

A peer-reviewed version of this preprint was published in PeerJ
on 8 July 2019.

View the peer-reviewed version (peerj.com/articles/cs-205), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kiefer C. 2019. Sample-level sound synthesis with recurrent neural
networks and conceptors. PeerJ Computer Science 5:e205
https://doi.org/10.7717/peerj-cs.205

https://doi.org/10.7717/peerj-cs.205
https://doi.org/10.7717/peerj-cs.205

Sample-level sound synthesis with recurrent neural networks

and conceptors

Chris Kiefer Corresp. 1

1 Experimental Music Technologies Lab, Department of Music, University of Sussex, Brighton, United Kingdom

Corresponding Author: Chris Kiefer

Email address: c.kiefer@sussex.ac.uk

Conceptors are a recent development in the field of reservoir computing; they can be used to influence

the dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on

training data. Conceptors allow interpolation and extrapolation between patterns, and also provide a

system of boolean logic for combining patterns together. Generation and manipulation of arbitrary

patterns using conceptors has significant potential as a sound synthesis method for applications in

computer music and procedural audio but has yet to be explored.

Two novel methods of sound synthesis based on conceptors are introduced. Conceptular Synthesis is

based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN,

then a runtime mechanism switches between them, generating short patterns which are recombined into

a longer sound. Conceptillators are trainable, pitch-controlled oscillators for harmonically rich waveforms,

commonly used in a variety of sound synthesis applications. Both systems can exploit conceptor pattern

morphing, boolean logic and manipulation of RNN dynamics, enabling new creative sonic possibilities.

Experiments reveal how RNN runtime parameters can be used for pitch-independent timestretching and

for precise frequency control of cyclic waveforms. They show how these techniques can create highly

malleable sound synthesis models, trainable using short sound samples. Limitations are revealed with

regards to reproduction quality, and pragmatic limitations are also shown, where exponential rises in

computation and memory requirements preclude the use of these models for training with longer sound

samples.

The techniques presented here represent an initial exploration of the sound synthesis potential of

conceptors; future possibilities and research questions are outlined, including possibilities in generative

sound.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

Sample-level sound synthesis with1

recurrent neural networks and conceptors2

Chris Kiefer1
3

1Experimental Music Technologies Lab, Department of Music, University of Sussex,4

Brighton, UK. BN1 9RG5

Corresponding author:6

Chris Kiefer1
7

Email address: c.kiefer@sussex.ac.uk8

ABSTRACT9

Conceptors are a recent development in the field of reservoir computing; they can be used to influence the

dynamics of recurrent neural networks (RNNs), enabling generation of arbitrary patterns based on training

data. Conceptors allow interpolation and extrapolation between patterns, and also provide a system of

boolean logic for combining patterns together. Generation and manipulation of arbitrary patterns using

conceptors has significant potential as a sound synthesis method for applications in computer music and

procedural audio but has yet to be explored.

10

11

12

13

14

15

Two novel methods of sound synthesis based on conceptors are introduced. Conceptular Synthesis is

based on granular synthesis; sets of conceptors are trained to recall varying patterns from a single RNN,

then a runtime mechanism switches between them, generating short patterns which are recombined into

a longer sound. Conceptillators are trainable, pitch-controlled oscillators for harmonically rich waveforms,

commonly used in a variety of sound synthesis applications. Both systems can exploit conceptor pattern

morphing, boolean logic and manipulation of RNN dynamics, enabling new creative sonic possibilities.

16

17

18

19

20

21

Experiments reveal how RNN runtime parameters can be used for pitch-independent timestretching and

for precise frequency control of cyclic waveforms. They show how these techniques can create highly

malleable sound synthesis models, trainable using short sound samples. Limitations are revealed with

regards to reproduction quality, and pragmatic limitations are also shown, where exponential rises in

computation and memory requirements preclude the use of these models for training with longer sound

samples.

22

23

24

25

26

27

The techniques presented here represent an initial exploration of the sound synthesis potential of

conceptors; future possibilities and research questions are outlined, including possibilities in generative

sound.

