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Introduction. Whole-metagenome sequencing can be a rich source of information about

the structure and function of entire metagenomic communities, but getting accurate and

reliable results from these datasets can be challenging. Analysis of these datasets is

founded on the mapping of sequencing reads onto known genomic regions from known

organisms, but short reads will often map equally well to multiple regions, and to multiple

reference organisms. Assembling metagenomic datasets prior to mapping can generate

much longer and more precisely mappable sequences but the presence of closely related

organisms and highly conserved regions makes metagenomic assembly challenging, and

some regions of particular interest can assemble poorly. One solution to these problems is

to use specialised tools, such as Kelpie, that can accurately extract and assemble full-

length sequences for defined genomic regions from whole-metagenome datasets.

Methods. Kelpie is a kMer-based tool that generates full-length amplicon-like sequences

from whole-metagenome datasets. It takes a pair of primer sequences and a set of

metagenomic reads, and uses a combination of kMer filtering, error correction and

assembly techniques to construct sets of full-length inter-primer sequences.

Results. The effectiveness of Kelpie is demonstrated here through the extraction and

assembly of full-length ribosomal marker gene regions, as this allows comparisons with

conventional amplicon sequencing and published metagenomic benchmarks. The results

show that the Kelpie-generated sequences and community profiles closely match those

produced by amplicon sequencing, down to low abundance levels, and running Kelpie on

the synthetic CAMI metagenomic benchmarking datasets shows similar high levels of both

precision and recall.

Conclusions. Kelpie can be thought of as being somewhat like an in-silico PCR tool, taking

a primer pair and producing the resulting 8amplicons9 from a whole-metagenome dataset.

Marker regions from the 16S rRNA gene were used here as an example because this
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allowed the overall accuracy of Kelpie to be evaluated through comparisons with other

datasets, approaches and benchmarks. Kelpie is not limited to this application though, and

can be used to extract and assemble any genomic region present in a whole metagenome

dataset, as long as it is bound by a pairs of highly conserved primer sequences.
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15 ABSTRACT

16 Introduction. Whole-metagenome sequencing can be a rich source of information about the 

17 structure and function of entire metagenomic communities, but getting accurate and reliable 

18 results from these datasets can be challenging. Analysis of these datasets is founded on the 

19 mapping of sequencing reads onto known genomic regions from known organisms, but short 

20 reads will often map equally well to multiple regions, and to multiple reference organisms. 

21 Assembling metagenomic datasets prior to mapping can generate much longer and more 

22 precisely mappable sequences but the presence of closely related organisms and highly 

23 conserved regions makes metagenomic assembly challenging, and some regions of particular 

24 interest can assemble poorly. One solution to these problems is to use specialised tools, such as 

25 Kelpie, that can accurately extract and assemble full-length sequences for defined genomic 

26 regions from whole-metagenome datasets. 

27 Methods. Kelpie is a kMer-based tool that generates full-length amplicon-like sequences from 

28 whole-metagenome datasets. It takes a pair of primer sequences and a set of metagenomic reads, 

29 and uses a combination of kMer filtering, error correction and assembly techniques to construct 

30 sets of full-length inter-primer sequences.

31 Results. The effectiveness of Kelpie is demonstrated here through the extraction and assembly of 

32 full-length ribosomal marker gene regions, as this allows comparisons with conventional 

33 amplicon sequencing and published metagenomic benchmarks. The results show that the Kelpie-

34 generated sequences and community profiles closely match those produced by amplicon 

35 sequencing, down to low abundance levels, and running Kelpie on the synthetic CAMI 

36 metagenomic benchmarking datasets shows similar high levels of both precision and recall. 

37 Conclusions. Kelpie can be thought of as being somewhat like an in-silico PCR tool, taking a 

38 primer pair and producing the resulting 8amplicons9 from a whole-metagenome dataset. Marker 

39 regions from the 16S rRNA gene were used here as an example because this allowed the overall 

40 accuracy of Kelpie to be evaluated through comparisons with other datasets, approaches and 

41 benchmarks. Kelpie is not limited to this application though, and can be used to extract and 

42 assemble any genomic region present in a whole metagenome dataset, as long as it is bound by a 

43 pairs of highly conserved primer sequences.

44

45 INTRODUCTION

46 Kelpie can be thought of as an in silico PCR program. It takes a pair of primer sequences and a 

47 whole metagenome sequencing (WGS) dataset, and generates a corresponding set of inter-primer 

48 amplicon-like sequences. It does this using iterative kMer filtering, error correction, incremental 

49 assembly and recursive tree exploration. The results section of this paper primarily discusses 

50 using Kelpie to determine the composition of a metagenomic community, although this is just 

51 one possible application, and was chosen simply because of the availability of suitable datasets 

52 and benchmarks, including sets of 8correct9 results for effectiveness comparisons. 
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53 Whole-metagenome sequencing datasets can be a rich resource for investigating both the 

54 structure of a metagenomic community and the functional capabilities of its members, but 

55 reliably and accurately extracting such information from large volumes of sequencing data can 

56 be challenging. These challenges arise from the nature of the sequencing data itself, the presence 

57 of ubiquitous and highly conserved genomic regions and the possible presence of related 

58 organisms within the community. Whole genome sequencing (WGS) metagenomic data is 

59 typically generated using a platform such as Illumina HiSeq or NovaSeq. These systems produce 

60 very large volumes of short (100-150bp) reads at a low cost per read, but their short length 

61 makes them less distinct than longer reads would be, and so more difficult to map 

62 unambiguously to known reference sequences for the purposes of classification and annotation. 

63 Assembling the metagenomes can generate much longer and more distinctive sequences, and 

64 these can be used to more reliably determine the presence of particular organisms or genes, but 

65 metagenomic assembly is itself challenging in the presence of conserved regions and related 

66 organisms (Treangen & Salzberg, 2012; Wang et al., 2015)

67 The challenges involved in accurately interpreting short metagenomic datasets are well 

68 illustrated by the task of determining the structure of a community from a WGS metagenomic 

69 dataset. Approaches based on the direct mapping of reads face issues arising from the 

70 indistinctiveness of short reads, while assembly-based approaches run into problems caused by 

71 conserved regions and related organisms. 

72 Metagenomic community profiling is commonly done using low cost targeted amplicon 

73 sequencing, rather than through the analysis of whole genome sequencing datasets. A chosen 

74 variable region of a marker gene is extracted and amplified from metagenomic DNA using 

75 multiple rounds of PCR, with a pair of primers that match highly-conserved sequences on either 

76 side of the region. These primers can be chosen to cover regions that are sufficiently long and 

77 variable to allow closely related organisms to be distinguished from each other. The resulting 

78 8amplicons9 are then sequenced, and the reads are then processed and classified in some way to 

79 determine which organisms are present in each sample and to give some idea of their 

80 abundances. Given a well-chosen variable region and suitable primers, and a good quality 

81 reference gene database, this approach can accurately identify the organisms present in a 

82 community, perhaps down to species level. Amplicon sequencing is also well supported through 

83 tools, pipelines and reference datasets. The book (Taberlet et al., 2018) gives an overview of 

84 amplicon sequencing in the context of environmental DNA studies, and discusses both its 

85 strengths and weaknesses.

86 Whole genome sequencing can answer more questions than amplicon sequencing as its reads are 

87 derived from the entire genomes of the community members, rather than just being constrained 

88 to a small region of a single chosen marker gene. Community structure can be determined from 

89 WGS datasets through the use of either marker gene or whole genome comparisons; and both of 

90 these approaches can be based on either the WGS reads directly or on the contigs coming from a 

91 metagenomic assembly of these reads. The report from the Critical Assessment of Metagenome 

92 Interpretation (CAMI) benchmarking project (Sczyrba et al., 2017) discusses these different 
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93 approaches in some detail, and compares the effectiveness of a number of published WGS 

94 community profiling tools on a set of synthetic datasets. The paper from (Lindgreen, Adair & 

95 Gardner, 2017) also presents an overview of available metagenome analysis tools. 

96 The first step in those workflows that are based on mapping WGS reads to marker genes is to 

97 search the datasets for just those reads that appear to be derived from the chosen marker gene. 

