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Abstract 37 

In recent years, several computational methods have been developed to predict protein-protein 38 
interactions (PPIs) at a genome-wide level. Between them phylogenetic profiling is routinely used to 39 
infer PPIs occurring within an organism. Recent improvements of the methods rely on the usage of 40 
large genomic datasets and on the distance correlation, a correlation-based measure, as novel measure 41 
of profile similarity. Here we adapted the robust improved phylogenetic profiling strategy to predict 42 
PPIs occurring between organisms. Specifically, we inferred PPIs occurring in the host-parasite system 43 
of Plasmodium falciparum, the deadliest human malaria parasite, and the human erythrocyte, in which 44 
the parasite performs an asexual reproduction and that is responsible of the greatest part of the 45 
parasitosis symptoms. By applying the method we could predict host-host, erythrocyte-erythrocyte and 46 
host-erythrocyte PPIs. As proof of principle, we demonstrated that the phylogenetic profiling can be 47 
extended to predict interactions that not necessarily are performed by proteins belonging to the same 48 
organism. 49 

Introduction  50 

Infectious diseases are responsible for roughly a third of annual deaths worldwide  and, although 51 
clinical research improvements, they remain a global health burden (WHO, 2016).  52 
Although in many cases drugs are available, the increasing emergence of pathogens resistant to drug 53 
treatments strongly requires to improve our understanding of the pathogen biology and in particular the 54 
key factors and processes that allow for disease establishment and progression (Powers, et al., 2018). 55 
Between all, malaria is one of the infectious diseases mostly present worldwide and represents a56
problem in endemic countries as much as a re-emerging priority in non-endemic countries (WHO, 57 
2017; Short, et al., 2017, Abbas, et al., 2018). Biological processes are driven by proteins that work in 58 
cooperation. For this reason, the understanding of a biological system requires a better knowledge of 59 
the interconnectivity between proteins in the different pathways and processes, which includes both 60 
physical and functional interactions. 61 
About infectious diseases the real challenge is to understand the complex interplay occurring at 62 
molecular level between a host and its pathogen. This means to dissect in-depth the infectious 63 
processes, included the virulence factors that the pathogen uses and the defensive mechanisms of the 64 
host.  65 
Despite of this, our understanding of genes and proteins involved in these inter-species interactions is 66 
still poor due to the technical limits and time consuming process that affect in wet approaches.   67 
Moreover, membrane-embedded receptor proteins, that have been demonstrated to have a central role 68 
in many biological processes and for this reason are suitable as both drug and vaccine targets, still 69 
remain technically challenging to be detected. Likewise, proteins involved in highly transient 70 
interactions remain unknown by classical biochemical approaches of purification that require long 71 
stringent washing steps (Wright, et al., 2010).                                                                                                                72 
To gain insight into the biology of an organism bypassing all technical limitations and looking genome-73 
wide, in silico strategies are considered alternative to classic in wet ones. In recent years, several 74 
computational methods have been developed to predict protein-protein interactions (PPIs) at a genome-75 
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wide level (Zahiri, et al., 2013). Phylogenetic profiling is one of the most common methods to infer 76 
PPIs from genomic data, the basic idea being that functionally related proteins are encoded by 77 
coevolving genes and hence they may be captured by the construction and comparison of their 78 
phylogenetic profiles (Pellegrini, et al., 1999). The original method has received several improvements 79 
and the best predictive performance of the correlation-based measures has been assessed (Date, et al., 80 
2003; Enault, et al., 2003; Glazko, et al., 204). Recently, the method was gained robustness by using a 81 
large genomic dataset and the distance correlation (Szekely, et al., 2007) as a novel measure of 82 
phylogenetic profile similarity (Sferra, et al., 2017). However, while the usage of phylogenetic 83 
profiling to predict PPIs occurring in a single organism is a customary procedure, few efforts have 84 
focused on the possibility to use it to predict PPIs across different organisms. Here we apply the 85 
phylogenetic profile strategy to predict PPIs for which the interacting partners belong to diverse 86 
organisms.  87 

Malaria lifecycle is characterized by a complex interplay between the parasite and various host cells 88 
which requires the co-ordinated interactions between proteins of the host and of the parasite (Gaur and 89 
Chirnis, 2011). A crucial step both for the parasite life cycle and for the parasitosis symptoms is 90 
performed at erythrocyte level where an asexual reproduction takes place. This step includes processes 91 
such as erythrocyte invasion and egress (Cowman & Crabb, 2006; Blackman, 2008). Due the centrality 92 
of the blood stages, antimalarial drug discovery and vaccine design have largely focused on compound 93 
against the erythrocytic cycle of the parasite (Guiguemde, et al., 2012) and a new strategy to identify 94 
antimalarial drug targets or vaccine candidate is to investigate PPIs (Pierrot, et al., 2012) taking place 95 
during these stages. 96 