28

29

30

INTRODUCTION31

Machine Learning and Sound Synthesis32

Current intersections between sound synthesis and machine learning are evolving quickly. We have seen33

significant progress in symbolic note generation (e.g. RL Tuner (Jaques et al., 2016), Flow Machines34

(Ghedini et al., 2016)), parametric control of sound synthesis models (e.g Wekinator (Fiebrink, 2011),35

automatic VST programming (Yee-King et al., 2018)) and also with current state of the art raw audio36

generation techniques. These recent advances in raw audio synthesis principally use deep architectures,37

for example WaveNet (Oord et al., 2016), SampleRNN (Mehri et al., 2016), NSynth (Engel et al., 2017)38

and WaveGAN (Donahue et al., 2018), to generate low-level audio representations (sample or spectral39

level) without using a synthesis engine, working as self-contained models that merge sound generation40

and control into one.41

There is also significant interest from the computer music community in sound synthesis with42

dynamical and chaotic systems, with strong connections to RNN techniques being used in contemporary43

deep architectures. This goes back to the earlier work of composers such as Roland Kayn who composed44

with electronic cybernetic systems, and is reflected in more recent work from, for example, Sanfilippo and45

Valle (2013) on feedback systems, Ianigro and Bown (2018) on sound synthesis with continuous-time46

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

recurrent neural networks, Wyse (2018) on sound synthesis with RNNs and Mudd (2017) on nonlinear47

dynamical processes in musical tools.48

The work presented here draws on overlapping research in both machine learning and dynamical49

systems techniques, in the context of sound synthesis.50

Reservoir Computing51

While many contemporary developments in machine learning and sound synthesis are based on deep52

neural network paradigms, pioneering work has also been taking place within the bio-inspired field of53

reservoir computing (RC) (Schrauwen et al., 2007). Within the RC paradigm, computation is performed54

using a structure that groups an untrained reservoir with a fixed input layer and a trainable output layer.55

The reservoir is a complex dynamical system which is perturbed by input signals and transforms these56

signals into a high-dimensional state space, the current state being dependent on both the current input57

and on a fading history of previous inputs. The output layer performs a linear transformation of the58

current reservoir state, and can be trained using supervised methods. RC systems can learn nonlinear59

and temporal mappings between the input and output signals. A reservoir can be created using both60

physical systems (e.g bacteria (Jones et al., 2007), a bucket of water (Fernando and Sojakka, 2003) or61

optics (Duport et al., 2016)) and digital systems. The latter usually take the form of liquid-state machines62

(Maass et al., 2002) or echo state networks (ESNs) (Jaeger, 2001).63

Echo State Networks64

ESNs have so far been the primary technique employed for sound and music applications within the RC65

field. An ESN (see figure 1) uses a randomly generated recurrent neural network (RNN) as a reservoir.66

This reservoir is connected to inputs and output via single layers of weights. The output layer weights can67

be trained using linear optimisation algorithms such as ridge regression (Lukoševičius, 2012, p. 10).68

Figure 1. An example of an Echo State Network with ten sparsely connected nodes, single inputs and

outputs, and fully connected input and output layers

ESNs are inherently suited to audio applications due to their temporal dynamics. Jaeger’s original69

work with ESNs included examples of models being trained to output discrete-periodic sequences and70

learning to behave as sine wave oscillators (Jaeger, 2001). Subsequently, ESNs have been applied to71

a range of creative sound and music tasks. These include symbolic sound generation tasks such as72

melody generation (Jaeger and Eck, 2006) and generative human-feel drumming (Tidemann and Demiris,73

2008); direct audio manipulation and synthesis applications bear examples of amplifier modelling, audio74

prediction and polyphonic transcription (Holzmann, 2009b,a; Keuninckx et al., 2017); they have also75

been used for modelling complex mappings in interactive music systems (Kiefer, 2014).76

Under the classical ESN approach, as applied to the task of sound synthesis, ESNs are trained as77

audio rate pattern generators. A limitation of the classical ESN approach is that it is challenging to learn78

multiple attractors, corresponding to the generation of multiple patterns on different timescales with a79

single reservoir (Holzmann, 2009a). Holzmann proposed an extension to the ESN paradigm that helps80

to overcome these limitations by using specialised IIR filter neurons; these neurons tune areas of the81

2/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

reservoir to different frequencies, therefore decoupling sections of the reservoir and allowing multiple82

attractors to form. Results showed that filter neurons enabled an ESN to learn to reproduce waveforms83

built additively from inharmonic sine waves, a task that was not achievable with a standard ESN.84

A recent development of the ESN paradigm comes in the form of conceptors, an addition to the basic85

architecture of ESNs that allow the behaviour of the reservoir to be controlled.86