98 This search can be done with tools based on Hidden Markov Models (HMM), a fast kMer filter 

99 (Greenfield, 2018a), or even BLASTing all the WGS reads against a reference set. The result 

100 will be a small set of filtered reads, around 0.1% of the initial WGS read set for the bacterial 16S 

101 rRNA gene. These reads can then be classified in conventional ways, such as through the use of 

102 statistical classifiers, such as RDP (Wang et al., 2007), or by matching them to a reference 

103 database. The short length and random placement of the WGS reads reduces the effectiveness of 

104 this approach, as some of the selected reads will come from conserved regions of the marker 

105 gene or from related organisms, and may resolve only to a higher taxonomic levels, such as Class 

106 or Order. The EBI Metagenomics Portal (Mitchell et al., 2018) uses this reads-based approach, 

107 first filtering the WGS reads using Infernal (Nawrocki & Eddy, 2013) in HMM-only mode 

108 against a library of ribosomal RNA models from Rfam (Nawrocki et al., 2015), and then 

109 classifying these selected reads with MAPseq (Matias Rodrigues et al., 2017) against a SILVA 

110 SSU/LSU reference set (Quast et al., 2013).

111 Given the resolution limitations inherent with short WGS reads, an appealing alternative 

112 approach is to first assemble the WGS metagenomic datasets, and then search for the wanted 

113 marker genes in the resulting contigs. The gene sequences that are found can then be classified in 

114 any of the usual ways. Metagenomic assembly can potentially produce complete marker gene 

115 sequences, resulting in much improved classification resolution, perhaps down to the level of 

116 species or strain. In practice though, the presence of highly conserved regions in these marker 

117 genes makes their accurate assembly very challenging, and the resulting genomic regions are 

118 often incomplete or split into multiple small contigs, with consequent impacts on the accuracy of 

119 the resulting community profile. The limitations of this assembly-based approach are discussed 

120 further in the Results section.

121 Gene-targeted assembly can also be used to extract longer and more classifiable sequences from 

122 metagenomic WGS datasets. Tools such as EMIRGE (Miller et al., 2011) basically align WGS 

123 reads to a set of reference sequences, and then make adjustments to these alignments to produce 

124 complete target region sequences. Xander (Wang et al., 2015) is another targeted assembler that 

125 works by first building a de Bruijn graph from the WGS reads and then searching for regions that 

126 match HMMs generated from reference sequences for the target genes. Both these approaches 

127 effectively work by aligning WGS reads to sets of reference sequences, and rely on genes present 

128 in the community being close enough to ones found in the reference sets to get sufficiently 

129 unambiguous alignments. Kelpie has no such dependency on reference sequences, and like PCR, 

130 just takes a pair of primer sequences and returns whatever was found between them, regardless 

131 of its similarity to known genes or conformity to a model trained on such genes. 
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132 Taxonomic profiling can also be based on whole genomes rather than just marker genes. WGS 

133 reads or assembled contigs can be matched against whole genome reference sets, and the results 

134 used to generate community profiles. The appeal of this approach is that it may better separate 

135 closely related organisms, especially if these differ in their functional capability through 

136 horizontal gene transfer or the acquisition of plasmids. Megan (Huson et al., 2011), Kraken 

137 (Wood & Salzberg, 2014) and MG-RAST (Glass et al., 2010) are examples of tools and pipelines 

138 that are based on whole genome profiling. In practice, the effectiveness of this approach is 

139 limited by the restricted taxonomic coverage of the available reference sets, especially for 

140 environmental studies where novel organisms are commonplace. Some of the tools considered 

141 by the CAMI study are based on whole genome profiling and will be discussed further in the 

142 Results section.

143 WGS taxonomic profiling with Kelpie starts by extracting and assembling sets of full-length 

144 amplicon-like marker gene sequences from a set of filtered WGS reads and pair of primer 

145 sequences. These 8amplicon9 sequences can then be run through conventional amplicon pipelines 

146 or other such tools to generate taxonomic profiles and further results of interest. This approach 

147 can result in improved resolution compared to direct read mapping as the assembled sequences 

148 can be considerably longer than a single WGS read, come from known regions within a chosen 

149 marker gene, and the primers can be chosen to cover informative variable regions. Kelpie 

150 generates sets of extended reads rather than traditional contigs, with each of these amplicon-like 

151 sequences being seeded from a single WGS read that contained the specified forward primer that 

152 was then extended until a reverse primer sequence was reached. Generating sets of extended 

153 reads in this way makes Kelpie compatible with conventional amplicon-based pipelines, and also 

154 tends to preserve some strain variation, as discussed in the Results. In practice, taxonomic 

155 profiles generated using Kelpie are highly accurate, and give comparable results to PCR-based 

156 amplicon sequencing, down to the point where there is insufficient depth of coverage in the 

157 WGS dataset to fully cover the chosen marker gene regions. 

158 The results presented later are all based on this application as it allowed the effectiveness and 

159 accuracy of Kelpie to be assessed through comparison against alternative techniques and 

160 published metagenomic benchmarks. Kelpie is not limited to this application though, and can be 

161 used to extract and assemble any genomic region present in a WGS dataset that is bounded by 

162 pairs of highly conserved primer sequences.

163

164 METHODS & MATERIALS

165 Algorithm Description

166 Kelpie is founded on the distinctiveness properties of medium to large kMers (>~20bp). Once 8k9 

167 is big enough, the space of possible kMers becomes so large that instances of kMer sharing 

168 between organisms almost always signify shared genes or domains, either through relatedness or 

169 gene transfer (Greenfield & Roehm, 2013). One useful application of this distinctiveness 

170 property is that, given a long enough kMer, it is frequently possible to correctly predict the kMer 
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171 that follows it in the genome from which it was derived, even with metagenomic datasets. These 

172 predictions are done by simply generating each of the 4 possible following kMers, produced by 

173 concatenating the rightmost (k-1) bases of the current kMer with each of 8A9, 8C9, 8G9, and 8T9 in 

174 turn, and checking the presence of each these variants in the set of distinct kMers constructed 

175 from the entire WGS dataset. For Kelpie running on the three coal seam metagenomes discussed 

176 in the Results section, this concatenate-and-check technique found that there was only a single 

177 viable 8next9 kMer 99.6% to 99.9% of the time when attempting to extend an under-construction 

178 amplicon by a single base at a time. This technique of generating long sequences through 

179 unambiguous extension is also at the core of kMer-based error correction algorithms, such as 

180 Blue (Greenfield et al., 2014), and is also used in the Inchworm phase of the Trinity RNA 

181 transcript assembler (Grabherr et al., 2011). 

182 In the current release of Kelpie, the starting point is a filtered subset of an entire WGS dataset 

183 that just contains reads derived from the genomic region of interest, such as the 16S or 18S 

184 rRNA gene. For a bacterial metagenomic dataset, this initial filtering will typically reduce the 

185 data volumes to be processed by Kelpie by around 99.9%, making it feasible to keep the filtered 

186 reads in memory for much improved performance. This filtering does not have to be exact, and 

187 including some non-target reads will have little effect as they will be discarded by the more 

188 targeted filtering performed in the first stage of Kelpie. This kind of filtering is also used in other 

189 reads-based WGS metagenomic taxonomic profiling pipelines, such as the EBI Metagenomics 

190 Portal (Mitchell et al., 2018). It is also helpful if the filtered reads are quality-trimmed before 

191 being processed by Kelpie, as this will reduce the number of erroneous kMers that have to be 

192 considered. This can be done within filtering tool if it has an appropriate option, or separately 

193 with a tool such as Trimmomatic (Bolger et al., 2014). 

194 Kelpie processes a filtered WGS dataset in three distinct phases: 

195 ÷ Extracting just those reads that cover the defined inter-primer region; 

196 ÷ Building kMer tables from these inter-primer region reads;

197 ÷ Extending any reads found to contain a forward primer sequence. 

198 The first phase goes through the initial filtered reads and uses an iteratively constructed inter-

199 primer kMer filter to select just those that cover the specified inter-primer region. The first step 

200 in building this filter is to find all the reads that contain a 8starting9 primer sequence (either the 

201 specified forward primer or the reverse complement of the reverse primer). The kMers (actually 

202 32-mers) following the primers in these starting reads are added to an initial inter-primer filter (a 

203 kMer hash set). The remaining reads are then scanned again, looking for any that start with a 

204 kMer found in this inter-primer filter set. The kMers from these newly selected reads are then 

205 added to the inter-primer filter, and the remaining reads are scanned once again. This process 

206 continues until the entire inter-primer region has been covered and the reads being selected 

207 contain a 8finishing9 primer. The initial set of filtered reads are then passed over this inter-primer 

208 filter once again, and just those reads that start with kMers found in the filter set are retained. 

209 Any reads that contain either 8starting9 or 8finishing9 primer sequences are trimmed 

210 appropriately. The result is a set of trimmed reads that cover the primer-defined region. Any 
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211 reads starting with the forward primer or ending with its reverse complement are marked as 

212 8starting9, and these reads are the ones that will be extended in the final phase.