As described above, here we extend the concept of phylogenetic profiling to predict PPIs from a single 97 
organisms to systems in which two or more organisms take part to. In detail, we apply an implemented 98 
phylogenetic profiling (Sferra, et al., 2017) to predict PPIs for which the interacting partners belong to 99 
a host and to a pathogen. Specifically, we apply the method to a host-parasite system that is P. 100 
falciparum, the deadliest human malaria parasite, with the human erythrocyte.   101 

Methods 102 

A total of 455 proteins identified by mass spectrometry from the human erythrocyte (Pasini, et al, 103 
2006) were considered and the related sequences were downloaded from NCBI (NCBI, 2016). P. 104 
falciparum sequences were downloaded from PlasmoDB (Aurrecoechea, et al., 2009) for a total of 105 
5554. 106 
The phylogenetic profiles of Plasmodium and erythrocyte proteins were derived performing an all vs. 107 
all alignment with the sequences of reference organisms. The organisms to be included in the reference 108 
set were selected as described by Sferra and colleagues (Sferra, et al., 2017) starting from the 1133 109 
organisms reported in eggNOG (Powell, et al., 2012). Basically, we excluded organisms classified as 110 
“peripheral” for which the genomes are not still completely validated, first eliminating strains of the 111 
same species and then eliminating eukaryotes with the same tag. By this procedure we obtained a large, 112 
non-redundant reference set made of 699 organisms. 113 
Every protein of interest was aligned with all the proteins of each reference organism using the Smith-114 
Watermann alignment algorithm (Smith T.F. & Waterman M.S., 1981). Only the best match was 115 
considered. 116 
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Phylogenetic profile was than constructed as array of probability values derived from the E-values 117 
obtained from each alignment according to P=-1/log10(E). For E-values lower than 10-1 the probability 118 
value was set to 0.  119 
A total of 6009 phylogenetic profiles were constructed. 120 
To score profile similarity and hence predict potential PPIs, we applied the distance correlation (dCor) 121 
proposed by Szekely and colleagues as an extension of the Pearson’s correlation able to measure any 122 
dependence between variables (Szekely, et al., 2007). In order to perform this calculation we exploited 123 
a novel R software (Sferra, et al., 2017). 124 
Additionally, we applied the calculation of the distance correlation to shuffled phylogenetic profiles as 125 
null hypothesis. 126 
In order to assess the predictive power of the method we derived a set of gold standards from KEGG 127 
database (Kanehisa & Goto, 2000) including, as True Positives (TPs), pairs of proteins belonging to the 128 
same pathway. The True Negatives (TNs) were derived from the TPs by a graph-based procedure 129 
(Sferra, et al., 2017). 130 
Phylogenetic profiles were assessed for their prediction accuracy by binning the data into 0.1 intervals 131 
and counting the TPs and TNs from each bin. 132 
A similar procedure was performed using gold standards related to interactions occurring between P. 133 
falciparum proteins and human ones (Wuchty,  2011).  134 

Results and Discussion 135 

Phylogenetic profiling is one of the computational method mostly used to predict PPIs. In this study we 136 
have extended the concept of phylogenetic profiling from the prediction of PPIs occurring only among 137 
the proteins of an organism, to the prediction of PPIs for which the interacting partners can or cannot 138 
belong to the same organism.  139 
Thus, to achieve the prediction of inter- and intra-species PPIs, we exploited a reassessed, robust, but 140 
computationally intense method of phylogenetic profiling. As proof of concept, we applied this strategy 141 
to a specific biological association, like a host-pathogen association, that is the host-parasite system of 142 
P. falciparum and the human erythrocyte.  143 
To verify that the predictive power of the method reflects a biological significance, we tested to get 144 
high correlations due to chance as null hypothesis (data not shown). 145 
A comprehensive analysis of the network was performed assessing its predictive performance by the 146 
comparison with gold standards (GS) derived from Wuchty and colleagues work (in the figure a 147 
s Area Under the ROC Curve, Wuchty,  2011). 148 
The results provide that our approach can be applied to infer inter- and intra-species PPIs occurring in 149 
the host-parasite system of P. falciparum and the human erythrocyte. We predicted Plasmodium-150 
Plasmodium, Plasmodium-erythrocyte and erythrocyte-erythrocyte PPIs.  151 
Moreover, taking advantage of the usage of only genomic data, a wide range of organism pairing 152 
systems such as host-parasite or host-pathogen systems or symbiotic or commensally relationships can 153 
be investigated by this method. This in silico strategy can highlight potential interactions and reduce 154 
time and money expenses. Furthermore, as it does not depend on the specific biology of the interacting 155 
organisms, like in the case of the erythrocyte for which transcriptomic-based PPI prediction are biased 156 
by the lack of transcriptional activity, find no obstacles to its application. 157 
 158 
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 233 

Figure 1: assessment of the results. Accuracy of the prediction was 
assessed by comparing the results of the phylogenetic profiling strategy 
with gold standards related to host-pathogen PPIs inferred by Wuchty. 
The blue line represents the data, while the pink dashed line represents 
a non-discriminatory test.  
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