Conceptors87

Conceptors (Jaeger, 2014a), offer a highly flexible method for generating and manipulating multi-88

ple patterns within single reservoirs. Conceptors are a mechanism for performing a variety of neuro-89

computational functions, the ones most relevant to sound synthesis being incremental learning and90

generation of patterns, morphing and extrapolation of patterns, cued pattern recall, and the use of boolean91

logic to combine patterns (Jaeger, 2014a). They work by learning the subset of state space visited by92

an RNN when driven by a particular input. They can then be used to restrict the RNN to operate with93

this subspace, functioning like an attractor (Gast et al., 2017). The separation of an RNN’s state space94

in this manner allows multiple attractors to be learned using the same network, and for combinations95

of these subspaces to be used to manipulate the dynamics and output of the RNN. The potential for96

combination of conceptors is a very powerful feature of this technique, and Jaeger describes boolean logic97

rules for achieving this (Jaeger, 2014b, p.50). Their strong potential for pattern generation, extrapolation98

and manipulation, and the combination of continuous and discrete-boolean methods of manipulation are99

compelling reasons to believe they will have strong applications in the field of audio and creative sound100

production.101

New Sound Synthesis Methods102

Two new methods of conceptor-based sound synthesis are demonstrated. The first is conceptular synthesis.103

This is a synthesis method based on granular synthesis. Granular synthesis (Roads, 2004) is based on the104

sequencing, combination and manipulation of short (typically 20ms - 100ms) windowed segments (grains)105

of sampled sound. It is a powerful technique for creating and coherently manipulating sound; applications106

include time and pitch independent stretching of pre-recorded audio. In conceptular synthesis, an RNN107

model is trained to generate grains, which are recalled by conceptors. The second mode of synthesis is108

the conceptillator. This mode is based on the natural ability of conceptors to recall and manipulate cyclic109

waveforms, in order to learn RNN models of harmonically-rich oscillators; it explores further methods for110

sonic manipulation of these oscillators within the conceptor paradigm.111

In both of these methods, the use of conceptor based RNN models allows flexible sound manipulation112

through creative combinations of conceptors to influence reservoir behaviour. These two methods are113

described below. To begin with a mathematical description of the RNN and conceptor models common to114

both synthesis models is presented. This is followed by discussion of methodology, and accounts of the115

experiments that were carried out to develop these methods.116

BASIC MODELS117

This section summarises the fundamental methods used in the creation of the sound synthesis models118

described below. For a more detailed explanation of these methods, please refer to Jaeger’s extensive119

technical report on conceptors (Jaeger, 2014b).120

The basic model is an RNN consisting of N nodes, updated according to equations (1) - (3):121

xtarget(n+1) =Wx(n)+W ina(n+1) (1)

x(n+1) = ((12α)xtarget(n))+(αtanh(xtarget(n+1)+b)) (2)

y(n+1) =W outx(n+1) (3)

At discrete time step n, activation levels for each RNN node are stored in state vector x(n) of size N.122

The nodes are sparsely connected with a probability of 10.0/N in weight matrix W (of size N x N). An123

3/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

input signal vector a(n) (size 1) is fully connected to the neurons with the input weight matrix W in (size N124

x 1). W in is generated using linear random values between 21 and 1, and scaled using input scaling factor125

γ input . Reservoir weight values are randomly chosen from a normal distribution, scaled according to the126

spectral radius γW (to limit the maximum absolute eigenvalue), and then optimised during training. b is a127

vector of N biases, which are generated from a linear random distribution between 21 and 1, and scaled128

with bias scaling factor γbias. Output weights W out are a matrix of size 1 x N, whose values are optimised129

during training. The output vector y(n) is a vector of size 1. The tanh smoothing function ensures that the130

reservoir states remain in the range 21 to 1, and introduces a nonlinearity into each node. α is a leaky131

integration coefficient (Lukoševičius, 2012). This adds a one-pole lowpass filter to each node; lowering132

α (between 0 and 1) will slow down reservoir dynamics. This parameter can be fine-tuned to align the133

temporal dynamics of the reservoir to those of the desired output.134

A model is trained in two phases: (a) audio signals a j(n) are loaded into the model (see below), so135

that they can later be reproduced, (b) a conceptor is calculated for each audio signal. Following training,136

the model and conceptors are combined and manipulated to synthesise sound.137

Loading Patterns into the Model138

In this phase of training, a set of reservoir weights W 7 are adapted so that the model can reproduce139

a set of driving audio signals a, resulting in a new set of weights W . W is optimised such that (a)140

Wx j(n)jW 7x j(n)+W ina j(n), i.e. the reservoir can simulate the driving inputs in their absence, and (b)141

the magnitudes of weights W are minimised.142

The process works as follows: for each pattern a j(n), the reservoir with weights W 7 is driven from143

an initial randomised state for Lwashout +Ltrain steps using equations 1 and 2, and the resultant reservoir144

states are collected. The states x(n) from timesteps Lwashout 21 . . .Lwashout +Ltrain 21 are stored in N x145

Ltrain matrix, X̃ j; states x(n) from timesteps Lwashout . . .Lwashout +Ltrain are stored in N x Ltrain matrix,146