213 The next phase turns these 8inter-primer9 reads into the collection of kMer hash tables for the 

214 extension phase. There is no ideal length for these extending kMers. Shorter kMers, such as 32-

215 mers are more plentiful but are also more likely to be shared between different organisms; while 

216 longer kMers (such as 80-mers) are more distinctive and less likely to be ambiguously shared, 

217 but fewer of them can be derived from each read, especially from the trimmed reads at the start 

218 and end of the primer-defined region. The solution adopted is to have multiple kMer tables, with 

219 8k9 ranging from 32 to almost the full read length (in steps of 8bp). For 100bp reads, this results 

220 in 9 such kMer hash tables. The reads are first tiled for 32-mers and the resulting kMer table is 

221 built and then 8denoised9 by removing dubious kMers, such as those found only once, or those 

222 that are rare and appear to be error variants of abundant kMers. The reads are tiled repeatedly for 

223 progressively longer kMers to construct the remaining kMer tables. 

224 The final phase then takes each of the marked 8starting9 reads in turn and calls ExtendRead to try 

225 to unambiguously extend it, one base at a time, until the extended read finishes with a 8finishing9 

226 primer. At every iteration of the extension loop, the read is effectively further extended by 

227 adding each of the possible bases, A, C, G and T to its end. Each of these possible extended 

228 reads is then checked against the full collection of kMer tables to ensure that it is fully supported 

229 by the WGS reads. If multiple extensions prove to be viable, each of them is then tested to see if 

230 extending it further would eventually reach a terminal primer, and so result in a complete 

231 amplicon. This extension check is done by recursively calling ExtendRead on each of the viable 

232 extensions. Figure 1 contains a high-level pseudocode description of this ExtendRead method 

233 and its iterative and recursive extension loop. 

234 The presence of strains and closely related organisms within metagenomic communities means 

235 that sometimes there will be multiple viable extended reads, all of which have both good kMer 

236 support from the WGS data and end in a terminal primer. In this case, Kelpie breaks the tie by 

237 randomly choosing one of the reads, in proportion to the repetition depth of the 32-mers at the 

238 end of the read being iteratively extended. For example, if both 8A9 and 8T9 could viably be 

239 added to the end of the extending read, and the 32-mer xxxxxxxxA was found 90 times in the 

240 WGS reads, and the xxxxxxxxT 32-mer was found 10 times, the Kelpie will choose the 8A9-

241 extended read 90% of the time. Choosing in proportion in this way ensures that less common 

242 strain variants are properly represented in the final set of 8amplicons9, and not just subsumed by 

243 more common variants.

244 Once all the 8starting9 reads have been extended, Kelpie drops any of these extended reads that 

245 did not reach a terminating primer, trims the primer sequences from the remaining full-length 

246 amplicons and writes them out as a FASTA file. 

247 The depth-first recursive exploration of possible read extensions is computationally expensive, 

248 but, in practice this path is rarely taken. Almost all decisions about what base to choose to further 

249 extend an extending read are taken just by looking at the kMer tables, and almost all of these 

250 decisions only have to check the initial 32-mer table. Table 1 presents some statistics on these 
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251 decisions from the three coal seam metagenomes discussed in the Results section. The initial 32-

252 mer kMer check came up with a single unambiguous 8next9 base in 96.0% to 98.7% of the time, 

253 and checking the remaining kMer tables came up with a single choice 98.2% to 100.0% of the 

254 time. It was only necessary to explore the tree of possible extensions 0.0% to 1.2% of the time. 

255 One necessary limitation with Kelpie, in common with all other assemblers, is that all the distinct 

256 gene regions being extended/assembled have to be completely covered by reads from the WGS 

257 dataset. The impact of this requirement is that rarer organisms in the community will not be 

258 represented in the set of extended reads if their coverage is incomplete.

259 All of the results discussed in the next section were obtained from running Kelpie (V1.0.3) on a 

260 Dell Latitude E7470 laptop with a 2.4GHz Intel i5-6300U processor (2 cores, 4 threads) and 

261 16GB of RAM. The three coal seam microbiome datasets took 80.0s, 33.7s and 73.1s to process, 

262 after the preliminary 16S rRNA filtering had been done. The CAMI Low and Medium datasets 

263 took 27.3s and 33.1s, respectively, after filtering. Kelpie is written in C# and can be run under 

264 Windows, OSX and Linux. Kelpie code is open source and available for download from GitHub 

265 (Greenfield, 2018b). It is made available under an MIT licence. 

266 Kelpie is a command-line program and is usually run as follows:

267

268 Kelpie -f forwardPrimer -r reversePrimer readsToFilterFNP extendedReadsFN

269 where forwardPrimer is the forward primer sequence

270 reversePrimer is the reverse primer sequence

271 readsToFilterFNP is a list of reads file names or a file name pattern

272 extendedReadsFN is the file name for the extended reads

273

274 For example: Kelpie -f GTGYCAGCMGCCGCGGTAA -r GGACTACNVGGGTWTCTAAT 
275                      W1_?_16S_20_fz_25.fa W1_16S_v4.fa 

276

277 Other options are available for use in very unusual cases, and these are described in the 

278 documentation provided as part of the Kelpie package.

279 Testing & Evaluation

280 The effectiveness and accuracy of Kelpie was evaluated using its application to the task of 

281 determining the structure of a metagenomic community. This application was chosen because the 

282 Kelpie-generated results could be compared both against independently defined 8truths9 and 

283 results from alternative tools and techniques. The results generated by Kelpie were compared to: 

284 ÷ a profile produced from the EBI Metagenomics pipeline (Mitchell et al., 2018).

285 ÷ real amplicon data from a coal seam metagenome project.

286 ÷ two of the synthetic metagenomic datasets generated by the CAMI project (Sczyrba et al., 

287 2017).
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288 The amplicon PCR used the 16S rRNA V4 primers defined by the Earth Microbiome Project 

289 (Thompson et al., 2017). These primers were GTGYCAGCMGCCGCGGTAA (forward) and 

290 GGACTACNVGGGTWTCTAAT (reverse). These two primers were used in the corresponding 

291 Kelpie tests so that the results from real amplicon sequencing and Kelpie could be meaningfully 

292 compared, and the same primers were also used for the EBI and CAMI-based tests.

293 The Kelpie numbers presented in the results below are counts of fully-extended reads. As 

294 discussed earlier, Kelpie works by finding reads that include a starting primer sequence and 

295 extending each one of these, one base at a time, until a terminating primer is reached. The result 

296 is a set of full-length extended reads, each one of which has its origins in a single WGS read. 

297 EBI Metagenomic Pipeline

298 The starting point for Kelpie is currently, for performance reasons, a set of filtered reads that 

299 cover the target region, and probably the entire target gene that surrounds it. The EBI 

300 Metagenomics pipeline includes such a 16S rRNA filtering step, and the selected reads are 

301 directly classified to generate a taxonomic profile for the submitted dataset. As part of the testing 

302 of Kelpie, an EBI Illumina WGS submission (MGYS00000465/ERP008951) was chosen at 

303 random. The 16S rRNA HMM-filtered reads were downloaded from EBI, assembled with Kelpie 

304 using the above v4 primers, and run through the GHAP amplicon pipeline (Greenfield, 2017). 

305 This test both demonstrated that Kelpie was compatible with 16S rRNA reads selected using 

306 conventional HMM-based tools, and also allowed a comparison between the profiles produced 

307 from the Kelpie-assembled reads and the results generated by the EBI pipeline. The results of 

308 these comparisons can be found in Table 2, and in more detail in Table S1. The similarity 

309 between the two profiles (at Order level) is illustrated in Figure 2. 

310 Coal Seam Metagenomes

311 Three coal seam metagenome (CSM) samples, called here W1, W2 and W3, were produced as 

312 part of an industry-funded study of microbial life in Queensland coal fields. Two of the samples 

313 came from the Surat Basin and the other from the Bowen Basin. The DNA extracted from each 

314 of these three samples was split, with one part being sent off for WGS sequencing (paired-end 

315 100bp Illumina HiSeq), and the other amplified using the EMP V4 PCR primers and then 

316 sequenced (paired-end 300bp Illumina MiSeq). The amplicon and WGS datasets for all three 

317 samples are available for download at Coal Seam Formation Water Community Profiles 

318 (Greenfield, 2018c). These three samples are also included in the Coal Seam Microbiome 

319 reference set (Vick et al., 2018) as Surat 3 (W1), Bowen 3 (W2) and Surat 1 (W3). 

320 The amplicon data was quality-trimmed and then pair-merged using the USearch 

321 fastq_mergepairs function (Edgar, 2010) to produce full-length (~250bp) amplicon sequences 

322 (with primers trimmed). 

