learning on DMS data improve 353 
polygenic risk scores? 354 

• How are predictors best combined, both to improve accuracy and to develop mechanistic 355 
hypotheses for the origin of genetic diseases? 356 

• Can we develop therapeutic strategies to target many different variants in a single protein, or 357 
variants in different proteins that are degraded by similar pathways? 358 
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Figures 520 

Figure 1 521 

 522 

 523 
 524 
Fig 1. Mechanisms for cellular protein quality control and degradation, and effects of mutations on the 525 
folding energy landscape. (a) In a folded protein (left), the degradation signals (degrons, orange) are 526 
generally buried inside the protein. Upon local and partial unfolding (bottom route) or full unfolding 527 
(top route) one or more degrons may become exposed. The cellular protein quality control (PQC) 528 
components (magnifying glass), such as molecular chaperones and E3 ubiquitin-protein ligases, scan 529 
the cell for such degradation signals and target the substrates for degradation (right). Mutations may 530 
affect all of these steps including increasing the populations of unfolded or partially unfolded states, or 531 
creating or removing degron sequences. (b) A globally destabilising variant brings the free energy of 532 
the folded conformation closer to that of the fully unfolded state, increasing the population of this state 533 
and making the protein more easily targeted for degradation. (c) Because local unfolding involves 534 
smaller free energy differences, amino acid changes with more modestly destabilizing effects may still 535 
cause substantial increase in locally unfolded states, and possible exposure of degrons. In this way such 536 
variants can have a stronger effect in the cell than one would expect from the predicted thermodynamic 537 
change of global stability.  538 
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Figure 2 539 

 540 

 541 
 542 
Fig. 2. Deep mutational scanning for protein stability and variant abundance. Panels A–C outline the 543 
VAMP-seq method [41]: (a) generation of a large library of variants, typically all possible 19 variants 544 
at each site, and fusion to GFP; (b) abundance of the respective variant fusion construct determines 545 
each cell’s fluorescence; (c) fluorescence activated cell sorting, followed by sequencing and data 546 
analysis allows for the quantification of the abundance of each variant. (d) Distribution of VAMP-seq 547 
scores for missense variants in the protein PTEN, normalized such that unity corresponds to the wild 548 
type protein sequence and zero to the average of the 1% lowest scoring variants [41]. Green lines 549 
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indicate the 5th and 95th percentile for synonymous variants; 56% of the missense variants fall within 550 
this range. (e) Accurate biophysical measurements of the change in protein stability upon amino acid 551 
changes have been collected over many years [42], but are dominated by mutations to alanine, and a 552 
few other chemically, structurally,  biophysically-motivated substitutions [72] (left). In contrast, a 553 
single VAMP-seq experiment provides data for a comparable number of variants, but is less bias 554 
chemically (right).  555 
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Figure 3 556 

 557 

 558 
 559 
Fig. 3. Three paradigms for predicting the consequences of amino acid changes. We illustrate the utility 560 
of (top) stability predictions, (middle) evolutionary analyses and (bottom) a regression model trained 561 
on deep mutational scanning data to predict the consequences for pathogenic and benign MSH2 562 
variants from the ClinVar database [61]. (a) The allele frequencies in the gnomAD database  of genome 563 
sequences (gnomad.broadinstitute.org) are plotted against the predicted score of the variant. The 564 
variant scores are ordered so that detrimental variants are shown at the top, and stability prediction 565 
scores were truncated at 15 kcal mol-1. Red and blue points are those reported as (likely) pathogenic 566 
and benign, respectively, in ClinVar. The left-most “column” of points (labelled “not reported in 567 
gnomAD”) contains variants reported in ClinVar, but not observed in gnomAD; they mostly 568 
correspond to known pathogenic variants expected to be found at very low allele frequencies. (b) 569 
Raincloud plots [73] illustrating the predicted score distributions of pathogenic (red), population (grey) 570 
and benign (blue) variants. For all three prediction methods there is a clear, yet also non-perfect, 571 
separation between pathogenic and benign variants. (c) Cumulative distribution functions showing 572 
which fraction of variants are above/below any given score threshold. The red curve shows the fraction 573 
of pathogenic variants below the value (false negatives) and the blue curve the fraction of benign 574 
variants above the threshold (false positives). The horizontal dashed lines indicate the respective 575 
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threshold for 25% false negative predictions, and the dotted lines are the thresholds for no false 576 
positives. Solid lines indicate the respective predictor’s value for the wild type. Overall the plots 577 
illustrate that all three predictors correctly identify many of the pathogenic variants as detrimental, and 578 
most of the benign variants as tolerated. The “area under the curve” (AUC) in a receiver operating 579 
characteristic (ROC) analysis is 0.91, 0.90, and 0.91 for the three methods, respectively. To address the 580 
imbalance between the sizes in the pathogenic and benign datasets, the pathogenic dataset was split in 581 
three; these AUCs are averages over these three ROC analyses.  582 
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Figure 4 583 

 584 

 585 
 586 
Fig. 4. Rescuing protein stability as a strategy for therapy. The cellular levels of a destabilized protein 587 
variant may be increased by blocking the PQC system (magnifying glass; middle) or the degradation 588 
machinery (trashcan; right). Alternatively, a small molecule (star) that associates with the native form 589 
of the protein may act as a “glue” to stabilize the protein. 590 
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