X j; states xtarget(n) from timesteps Lwashout . . .Lwashout +Ltrain are stored in N x Ltrain matrix, M j. The147

remaining timesteps are discarded, to remove the effects of the initial state on reservoir dynamics. The148

driving signals from steps from timesteps Lwashout . . .Lwashout +Ltrain are stored in 1 x Ltrain matrices P j.149

These collections are concatenated into matrices X̃ = [X̃1|X̃2| . . . X̃n], X = [X1|X2| . . .Xn], M =150

[M1|M2| . . .Mn] and P = [P1|P2| . . .Pn]151

W and W out can now be calculated using ridge regression:152

W = ((X̃ X̃ 2+ρ
W INxN)

21X̃M2)2 (4)

W out = ((XX 2+ρ
out INxN)

21XP2)2 (5)

In both of the above, I is an identity matrix and ρW and ρout are regularisation factors.153

Calculating Conceptors154

Conceptors can take several forms, the form used in this study is the alloconceptor (Jaeger, 2017, p18), a155

matrix conceptor that is calculated after patterns are loaded into the network, and inserted into the update156

loop of the network at runtime. To calculate a conceptor which will influence the RNN to reproduce audio157

signal a j(n), the reservoir state correlation matrix R is initially calculated:158

R =
X j(X j)2

Ltrain

(6)

The singular value decomposition (SVD) of R is found159

U jS j(U j)2 = R j (7)

S j is modified, and then used to calculate the conceptor C j:160

Snew = S j(S j +α
22INxN)

21 (8)

4/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

C j =U jSnew(U j)2 (9)

α is the aperture of the conceptor (Jaeger, 2014b, p35). The optimal value for α can be found161

programatically (see below).162

The new conceptor can now be inserted to the runtime loop of the RNN:163

z(n+1) = tanh(Wx(n)+b) (10)

x(n+1) =C jz(n+1) (11)

An optimal value for α corresponds to the minimum value of attenuation aC,α (Jaeger, 2014b, p47),164

which can be calculated as follows:165

aC,α =
E[||z(n)2 x(n)||2]

E[||z(n)||2]
(12)

when the network is updated using equations 10 and 11.166

The result of this training process is an RNN coupled with a set of conceptors; this model is referred167

to as a conceptor-controlled recurrent neural network (CCRNN).168

These basic methods are used in all the experiments below, and expanded on with new techniques that169

allow training and exploitation of the models for sounds synthesis.170

METHOD AND MATERIALS171

This project asks how the pattern generation ability of CCRNNs can be applied to field of sound synthesis.172

It aims to establish and evaluate the fundamental capabilities of CCRNNs to be trained to reproduce173

arbitrary audio signals, and to explore their creative affordances. Five experiments are presented, grouped174

into two categories; experiments 1 - 3 evaluate the potential of CCRRNs to resynthesise sampled sounds175

of increasing complexity, experiments 4 and 5 evaluate the use of CCRNNs as pitched oscillators for176

harmonically rich waveforms.177

In both categories, the ability of trained models to reconstruct the training signal is used as a measure178

of basic success in sound synthesis. Reconstruction ability is the core indication of sound synthesis179

quality, although this evaluation only tells part of the story, as the techniques outlined in this project180

are intended for open-ended use in creative sound synthesis applications. To this end, the project maps181

out key methods for parameterising and manipulating CCRNN sound synthesis models to create new182

sonic variations of the original training material. Both experiments establish the technical strengths and183

limitations of CCRNN sound synthesis, and identify open questions for future research in this area.184

In the experiments described below, there is some discussion of processing time to indicate the scale185

of computation involved with these techniques. The conceptular synthesis experiment was run on a laptop186

with a 2.5 GHz i7 CPU. The conceptillator experiments were run on an NVidia GTX 1080 Ti GPU using187

TensorFlow.188

Supplemental sound examples and figures are available at https://doi.org/10.25377/189

sussex.7321826. Python 3 source code in Jupyter notebooks for all experiments is provided at190

https://github.com/chriskiefer/conceptorSoundSynthesis.191

A working implementation of conceptular synthesis in the form of a drum synthesiser can be192

found at https://conceptular.luuma.net/ with source code at https://github.com/193

chriskiefer/conceptularBeatSynth.194

Error and Similarity195

Following from wider literature in reservoir computing, this project uses Normalised Root-Mean-Square196