323 The WGS data was filtered for just the reads that covered the 16S rRNA gene by a simple kMer 

324 filter (Greenfield, 2018a) that kept only those reads that had sufficient kMer matches onto genes 

325 included in a 16S rRNA reference set. This reduced the size of the data files to be processed by 

326 Kelpie by about 99.8% (filtering the W3 WGS dataset looked at 322,127,528 reads and kept just 
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327 597,668 of them). These putative 16S reads were then processed with Kelpie using the same 

328 EMP V4 primers to produce a set of full-length amplicon-like sequences. 

329 The Kelpie-generated and the real amplicon datasets were then run through a conventional 

330 amplicon pipeline (Greenfield, 2017) based on USearch and RDP (Wang et al., 2007) tools, both 

331 separately and together. The results were assessed to see if similar community profiles were 

332 generated from both sets of reads, and if the actual sequences generated by PCR and Kelpie were 

333 identical. Results of the community profile comparisons are shown in Table 3 and Figure 3, and 

334 the sequence identity comparisons are shown in Table 4 and summarised in Table 5. 

335 A more conventional way of extracting inter-primer regions from WGS metagenomic data would 

336 be to first assemble the full dataset using a metagenomic assembler, and then search for and 

337 extract just the targeted genomic regions from the resulting contigs. This approach was evaluated 

338 by first assembling the full WGS dataset for each of the three samples with metaSPAdes (Nurk et 

339 al., 2017), and searching within the resulting contigs for regions bounded by the specified 

340 forward and reverse primers. metaSPAdes was also used to assemble just the filtered 16S rRNA 

341 reads used as input to Kelpie, as it was thought that this could result better assemblies. The 

342 results from these two metagenomic assembly tests are included in the summary shown in Figure 

343 4, and in detail in Table S3.

344 CAMI Synthetic Benchmarks

345 One shortcoming with the previous two sets of tests is that they are based on comparisons against 

346 results produced using conventional tools and techniques, and these alternative approaches have 

347 their own imperfections and quirks. A better approach would be to test Kelpie using a dataset 

348 with known 8correct9 answers and then calculate accepted performance statistics, such as recall 

349 and precision. The datasets produced for the CAMI Challenge (Sczyrba et al., 2017) come close 

350 to meeting this requirement, providing sets of synthetic metagenomic reads derived from known 

351 organisms, mostly named to the species level. The CAMI paper both defines standard 

352 performance metrics, and compares the performance of a wide variety of published tools on 

353 these benchmark datasets. 

354 The CAMI challenge datasets consist of synthetically generated reads produced from assembled 

355 contigs built from sequence data generated from named cultured organisms. This approach gave 

356 the CAMI organisers considerable flexibility, allowing them to produce both Illumina HiSeq-like 

357 reads and long mate-pair reads with known error rates, and to simulate the presence of multiple 

358 strains of a single starting organism. These reads were generated only from assembled contigs, 

359 not from complete genomes or from the unassembled sequence data, and any flaws or gaps in the 

360 assemblies are consequently reflected in the reads used in the study. The ribosome is always 

361 challenging to assemble because it is usually present multiple times in each organism in the 

362 metagenome, and this high level of replication often results in ribosomal sequences being broken 

363 into multiple small contigs. The CAMI synthetic reads were generated only from contigs greater 

364 than 1Kbp in length, and any genes found only in the ignored shorter contigs will be missing 

365 from the corresponding WGS datasets.
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366 The first step in testing Kelpie against the low and medium complexity CAMI datasets was to 

367 determine which organisms actually had their requisite 16S rRNA regions covered by the 

368 generated synthetic reads. This was done by taking the CAMI-provided contig files and 

369 extracting all regions bounded by the same primer sequences used in the amplicon study above. 

370 These extracted 16S rRNA V4 regions were then matched (using usearch_global) against a 

371 collection of 16S rRNA RefSeq reference sequences (downloaded from GenBank on 

372 23/July/2017). The result was a set of sequences and accession names for those organisms found 

373 to have complete marker gene regions present in the size-filtered contigs. Only these sequences 

374 would have been available to the synthetic read generation process, and so be represented in the 

375 provided WGS datasets.

376 These sets of named organisms were then compared to the CAMI-provided 8gold9 taxonomic 

377 profiles for each of the datasets. There were no matching contig-derived sequences for 7 of the 

378 25 species in the low complexity profile, and for 24 of the 95 species in the medium complexity 

379 profile. These missing species were consequently excluded from the performance evaluations as 

380 reads derived from their 16S rRNA V4 regions must also be missing from the WGS datasets. 

381 The mapping between the CAMI-provided profiles and the named organisms found in the 

382 contigs can be seen in columns 1 and 3 of Table 6 (and Table S4a) for the Low Complexity 

383 dataset, and in Table S5a for the Medium Complexity dataset. 

384 Most of the organisms in the CAMI profiles were named to the Species level, although a few 

385 were classified only to higher levels such as Family. The species names from the accessions and 

386 the CAMI profile were almost always identical. One of the low complexity organism sequences 

387 (Anaerobranca) matched at 100% identity to an accession with a different species in the same 

388 genus; and four of the organisms in the medium community profile matched different species, 

389 again in the same genus. In those cases where the CAMI profiles did not go down to Species, the 

390 matched accessions were all taxonomically compatible with the stated classification. The CAMI 

391 challenge was also interested in seeing how well the tools under test could separate strains of 

392 species present in a community, and so simulated the presence of strain variants for some of 

393 organisms in the medium complexity dataset (for 25 of the 95 species). Some of these 8strains9 

394 resulted in their own named accessions, and so were included in the Kelpie comparisons. 

395 The CAMI synthetic WGS datasets reflect real metagenomic sequencing datasets in that the 

396 organisms in the community are present at different abundance levels, raising the possibility that 

397 low abundance organisms may have incomplete coverage of the marker gene region even if was 

398 present in the contigs used to generate the WGS reads. As an example, the lowest abundance 

399 organism whose 16S rRNA V4 region was found in the contigs was Nonlabens dokdonensis at 

400 0.08% abundance. Given the number of 150-mer WGS reads in the dataset, and the size of the 

401 Nonlabens genome (3,914,632bp), the estimated depth of coverage of this organism is 3.2. As 

402 marker sequences with incomplete coverage cannot be assembled with Kelpie, a kMer depth of 

403 coverage was calculated for each of the extracted marker gene regions, and this is shown in 

404 column 4 of Table 6 for the Low Complexity dataset, and in Tables S4 and S5 for both CAMI 

405 datasets. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27376v1 | CC BY 4.0 Open Access | rec: 23 Nov 2018, publ: 23 Nov 2018



406 Kelpie was then run on the both CAMI Low and Medium complexity WGS datasets, using the 

407 same the 16S rRNA V4 primers sequences as used in the other two tests. The resulting full-

408 length extended sequences were then matched against the same RefSeq-based 16S reference set, 

409 again using usearch_global, and the matches were summarised into a set of matched 

410 species/strains and counts to create taxonomic profiles. These Kelpie-based profiles were then 

411 aligned with the 8gold9 and 8found in contigs9 profiles to generate combined tables of organisms 

412 and numbers of matching reads. As the CAMI datasets were derived from known cultured 

413 organisms, the results from testing Kelpie against these datasets can be evaluated using the same 

414 precision/recall statistics used in the CAMI study, rather than relying just on similarity to results 

415 produced through alternative techniques and tools. Those organisms whose marker genes regions 

416 were not in the provided contigs have no presence in the WGS reads and have been dropped 

417 from these evaluations as they were not available for Kelpie to extract and assemble. Low 

418 abundance organisms with incomplete coverage of the marker gene region are included in the 

419 performance evaluations but noted and discussed. These precision/recall statistics are shown in 

420 Table 7 for both the CAMI Low and Medium complexity datasets.

421 RESULTS

422 EBI Metagenomic Pipeline

423 As discussed in the Background section, taxonomic profiles generated by directly mapping reads 

424 to reference sets are inherently somewhat imprecise as the selected reads will be randomly drawn 

425 from the target genes (16S rRNA in this case), and will include reads covering both conserved 

426 and shared regions. In addition, these reads will be shorter than full-length amplicons, further 

427 reducing the specificity of mappings, and the accuracy of the resultant taxonomic profiles. The 

428 ERP008951 project was a faecal microbiome study that had been run using V2 of the EBI 

429 pipeline, and the selected reads had been both pair-merged and trimmed to 16S rRNA gene 

430 boundaries. Some adjustments were made to Firmicute lineages in the EBI OTU tables (e.g. 

431 moving Veillonellaceae ð Negativicutes) to reduce perceived mismatches coming from the use 

432 of different taxonomies, but this taxonomic harmonisation is incomplete for lower abundance 

433 taxa. 

434 The Kelpie-generated results are in good agreement with the EBI profile, but with fewer 

435 unclassified sequences and many more resolving to Species-level. The EBI profile shows much 

436 more diversity at higher level taxa (132 vs. 24 Orders, for example) with a long tail of rarer taxa 

437 such as Halanaerobiales, Natranaerobiales and several Chlorobi. Some of this diversity will be 

438 coming from the direct matching of reads from very low coverage organisms, but some will be a 

439 result of the less precise matching of short reads and matches onto conserved regions. The full 

440 results of this comparison can be found in Table S1, and Table 2 shows the 25 most abundant 

441 species (for EBI) and the 25 largest OTUs (for the Kelpie-assembled sequences). Only 5 of these 

442 top EBI classifications were resolved to species level, while all of the Kelpie sequences were 

443 assigned to a species, with the lowest match identity of 97.6%. Figure 2 shows how the EBI and 

444 Kelpie-generated taxonomic profiles compare at an Order level using charts generated by 
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445 STAMP (Parks et al., 2014). Figure 2A is a bar chart of the 22 most abundant and statistically 

446 significant Orders across both datasets (Two-sided Fisher9s exact test, Storey9s FDR). Figure 2B 

447 is a scatter plot produced from the same data, with an R2 value of 0.994. 

448 Coal Seam Metagenome Studies

449 The purpose of these Coal Seam Metagenome (CSM) tests was to determine if the sequences 

450 extracted and assembled by Kelpie were comparable to, and preferably identical to, those 

451 produced using traditional amplicon sequencing, and also to demonstrate that these sequences 

452 were compatible with conventional amplicon-based pipelines and tools. The first 25 (of 228) 

453 rows from the OTU table generated from the combined amplicon and Kelpie-generated data are 

454 shown in Table 3, and the full OTU table for all three samples can be found in Table S2. The full 

455 spreadsheet underlying this table is available as Table S6 (8AE-All9 tab). This OTU table shows 

456 complete agreement between the amplicon and Kelpie-generated samples until well into the rare 

457 organisms at the tail of the abundance distribution. The actual number of sequences assigned to 

458 each OTU correspond reasonably well for the two data sources, and the presence of primer bias 

459 in the amplicon PCR data means that perfect agreement should not be expected anyway. 

460 Multivariate comparisons between the three samples analysed using the amplicon vs extended 

461 approaches were performed by permutational multivariate analysis of variance (PERMANOVA) 

462 using Primer 7+ (Plymouth Marine Laboratory, UK). Two analysis were performed, one using 

463 presence/absence data and the second using the abundance data, in both cases resemblance 

464 statistics were derived from Bray-Curtis similarities. 

465 Presence/absence: No difference between the two data sets were found (Pseudo-F = 1.805, 

466 P=0.092). Indicating that the two-techniques produced statistically similar communities. 

467 Abundance data: No difference between the two data sets were found (Pseudo-F = 0.233, 

468 P=0.702). Indicating that the two-techniques produced statistically similar communities.

469 The first OTU in the combined OTU table where an amplicon does not have an equivalent 

470 Kelpie sequence occurs at a relative abundance level of 0.03%, and at a cumulative abundance of 

471 98.8% of the amplicon sequences. Figure 3A shows how the percentage of OTUs found by using 

472 both amplicons and Kelpie varies with cumulative abundance, both for the combined OTU table 

473 and for each of the per-sample OTU tables. Figure 3B is a PCA plot produced by STAMP (Parks 

474 et al., 2014). STAMP ran a multiple group test using ANOVA, with a Games-Howell post-hoc 

475 test, Eta-squared effect size, and with multiple test correction done using Storey FDR. These 

476 tests showed there were just 9 8active features9, and the most abundant of these (OTU_105, an 

477 unclassified Firmicutes) represented only 0.015% of all the amplicon reads. 

478 There is always a considerable amount of 8noise9 in amplicon-based studies, caused by effects 

479 such as PCR artefacts, cross-sample contamination in the pre-sequencing processes and 8tag-

480 jumping9 (Dickie, 2010; Schnell et al., 2015; Edgar, 2016; Froslev et al., 2017), making low 

481 abundance counts somewhat unreliable. Rather than establish an arbitrary 8noise9 level as a cut-

482 off point, the read coverage for each OTU sequence from each of the 3 WGS datasets was 

483 estimated by using a kMer mapping tool, and counts for any OTU/sample cell with less than 
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484 90% kMer coverage of the corresponding sequence were not included in the performance 

485 numbers below. Some of these appear to be artefacts, and others will simply be rare organisms 

486 with insufficient WGS read coverage. These 8untrusted9 amplicon counts are shown in bold in 

487 Table 3, and in red in the combined OTU table in Table S2. This table also gives some hint about 

488 the prevalence of various artefacts in amplicon data, with dominant organisms in one sample 

489 often having very low counts in other organisms, as would be expected from the above 

490 references. The 9 8active9 OTUs found by STAMP all had incomplete WGS coverage of the 

491 corresponding amplicon sequence, with the most abundant of them (OTU_105) only having 12% 

492 - 30% kMer coverage.

493 The clustering process used when generating the OTU sequences could be masking differences 

494 between the amplicon and Kelpie-generated sequences as they only have to be 97% similar to be 

495 included in the same OTU. To validate the actual sequences generated by Kelpie, both the 

496 Kelpie-generated 8amplicons9 and the real PCR amplicons for each sample were run separately 

497 through the same amplicon pipeline, and the resulting OTU centroid sequences were compared 

498 using USearch usearch_global. The results of this sequence-level identity comparison for the W2 

499 dataset is shown in Table 4 and the results for all 3 datasets are summarised in Table 5. The full 

500 results from these sequence-level comparisons can be found in Table S6 (8K-A9 tabs). 

501 The majority (82% to 93%) of the amplicon and Kelpie-assembled centroid OTU sequences 

502 were 100% identical, and 93% to 100% of the sequences were at least 97% identical. A close 

503 examination of these not-100% identical sequences showed that in these cases there were a 

504 number of closely related strains present in the bacterial community, and the differences between 

505 the amplicon and Kelpie-generated OTU sequences were just a result of the clustering algorithm 

506 picking a different centroid sequence from within the cluster. There are also three OTUs that are 

507 found purely in Kelpie data, with no matching amplicon reads. Aligning the WGS reads to the 

508 centroid sequences for these three OTUs indicates that they actually are present in the 

509 community, and their absence from the amplicon reads may be an artefact of biases inherent in 

510 the PCR process. 

511 The combined OTU table from running the amplicon pipeline on the amplicons, the Kelpie-

512 generated amplicons, the extracted 16S rRNA V4 regions from the full metaSPAdes assembly, 

513 and the metaSPAdes 16S rRNA-only V4 assembly for all three samples can be seen in full in 

514 Table S3. The counts shown in the metaSPAdes-based columns in this OTU table are derived 

515 from the stated depth of coverage for the contigs from which they were extracted. Figure 4 

516 shows how well the two assembly-based techniques compare to the amplicon and Kelpie-

517 generated datasets. The amplicon and Kelpie sequences both found all the most abundant OTUs 

518 (top 98%), while the two metaSPAdes assemblies missed about a third of these, including some 

519 of the most abundant ones. The full metaSPAdes metagenomic assembly performs slightly worse 

520 (57% of the top 98%) than the assembly from the filtered 16S rRNA reads (65% of the top 98%). 

521 The supporting data for this chart can be found in Table S6 (8AESS9 sheets).
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522 CAMI Synthetic Datasets

523 The results for the Low Complexity CAMI test dataset are summarised in Table 6. All of the 

524 extended 16S rRNA V4 sequences produced by Kelpie were classified to the exactly same strain 

525 as the equivalent regions extracted from the assembled contigs. There are 3 cases in this test 

526 where an extracted region did not have matching Kelpie extended reads, and mapping the WGS 

527 reads back to these unmatched regions showed that they were incompletely covered in the 

528 sampled synthetic reads.

529 Full summaries for the tests using the CAMI Low Complexity dataset are available in Table S4, 

530 and full details in Table S7. Similarly, the comparisons for the Medium Complexity dataset are 

531 available as Table S5 (summary) and Table S8 (details). The two summary files present both the 

532 full mappings from the full CAMI 8gold9 profile to the accession-matched sequences extracted 

533 from the contigs and the Kelpie-generated sequences, and the same comparisons but including 

534 just those organisms/accessions found to be present in the assembled contigs.

535 The CAMI paper defines two metrics that were used to assess the quality of the results submitted 

536 for their taxonomic profiling challenge. Recall is the percentage of organisms present in the test 

537 community were found; and Precision is how accurately they were identified (at various 

538 taxonomic levels). The CAMI paper gives Recall and Precision numbers for 10 profiling tools, at 

539 various taxonomic ranks, and for both the full datasets and for the top 99% of organisms by 

540 abundance. The actual results presented by CAMI for the various tools are not discussed further 

541 here, as there may be subtle methodological differences that would make direct comparisons 

542 difficult or unfair, especially in the treatment of strain variants. The left-hand side of Table 7 

543 shows the Precision and Recall numbers derived from the Low Complexity dataset results, using 

544 the classified, extracted 16 rRNA V4 accessions as the 8truth9 for the calculations. These metrics 

545 were only calculated at the accession/strain-level, as there were no inexact matches that needed 

546 to be resolved at higher taxonomic levels, unlike the results presented in the CAMI paper. 