Error (Lukoševičius, 2012, p2) (NRMSE) to measure similarity between time series; lower values197

indicating higher similarity. NRMSE does not reflect perceptual aspects of sound similarity; these are198

crucial to understanding the results therefore, where relevant, spectrograms are displayed for visual199

comparison, and audio is included in the dataset accompanying this paper.200

5/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

https://doi.org/10.25377/sussex.7321826
https://doi.org/10.25377/sussex.7321826
https://doi.org/10.25377/sussex.7321826
https://github.com/chriskiefer/conceptorSoundSynthesis
https://conceptular.luuma.net/
https://github.com/chriskiefer/conceptularBeatSynth
https://github.com/chriskiefer/conceptularBeatSynth
https://github.com/chriskiefer/conceptularBeatSynth

CONCEPTULAR SYNTHESIS201

Conceptular synthesis expands on an established method of sound synthesis, granular synthesis. The202

core concept behind granular synthesis is to break down a sound into small parts called grains, and then203

recombine these grains in different ways to produce new sounds. The theoretical roots of this method lie204

in Gabor’s (1947) theory of acoustic quanta, and in the compositional theory of Xenakis (1971). Digital205

implementations of the technique were developed by Roads (1978) and Truax (1986). Granular synthesis206

is a widely-used sound production method in contemporary electronic music, having been implemented in207

many established software systems. It offers methods for further sound manipulation techniques including208

timestretching (Truax, 1994) and corpus-based concatenative synthesis (Schwarz, 2006).209

The ability of CCRNNs to be trained to generate arbitrary sequences suggests that they could become210

powerful sound synthesis tools, as they can theoretically reproduce arbitrary waveforms. However they211

are pragmatically limited to playing relatively short sequences; the reason for this is that the computational212

complexity of the model increases exponentially with the number of nodes in the RNN, and the number213

of RNN nodes needed for regenerating a sequence increases with its length. However, if a model is214

trained to reproduce a set of shorter sound sequences, then granular synthesis techniques can be used215

to recombine these sequences to produce longer sounds. Conceptular synthesis therefore expands upon216

granular synthesis, by dynamically generating grains using conceptors rather than replaying grains from217

sound sample data. Grain patterns are loaded into an RNN, and conceptors force the RNN to replay218

specific grains. A granular synthesis-style control mechanism is used to switch conceptors so that the219

model generates a sequence of short patterns, which are combined into a longer waveform. Using dynamic220

models in this way instead of static patterns data the sonic potential of this synthesis method, as the model221

can be manipulated in addition to the recombination mechanism.222

Three experiments are described below, which resulted in the development of two variations of this223

synthesis technique.224

Experiment 1: Resynthesis of a Snare Drum225

The objective of this experiment was to subdivide an audio sample into a set of sub-sequences, and learn226

an RNN and set of conceptors that could regenerate these sub-sequences, with the intention of recreating227

the audio sample by recombining the model-generated sequences. A snare drum was chosen as a simple228

entry into exploring this new method of synthesis, using a short sound with a relatively simple envelope229

and harmonic structure. A method is presented below for resynthesising this sample using conceptors; this230

method was optimised by hand-tuning parameters. The key ways in which the method is parameterised231

are then discussed.232

Method233

The sound (see figure 2 and Audio S1) was re-sampled at 22050 Hz (half of CD-quality), in order to234

reduce the CPU load of training, and to reduce the pattern length that the networks would need to learn.235

0 500 1000 1500 2000 2500 3000
Time (samples)

20.6
20.4
20.2

0.0
0.2
0.4
0.6
0.8

A
m

pl
itu

de

Figure 2. The waveform of the snare drum sample used to train the model in experiment 1.

The sample was then divided into a set of equal length signals a, of length µ samples each.236

A model was trained to reproduce the set of signals a using the methods described above. The model237

parameters are shown in table 1.238

The first 100 audio signals in set a were used to calculate a model (see figure 3).239

The RNN is initialised randomly, resulting in variance in the quality of reservoirs which is reflected240

in the NRMSE between (a) the target reservoir states and their approximation using the learned weight241

matrix W (nrmseW) and (b) the target output states and their approximation calculated using the reservoir242

6/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

Table 1. Model parameters for experiment 1.

N γW γ input γbias α µ Lwashout Ltrain ρW ρout

900 1.5 1.2 0.5 0.99 15 4µ 4µ 0.0001 0.001

0 2 4 6 8 10 12 14
Time (samples)

20.6
20.4
20.2

0.0
0.2
0.4
0.6
0.8

A
m

pl
itu

de

Figure 3. The snare waveform was divided into 15-sample sequences, this diagram shows the first 50 of

them

and output later W out (nrmsereadout). When choosing a reservoir in the experiment, a brute-force search243

was used; 30 randomly generated reservoirs were trained, and the model with the lowest nrmsereadout of244