547 The results from the CAMI Medium Complexity dataset are similar, with the Kelpie-generated 

548 8amplicons9 always matching to the same strain identified from the extracted 16S rRNA V4 

549 regions, and with low abundance organisms with incomplete WGS coverage having no 

550 corresponding Kelpie-generated sequences. The Recall and Precision numbers for this dataset 

551 are shown in the right-hand side of Table 7. All of these results are derived from the spreadsheets 

552 found in Table S7 (Low Complexity) and Table S8 (Medium Complexity).

553 Kelpie requires complete WGS read coverage of the region it is assembling, like any other 

554 assembler, and this becomes less likely with the lower abundance organisms in the community. 

555 The stochastic sampling of genomes inherent in the generation of synthetic reads will tend to 

556 produce gaps in coverage, and these coverage gaps will become more common as the simulated 

557 abundance is reduced. For the synthetic CAMI datasets, this incomplete coverage, and the 

558 subsequent decline in Recall, starts with organisms with about 0.4% abundance, and with an 

559 estimated depth of coverage of less than 12. The same gradual drop can be seen with the real 
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560 Coal Seam WGS data, as shown previously in Figure 3, starting there with organisms present at 

561 about 0.3% abundance in the community. 

562 DISCUSSION

563 Kelpie is a general-purpose PCR-like targeted assembler that generates sets of full-length 

564 between-primers sequences from WGS datasets. The tests and results described above all came 

565 from the same illustrative application, extracting a marker gene region for the purposes of 

566 determining community structure, but this just an example of how Kelpie can be used. This well-

567 known application was chosen as it provided access to independently-derived community 

568 profiles and related marker gene sequences that allowed the effectiveness and accuracy of Kelpie 

569 to be compared and assessed.

570 The results from the coal seam metagenome study not only showed that Kelpie-generated 

571 sequences could be used to generate microbial community profiles with an accuracy and depth 

572 comparable to conventional PCR, but that the centroid sequences for the resulting Kelpie and 

573 PCR OTU clusters were either identical or found within the small 8cloud9 of sequences 

574 subsumed within each cluster. These results show that Kelpie is accurately extracting at 

575 assembling between-primer region sequences from this complex WGS metagenomic data. 

576 Both the full and 16S-filtered WGS coal seam datasets were also assembled using the 

577 metaSPAdes assembler. The results summarised in Figure 4 show that Kelpie is more effective at 

578 handling this repeated and ubiquitous genomic region than good conventional assemblers. Kelpie 

579 extracted and assembled those distinct marker gene regions shown as present by amplicon 

580 sequencing, well down into the low depth of coverage tail, while the conventional assembler 

581 failed to produce complete sequences for many of the OTUs. 

582 The results from the EBI and CAMI-based studies were included to show that Kelpie works 

583 equally well on WGS datasets other than coal seam metagenomes, and also that it is compatible 

584 with filtered datasets produced by conventional HMM tools. The Kelpie-derived community 

585 profiles for the synthetic Low and Medium Complexity CAMI WGS datasets closely match both 

586 the provided 8gold9 profiles, and profiles built from marker gene regions extracted from the 

587 provided assembled contigs. The profiles built from both the Kelpie sequences and the extracted 

588 marker genes almost always agreed on the actual strain/accessions identified within the 

589 community, with the Kelpie data also showing some of the synthetic strains constructed from the 

590 assembled organisms. As shown in Table 7, the Recall and Precision statistics for Kelpie-

591 generated profiles are extremely good, especially once those organisms with no coverage or 

592 incomplete coverage from the synthetic WGS reads are excluded. 

593 Kelpie can be used for many applications other than community profiling, and just needs a pair 

594 of conserved 8primer9 sequences and a filtered WGS dataset. Kelpie has recently been used to:

595 ÷ Extract and assemble almost full-length 16S genes from genomic data using the 27F and 

596 1492R primer sequences. These sequences were needed for phylogenetic analysis and 

597 prior conventional assemblies had resulted in the genes being split across multiple small 
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598 contigs. This work was done in support of a study of coal seam bacteria which will be 

599 published in 2019. 

600 ÷ Extract and assemble bacterial 16S V4 gene regions from data produced from 

601 metagenomic 8amoebal9 sequence data. These marker regions were then used to 

602 accurately classify the amoeba-associated bacteria, and allowed strain-level functional 

603 comparisons to the relevant reference organisms. This work was done as part of a study 

604 into amoebic gill disease in salmon and will be published in 2019.

605 ÷ Extract and assemble multiple marker gene regions from the same WGS dataset, allowing 

606 comparisons of primer effectiveness, and improved classification accuracy (Fuks et al., 

607 2018), and the use of multiple taxon-specific primers in environmental surveys. 

608 ÷ Extracting functional genes, such as antibiotic resistance and Nif genes from 

609 environmental metagenomic WGS datasets. 

610

611 CONCLUSIONS

612 The results discussed above show that Kelpie can successfully extract and assemble full length 

613 inter-primer genomic regions from whole metagenome sequencing datasets with high precision 

614 and recall, even for challenging regions such as the ubiquitous and repeated 16S rRNA gene. 

615 Running both real bacterial 16S rRNA amplicon data and Kelpie-generated sequences through a 

616 conventional amplicon pipeline showed excellent correspondence between the 8amplicons9 from 

617 both sources for all three samples until well into the low abundance tail, with the first missing 

618 OTU being found at 0.03% amplicon-based abundance. This result indicates that a Kelpie-based 

619 OTU table derived from a WGS dataset will be very close to a conventional amplicon-based 

620 table, down to the level where artefacts are starting to appear in the amplicon data. The results 

621 from the CAMI Low and Medium Complexity datasets again showed very high precision from 

622 the Kelpie-generated extended reads, with every extracted sequence being matched to the 

623 identical strain/accession that was assigned to the same primer-delimited regions extracted from 

624 the assembled contigs that were used as the source of the synthesised WGS reads. The recall 

625 shown in these dataset was also very high, up until the point was reached where the extracted 

626 regions were no longer being completely covered by the WGS reads. 

627 The use of Kelpie in generating taxonomic profiles from WGS metagenomic reads is only an 

628 example of its potential uses, and was chosen purely because of the availability of both real and 

629 synthetic data that could be used to evaluate its effectiveness and accuracy. In practice, any 

630 region with well conserved primer sequences should be a target for extraction and assembly by 

631 Kelpie. 

632 Apart from on-going work to improve Kelpie9s accuracy when handling low abundance 

633 organisms, the only planned extension is to remove the need for the WGS data to be pre-filtered. 

634 Pre-filtering is an efficient way to reduce the size of the dataset being processed by Kelpie, 

635 allowing it to be easily kept in memory, but some target genes do not have the well-curated sets 

636 of reference sequences or HMM models that make them amenable to filtering even though they 
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637 have well defined conserved regions that could be used as 8primers9. The use of pre-filtered reads 

638 is only a performance optimisation, and the first stage of Kelpie where it extracts just the small 

639 subset of WGS reads that cover the inter-primer region could be adapted to work directly from 

640 the unfiltered datasets at some performance cost. 

641
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Figure 1(on next page)

Pseudocode for Kelpie extension phase
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method ExtendRead(read, out extendedRead, out tpReached)  

{   

 extendedRead = read;   

 while (extending)  

 {   

  // does the extended read end with a terminal primer?     

  if (extendedRead.EndsWith(terminalPrimer))  

   return extendedRead & 'true';  

 

  // check whether the 4 possible extended reads all have support from the  

     // WGS reads via the kMerTables   

  foreach (kMerLength in kMerTableLengths)  

  {       

   generate all 4 possible 'next' (kMerLength) kMers at end of the read; 

   lookup their counts in (kMerLength) kMerTable and check if viable; 

   save 32-mer counts for later tie breaking; 

   // if none of the extensions are viable, abandon this read extension 

   if (viableAlternatives == 0)       

    return extendedRead and 'false'; 

   // if just one extension is viable, so stop checking longer kMers 

   if (viableAlternatives == 1)       

    break; 

  } 

   

  // only one of the possible extensions is viable 

  if (viableAlternatives == 1)        

  { 

   // add the viable base to the read and continue extending 

   extendedRead += viableBase; 

   continue; 

  }  

    

  // multiple viable extensions& 
  // recursively explore each of them and see how far downstream it can get 

  generate viableExtendedReads[] from all viable extensions; 

  foreach (read[i] in viableExtendedReads[])  

   // recursively explore the consequences of this extension 

   tpReached[i] = ExtendRead(read[i], out read[i]);  

    

  count number of extensions that reached terminal primer (tpCount); 

  // none of the extensions get to the end& 
  if (tpCount == 0)           

   return longest of extended reads and 'false'; 