0.008 was chosen. A conceptor C j was calculated for each signal a j.245

To reconstruct the sample from the model, the RNN was initially run for Lwashout steps with the first246

conceptor C0. The model was then run with each conceptor C j inserted into the update loop, as described247

in equations 10 and 11, to create a set of output signals q, each of length µ . Finally, the signals were248

appended to create the waveform k = [q0|q1| . . . |qn].249

Results250

The reconstruction error for each individual conceptor C j was measured, for generating signal a j. Supple-251

mental figure S1 shows graphs of each result. The signals were reconstructed with a mean NRMSE of252

0.73 (min: 0.174, max: 1.363, distribution shown in figure 5).253

0 200 400 600 800 1000 1200 1400
Time (samples)

20.6

20.4

20.2

0.0

0.2

0.4

0.6

A
m

pl
itu

de

Figure 4. The waveform of the reconstructed snare drum, produced using conceptular synthesis with the

model trained in experiment 1.

Figure 4 shows the reconstructed sample, and figure 6 shows the reconstruction overlaid against the254

original. The sample can be heard in supplemental audio S2. The NRMSE error between these two255

samples was 1.15.256

In the rendering of the sample, the RNN activations x are initialised from a normal distribution. This257

causes subtle variations in each rendering; over 500 renderings, NRMSE errors varied between 1.148258

and 1.163, with a mean of 1.156. Much of the variance occurred at the start of the renderings, within259

the first 400 samples. The variations tend to follow an approximately similar form, most likely due to260

the conceptor restricting the behaviour of the RNN within bounds. This points to the potential use of261

CCRNNs as generators of constrained random variations of sounds, which is explored later in the paper.262

The spectra of the original and reconstructed samples are shown in figure 7. It can be seen that the263

resynthesis produces an approximation of the original sample. In the time domain, the waveforms follow264

a similar envelope, although the reconstruction is missing some high frequency detail. The spectrograms265

7/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0.2 0.4 0.6 0.8 1.0 1.2 1.4
NRMSE

0

2

4

6

8

10

12

%

Figure 5. Distribution of NRMSE reconstruction errors for the individual audio signals used to train the

model in experiment 1.

0 200 400 600 800 1000 1200 1400
Time (samples)

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

A
m

pl
itu

de

Reconstruction
Original

Figure 6. A waveform comparison of the original snare sample, and the sample produced by the trained

model.

show similar broad structure, although the reconstruction introduces artefacts, particularly in lower266

frequencies.267

Key Parameters268

There are two key parameters that affect the reconstruction quality: the model size N and the length269

of the signals into which the sample is divided, µ . Predictably, as N increases, so does the quality270

of reconstruction. This is supported by the broader literature on echo state networks, showing that N271

correlates with the memory capacity of the network, and the N should be at least equal to the number of272

independent variables needed for the task the model is being trained for (Jaeger, 2002). In this case, as we273

increase the number and size of patterns, we need to increase N.274

The other key parameter is the signal length µ . An investigation was carried out into the relationship be-275

tween these two parameters. Models were evaluated for all combinations of N *{200,400,600,800,1000}276

and µ * {5,15,25,35,45,55,65}. For each parameter combination, five models were trained and tested,277

and the number of signals was selected to total 1500 samples. Each model was scored on the average278

NMRSE error for reconstruction of each individual signal. Figure 8 shows the results, with the surface279

representing the average score for each parameter combination, and the red dots showing the actual280

scores. The graph demonstrates that the optimal value for µ was, in this case of this particular sample,281

15, with reconstruction error decreasing with larger values of N. It also reveals a smooth error surface,282

showing that the optimal value for reproducing a particular sample could be determined by gradient based283

optimisation rather than brute force search. Decreasing µ brings practical constraints; µ is inversely284

proportional to the number of patterns that the network must be trained to reproduce. For each pattern, an285

individual conceptor is needed, and large numbers of conceptors can put pressure on memory resources.286

For example, the resynthesis of the snare sample in this experiment with µ = 15 and N = 900 results in287

619 MB of conceptor data.288

A grain size of 15 samples is much smaller than in standard granular synthesis; at 22050Hz, 15289

samples represents 0.68ms, whereas granular synthesisers might use grains from 20-100ms (although290

there is no fixed rule for this).291

Extended Sound Synthesis Parameters292

The sound generation algorithm has three key parameters: speed, leak rate scale, and weight scaling.293

The speed parameter changes the amount of time in which the algorithm waits until a new conceptor294

is plugged in to the RNN update loop, therefore forcing it to generate a different pattern. For example,295

8/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0

64

128

256

512

1024

2048

4096

8192

H
z

Reconstruction

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

0

64

128

256

512

1024

2048

4096

8192

H
z

Original

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 7. A spectral comparison of the original snare sample, and the sample produced by the trained

model.

Figure 8. A comparison of NRMSE reconstruction errors between the original snare sample and the

output of trained models, while varying N and µ

9/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

a speed of 0.5 results in two cycles of a pattern being played for each conceptor C j and resulting in a296

rendered sample that is twice the length of the original. In the case of resynthesising this snare sample, a297

speed of 0.5 has the effect of pitching the sample down, and a speed of more than 1.0 pitches the sample298

up. At negative speeds, a sample can be crudely reversed by playing the patterns in reverse sequence. In299

the case of other models (see below), this parameter can have the effect of timestretching, i.e. extending300

or compressing the length of a sound, independent from its pitch.301

The leak rate α can be scaled during resynthesis, by updating equation 2 as follows:302

αscaled = α 7 scaleα

x(n+1) = ((12αscaled)x
target(n))+(αscaledtanh(xtarget(n+1)+b))

(13)

scaleα should be limited such that α stays between 0 and 1. In the case of this snare sample, reducing303

α removed high frequencies from the rendered samples. In other models (again, see below), changing α304

can have the effect of changing the pitch of the output.305

The weight scaling scaleW parameter is a multiplier for the RNN weight matrix W ; this causes tonal306

changes in the rendered sample whose characteristics are based on the random make up of the RNN.307

There is some consistency in this parameter in that when raised, more high frequency content tends to308

be introduced. At higher values, the RNN can behave in musically interesting non-linear ways. Below a309

lower limit (model dependent), the model tends towards silence.310

Further manipulations of sound can be achieved by manipulating conceptors.311

Extending Sound Synthesis with Conceptor Logic312

The use of conceptor logic and conceptor manipulation is where this mode of sound synthesis significantly313

moves on from standard granular synthesis features, and brings its own unique possibilities. New314

conceptors can be meaningfully created using boolean logic rules; Jaeger (2014b, p.52) defines formulae315

for AND, OR and NOT operations. Boolean operations with conceptors can be used to logically control316

RNNs, with applications in classification and memory management. In the case of conceptular synthesis,317

logic operations provide a wide range of creative possibilities. Conceptors can be logically recombined to318

create new tonal variations. Two examples are now given:319

Example 1320

Each conceptor in the snare model C j is combined with the next three conceptors to make a new set C2,321

using the rule C
j
2 =C j *C j+1 *C j+2 *C j+3 This results in a variant on the original snare sound shown in322

figure 9.323

0 200 400 600 800 1000 1200 1400
Time (samples)

0.4

0.2

0.0

0.2

A
m

pl
itu

de

Figure 9. The waveform of a variant of the snare sample, produced using boolean logic

C
j
2 =C j *C j+1 *C j+2 *C j+3

Example 2324

A new set of conceptors C3 is made by combining each conceptor in the set with a random choice of325

two other conceptors in the set C
j
3 = C j *Crandom1 *Crandom2. This is designed with the intention of326

keeping the main structure of the sample but introducing random variations. Figure 10 shows the resulting327

waveforms from 4 iterations of the process.328

In both these examples, the variations are subtle, and the renderings suffer from some artefacts,329

however this does point to generative possibilities that are worthy of further research.330

10/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0 200 400 600 800 1000 1200 1400
Time (samples)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

A
m

pl
itu

de

Figure 10. Waveforms showing generative variants of the snare sample, using the boolean logic rule

C
j
3 =C j *Crandom1 *Crandom2

Sound Morphing with Interpolated Conceptors331

Jaeger (2014b, p.42) demonstrated shape morphing between heterogeneous patterns using conceptors.332

This same technique can be applied within conceptular synthesis to morph between sounds. Morphing can333

be implemented by creating a linear combination of conceptors to interpolate between the two patterns334

the conceptors were trained to recreate. Equation 14 shows how this can be done with two conceptors,335

where µ is the morphing factor. Varying µ between 0 and 1 forces the RNN to create a morph between336

the patterns represented by the two conceptors. When 0 f µ f1, the mix of conceptors will interpolate337

between patterns. However, when µ is outside of this range, the mix of conceptors will extrapolate338

between patterns.339

x(n+1) = ((12µ)Ci +µC j)tanh(Wx(n)+b) (14)

The intention of morphing between sounds is to create a new mixture of sounds that retains the340

shared perceptual properties of the original sources (Slaney et al., 1996). Morphing was investigated341

with conceptular synthesis by training an RNN and conceptors to recreate patterns from two different342

samples: the snare sample already discussed, and a short bongo sample. An 800-node network was343

trained, with an average NRMSE of 0.7685 for recreation of 100 individual patterns (length 15) for each344

sample, resulting in two sets of conceptors, Csnare and Cbongo. Morphing was achieved by creating a new345

set of conceptors based on a linear mixture of the trained conceptors, for each pattern segment. The346

results demonstrate a morph between samples that is noticeably different from a linear mixture of the347

two samples. Supplemental figure S2 shows how the time-domain waveform result varies over an 11348

point morph from µ = 0 to µ = 1, and the result can be heard in supplemental audio S3. For comparison,349

supplemental figure S3 and audio S4 show a linear mix between the same two samples.350