  // just one extension could get to terminal primer, so all done 

  if (tpCount == 1)           

   return only winning read (now fully extended) and 'true'; 

    

  // tie: multiple extensions can reach a terminal primer 

  randomly choose a winner in proportion of saved 32-mer counts; 

  return winning (now fully extended) read and 'true'; 

   

 } // while (extending) 

} 
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Figure 2(on next page)

Order-level comparison between taxonomic profiles for EBI project ERP008951

(A) Bar chart showing the most abundant Orders found by the EBI pipeline and in the Kelpie-based OTU

table. (B) Scatter plot for the same data. Extracted from the spreadsheet in Table S1 and plots generated by

STAMP.
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Figure 3(on next page)

Agreement between amplicon and Kelpie-based OTUs for CSM datasets

(A) Percentages ordered by cumulative read count for the four 8AE9 OTU tables in Table S6 (samples

combined, and processed separately). In the combined table, the first OTU without supporting counts from

both amplicons and Kelpie-extended reads comes after 98.8% of the amplicons reads have been assigned

to OTUs (83rd OTU in reverse cumulative size order), and represents 0.03% of the amplicon reads. (B) PCA

plot showing the similarity between the amplicon and Kelpie-based profiles.
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Figure 4(on next page)

Numbers of CSM OTUs found in the top 98% and 99% of the community profile for each

of the three samples

Numbers of OTUs are by cumulative read count and derived from the four 8AE9 OTU tables in Table S6. The

OTU counts have been adjusted by removing amplicon OTUs that have poor WGS read coverage.
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Table 1(on next page)

Read extension decision statistics for three CSM datasets
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W1 W2 W3 W1 W2 W3

read extension checks 20517124 3562698 8402118

single choice at k=32 19700062 3518077 8222559 96.0% 98.7% 97.9%

single choice at k=40 66318 15118 77026 0.3% 0.4% 0.9%

single choice at k=48 72763 12650 11615 0.4% 0.4% 0.1%

single choice at k=56 17655 715 10485 0.1% 0.0% 0.1%

single choice at k=64 34950 1488 4043 0.2% 0.0% 0.0%

single choice at k=72 19292 11136 21155 0.1% 0.3% 0.3%

single choice at k=80 18425 1128 7107 0.1% 0.0% 0.1%

single choice at k=88 117494 0 7540 0.6% 0.0% 0.1%

single choice at k=96 97699 1273 3204 0.5% 0.0% 0.0%

single kMer choice 20144658 3561585 8364734 98.2% 100.0% 99.6%

looked downstream 238307 962 28396 1.2% 0.0% 0.3%

single good downstream 134009 46 7436 0.7% 0.0% 0.1%

chose in proportion by depth 104293 909 19487 0.5% 0.0% 0.2%

chose longest downstream 5 7 1473 0.0% 0.0% 0.0%

# of starting reads 19750 15876 23324

# of reads abandoned 145 28 79 0.7% 0.2% 0.3%

# of fully extended reads 19605 15848 23245 99.3% 99.8% 99.7%

1
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Table 2(on next page)

Top 25 most abundant organisms found in EBI project ERP008951

The first part of the table comes from the community profile generated by the EBI Metagenomics Portal, and

the second part is from an OTU table produced from Kelpie-generated data. The highlighted cells were only

resolved to a taxonomic level above Species.
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Top 25 EBI Species

Family Genus Species   Sum

Unclassified_f Unclassified_g Unclassified_sp 96675

Bacteroidaceae Bacteroides Bacteroides_sp 242238

Lachnospiraceae Lachnospiraceae_g Lachnospiraceae_sp 100484

Prevotellaceae Prevotella Prevotella copri 86982

Ruminococcaceae Faecalibacterium Faecalibacterium prausnitzii 70676

Ruminococcaceae Ruminococcaceae_g Ruminococcaceae_sp 68736

Clostridiales_f Clostridiales_g Clostridiales_sp 67346

Lachnospiraceae Lachnospira Lachnospira_sp 38338

Enterobacteriaceae Enterobacteriaceae_g Enterobacteriaceae_sp 30687

Bacteroidaceae Bacteroides Bacteroides uniformis 24942

Lachnospiraceae Blautia Blautia_sp 24770

Sutterellaceae Sutterella Sutterella_sp 24151

Porphyromonadaceae Parabacteroides Parabacteroides_sp 23702

Lachnospiraceae Coprococcus Coprococcus_sp 21015

Ruminococcaceae Ruminococcus Ruminococcus_sp 20449

Prevotellaceae Prevotella Prevotella_sp 15063

Lachnospiraceae Roseburia Roseburia_sp 13965

Porphyromonadaceae Parabacteroides Parabacteroides distasonis 13588

Rikenellaceae Rikenellaceae_g Rikenellaceae_sp 13216

Ruminococcaceae Oscillospira Oscillospira_sp 12402

Veillonellaceae Dialister Dialister_sp 11469

Selenomonadaceae Megamonas Megamonas_sp 9059

Enterobacteriaceae Klebsiella Klebsiella_sp 9045

Lachnospiraceae Dorea Dorea_sp 8362

Bacteroidaceae Bacteroides Bacteroides ovatus 7631

Top 25 Kelpie OTUs to Species/Accession

Family Genus Species Match% # == Size

Bacteroidaceae Bacteroides Bacteroides dorei JCM 13471; 175 

(AB242142)

99.6 2 19769

Ruminococcaceae Faecalibacterium Faecalibacterium prausnitzii ATCC 

27768 (AJ413954)

98.8 1 7177

Prevotellaceae Prevotella Prevotella copri CB7 (AB064923) 100 1 6589

Eubacteriaceae Eubacterium Eubacterium rectale (L34627) 100 1 4891

Enterobacteriaceae Enterobacter Enterobacter cancerogenus LMG 2693 

(Z96078)

100 33 4706

Bacteroidaceae Bacteroides Bacteroides finegoldii JCM 13345; 199T 

(AB222699)

100 1 3719

Eubacteriaceae Eubacterium Eubacterium eligens (L34420) 99.6 1 2561

Bacteroidaceae Bacteroides Bacteroides coprocola M16 

(AB200224)

100 1 2480

Bacteroidaceae Bacteroides Bacteroides uniformis JCM 5828T 

(AB050110)

100 1 2480

Lachnospiraceae Lachnospiraceae_g Lactobacillus rogosae ATCC 27753 (NR 

104836.1)

100 1 2286

Porphyromonadaceae Parabacteroides Parabacteroides distasonis JCM 5825 

(AB238922)

99.2 1 1937

Sutterellaceae Sutterella Sutterella wadsworthensis WAL 9799 

(GU585669)

100 1 1612
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Prevotellaceae Prevotella Prevotella stercorea CB35 (AB244774) 98.4 1 1386

Lachnospiraceae Anaerostipes Anaerostipes sp. 5 1 63FAA (JF412658) 100 3 1336

Lachnospiraceae Blautia Blautia luti DSM 14534 (NR 114315.1) 100 2 1233

Lachnospiraceae Fusicatenibacter Fusicatenibacter saccharivorans HT03-

11 (AB698910)

100 1 1174

Selenomonadaceae Megamonas Megamonas funiformis YIT 11815 

(AB300988)

100 1 1163

Porphyromonadaceae Parabacteroides Parabacteroides goldsteinii WAL 12034 

(AY974070)

100 1 1135

Lachnospiraceae Roseburia Roseburia inulinivorans A2-194 

(AJ270473)

100 1 1079

Bacteroidaceae Bacteroides Bacteroides massiliensis B84634 

(AY126616)

100 1 1063

Lachnospiraceae Clostridium XlVa Clostridium algidixylanolyticum SPL73 

(AF092549)

97.6 2 930

Lachnospiraceae Coprococcus Coprococcus comes ATCC 27758 

(EF031542)

100 1 922

Ruminococcaceae Gemmiger Gemmiger formicilis ATCC 27749; X2-

56 (GU562446)

100 1 845

Bifidobacteriaceae Bifidobacterium Bifidobacterium stercoris Eg1 

(FJ611793)

100 6 816

Acidaminococcaceae Phascolarctobacterium Phascolarctobacterium faecium 

(X72865)

100 1 808

1
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Table 3(on next page)

Extract from CSM OTU table (amplicons and extended reads)

The first 25 of 228 rows of the Coal Seam Metagenome OTU table found in Table S2. The 8amp9 columns are

amplicon counts; the 8ext9 columns are counts of Kelpie extended reads. Counts in bold indicate that the

OTU consensus sequence was not completely covered by WGS reads.
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OTU Size Species W1 

amp

W1 

ext

W2 

amp

W2 

ext

W3 

amp

W3

 ext

1 43603 Desulfuromonas acetexigens (T) (U23140) 27333 13574 132 0 1554 1010

2 24970 Thermodesulfovibrio aggregans (T) TGE-P1 

(AB021302)

24 0 17120 7816 10 0

3 10514 Treponema zuelzerae (T) type strain: DSM 

1903; 2 (FR749929)

13 0 1171 305 5956 3069

4 10163 Methanobacterium subterraneum (T) A8p, 

DSM 11074 (X99044)

5 0 29 0 7736 2393

5 7081 Cytophaga fermentans (T) ATCC 19072 

(M58766)

9 0 5845 1220 7 0

7 6514 Methanosaeta harundinacea (T) 8Ac 

(AY817738)

1032 192 16 0 3332 1942

6 6264 Parabacteroides distasonis (T) JCM 5825 

(AB238922)

1270 271 9 0 3116 1598

8 5520 Thermacetogenium phaeum (T) PB 

(AB020336)

5 0 14 0 3285 2216

10 4837 candidate division OP1 clone OPB14 

(AF027045)

3 0 4057 771 6 0

12 4611 Lysinibacillus sp. LAM612 (KF443809) 3 0 7 0 533 4068

9 4258 Methanosarcina siciliae type strain: DSM3028 

(FR733698)

1238 2733 11 0 54 222

13 3847 Methanocalculus pumilus (T) MHT-1 

(AB008853)

3312 476 30 0 29 0

11 3652 Desulfotomaculum acetoxidans (T) DSM 771 

(Y11566)

6 0 2463 1177 6 0

14 3390 Syntrophaceticus schinkii (T) Sp3 (EU386162) 6 0 2871 506 7 0

15 3383 Methanobacterium aarhusense (T) H2-LR 

(AY386124)

1 0 3104 271 7 0

17 3012 Methanothermobacter thermoflexus (T) IDZ, 

VKM B-1963, DSM 7268 (X99047)

1 0 2685 326 0 0

16 2920 Sulfurospirillum alkalitolerans HTRB-L1 

(GQ863490)

2340 508 41 0 31 0

21 2114 Methanobacterium alcaliphilum (T) NBRC 

105226 (AB496639)

2 0 1161 100 586 265

18 2099 Clostridium hungatei (T) AD; ATCC 700212 

(AF020429)

5 0 5 0 1124 965

20 2067 Natronincola peptidivorans (T) Z-7031 

(EF382661)

12 0 8 0 1293 754

19 1955 Pontibacter sp. JC215 A10 (HG008901) 4 0 2 0 931 1018

23 1734 Porphyromonas pogonae strain MI 10-1288 

(NR 136443.1)

1059 128 29 0 389 129

25 1557 Acetobacterium malicum (T) DSM 4132 

(X96957)

929 304 16 0 153 155

22 1515 Desulfovibrio oxamicus (T) DSM 1925 

(DQ122124)

19 10 2 0 860 624

24 1513 No closest species found 2 0 955 556 0 0

1
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Table 4(on next page)

Identity between consensus OTU sequences for the CSM datasets

Identity between the consensus OTU sequences generated from both Kelpie extended reads and amplicon-

reads. The small number of not-identical species appear to be caused by the clustering algorithm choosing

different consensus sequences from within a cluster of strain-level variants. There are a total of 3 OTUs that

are found by Kelpie but do not appear in the amplicon data.
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W1  W2  W3  

#OTUs 39  30  57  

100% identical 36 92% 28 93% 47 82%

same species (97%+) 1 3% 2 7% 4 7%

same genus (95%+) 1 3% 0 0% 4 7%

not in amplicon 1 3% 0 0% 2 4%

1
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Table 5(on next page)

Summary of the identity between consensus OTU sequences for the CSM datasets
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W1  W2  W3  

#OTUs 39  30  57  

100% identical 36 92% 28 93% 47 82%

same species (97%+) 1 3% 2 7% 4 7%

same genus (95%+) 1 3% 0 0% 4 7%

not in amplicons 1 3% 0 0% 2 4%

1
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Table 6(on next page)

Comparisons for the CAMI Low Complexity dataset

Comparison between the organisms named in the CAMI 8gold9 profile, the corresponding classified rRNA V4

regions extracted from the CAMI-provided assembled contigs, and the classified Kelpie 8amplicons9. Any

species in the CAMI profile whose 16S rRNA V4 region could not be found in the provided contigs has been

removed from this table.
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CAMI gold profile V4 region from contigs Kelpie profile

Species Abnd. Species/strain Cov% Species/strain Reads Abnd.

Schwartzia 

succinivorans

28.2% Schwartzia succinivorans strain 

S1-1 (NR 029325.1)

100 Schwartzia succinivorans strain 

S1-1 (NR 029325.1)

615 26.3%

Hydrotalea 

sandarakina

19.8% Hydrotalea sandarakina strain 

AF-51 (NR 109380.1)

100 Hydrotalea sandarakina strain 

AF-51 (NR 109380.1)

759 32.5%

Tetrasphaera 

duodecadis

14.9% Tetrasphaera duodecadis strain 

IAM 14868 (NR 040880.1)

100 Tetrasphaera duodecadis strain 

IAM 14868 (NR 040880.1)

255 10.9%

Bacillales sp 9.2% Exiguobacterium acetylicum 

strain DSM 20416 (NR 043479.1)

100 Exiguobacterium acetylicum 

strain DSM 20416 (NR 043479.1)

169 7.2%

Janthinobacterium 

sp.

7.8% Massilia namucuonensis strain 

333-1-0411 (NR 118215.1)

100 Massilia namucuonensis strain 

333-1-0411 (NR 118215.1)

132 5.6%

Pseudomonas 

aeruginosa

6.0% Pseudomonas aeruginosa strain 

DSM 50071 (NR 117678.1)

100 Pseudomonas aeruginosa strain 

DSM 50071 (NR 117678.1)

108 4.6%

Paracoccus 

denitrificans

3.7% Paracoccus denitrificans strain 

381 (NR 026456.1)

100 Paracoccus denitrificans strain 

381 (NR 026456.1)

74 3.2%

Defluviimonas 

denitrificans

3.0% Defluviimonas denitrificans 

strain D9-3 (NR 115019.1)

100 Defluviimonas denitrificans 

strain D9-3 (NR 115019.1)

48 2.1%

Desulfatibacillum 

alkenivorans

1.9% Desulfatibacillum alkenivorans 

strain PF2803 (NR 025795.1)

100 Desulfatibacillum alkenivorans 

strain PF2803 (NR 025795.1)

42 1.8%

Actinomycetales 

sp.

1.1% Williamsia phyllosphaerae strain 

C7 (NR 108495.1)

100 Williamsia phyllosphaerae strain 

C7 (NR 108495.1)

8 0.3%

Flavisolibacter 

ginsengisoli

1.8% Flavisolibacter ginsengisoli strain 

Gsoil 643 (NR 041500.1)

100 Flavisolibacter ginsengisoli strain 

Gsoil 643 (NR 041500.1)

83 3.6%

Tepidibacter 

formicigenes

0.7% Tepidibacter formicigenes strain 

DV1184 (NR 029081.1)

100 Tepidibacter formicigenes strain 

DV1184 (NR 029081.1)

11 0.5%

Albidovulum 

xiamenense

0.4% Albidovulum xiamenense strain 

YBY-7 (NR 118031.1)

100 Albidovulum xiamenense strain 

YBY-7 (NR 118031.1)

1 0.0%

Xylella fastidiosa 0.4% Xylella fastidiosa strain PCE-FF 

(NR 041779.1)

100 Xylella fastidiosa strain PCE-FF 

(NR 041779.1)

17 0.7%

Lampropedia 

hyalina

0.4% Lampropedia hyalina strain IAM 

14890 (NR 040942.1)

97 incomplete WGS coverage of 

region

Lysobacter oryzae 0.3% Lysobacter oryzae strain YC6269 

(NR 044484.1)

100 Lysobacter oryzae strain YC6269 

(NR 044484.1)

16 0.7%

Anaerobranca 

californiensis

0.2% Anaerobranca zavarzinii strain 

JW/VK-KS5Y (NR 044155.1)

96 incomplete WGS coverage of 

region

Nonlabens 

dokdonensis

0.1% Nonlabens dokdonensis (NR 

102491.1)

50 incomplete WGS coverage of 

region

1

2
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Table 7(on next page)

Recall and precision statistics for the CAMI Low and Medium Complexity datasets
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CAMI Low Complexity CAMI Medium Complexity

Present in 

contigs

Present & 

fully covered 

by WGS reads

Top 99% by 

abundance

Present in 

contigs

Present & 

fully covered 

by WGS reads

Top 99% by 

abundance

#organisms 18 15 14 71 51 57

both (TP) 15 15 14 51 51 49

added(FP) 0 0 0 0 0 0

missing(FN) 3 0 0 20 0 8

Precision 100% 100% 100% 100% 100% 100%

Recall 83% 100% 100% 72% 100% 86%

1
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