Boolean conceptor logic can also be used for sound morphing. For example, a set of conceptors351

CbongoSnare was created, with each element combining elements from the snare and the bongo C
j
bongoSnare =352

C
j
bongo *C

j
snare. A sample rendered with this conceptor set contains characteristics of both sounds.353

Discussion354

This first experiment demonstrates how CCRNNs can be used to resynthesise short samples by dividing355

the sample up into short signals and training a conceptor for the reproduction of each one. The trained356

model offers malleable sound synthesis possibilities when manipulated using inherent runtime parameters357

and through conceptor combinations created either by mixing or by boolean logic. The models created in358

the experiment could not perfectly reproduce the training samples, but were able to make recognisable359

reconstructions. There is a variability between models, due to random initialisation of the RNN. This360

variability is minimised when using the network within normal constraints, however when pushed into361

non-linear modes of behaviour by, for example, changing the value of scaleW , a higher variability between362

different CCRNNs can be observed. This behaviour for a particular network may turn out to be musically363

interesting, lending conceptular synthesis potential for serendipitous discovery of new sounds, and a level364

of generative unpredictability that is often valued by musicians (McCormack et al., 2009).365

Conceptor logic offers a system to create new conceptors that produce coherent variations of the366

sounds the model was trained to reproduce. These offer a powerful and open system for sound design.367

An audio synthesis process would ideally run in realtime so that musicians can interact with it through368

musical controllers and use it in musical performance. In this example, the rendering speed was around369

11/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

28 times slower than realtime, using a modern CPU. While this is far behind realtime, it should be noted370

that this version was not optimised for speed, and a dedicated C++ or GPU renderer is expected to be371

faster than the python version used here. It does however show the scale of computation involved in this372

method of sound synthesis, and indicates that computational resources are a challenge in this area.373

Experiment 2: Resynthesis of a Kick Drum374

This experiment explored conceptular synthesis further, using a sample with different characteristics from375

the snare in experiment 1. A kick drum sample was used (see figure 11 and supplemental audio S5). It can376

be seen that the sample has an initial high frequency component, followed by oscillations that gradually377

decrease in frequency and amplitude.

0 2000 4000 6000 8000
Time (samples)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m

pl
itu

de

Figure 11. The waveform of the kick drum sample used in experiment 2

378

Failure with constant µ379

The first attempt at resynthesis used the same method as in experiment one, slicing the original sample380

into equal sized sections and training a conceptor for each of these sections. This method proved to be381

unsuccessful at resynthesising the kick drum. Attempts at hand tuning the slice length µ and leak rate α382

all resulted in unwanted distortion. Small values of µ resulted in training set of patterns that were much383

smaller than the wavelengths in the original sample, each containing small and very slowly varying values.384

The network failed to learn these low frequencies. A very slightly better approach was to use a large value385

of µ that could capture whole cycles of oscillation. Figure 12 shows an example result from this approach,386

with µ = 200 and α = 0.3 (see also supplemental audio S6). Some segments of the reconstruction are387

successful, however the quality degrades as the wavelength in the original sample increases and there are388

significant artefacts presents.389

0 500 1000 1500 2000 2500 3000
Time (samples)

2

1

0

1

2

A
m

pl
itu

de

Figure 12. A comparison of the original kick drum sample and the results of resynthesis using a model

trained with the methods established in experiment 1. This method produced many unwanted artefacts.

Given that this negative result was clearly caused by using a fixed size for segmenting the audio390

sample, a new method of pattern segmentation with variable lengths was investigated.391

Method392

A detector was used to locate zero-crossing points in the kick drum sample, resulting in a set of points i at393

which the sample was sliced to create a set of driving audio signals a (see figure 13).394

i = {n|y(n)> 0' y(n+1)< 0} (15)

12/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

This simple approach to segmentation worked well for this particular sample but may not generalise395

to samples with higher harmonic complexity.396

0 100 200 300 400
Time (samples)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

Am
pl

itu
de

Figure 13. Driving audio signals from the kick drum sample, segmented at zero-crossing points instead

of using a constant value of µ

This set of patterns was used to train a new model, with the parameters as shown in table 2, which397

were manually optimised.398

Table 2. Parameters used for training the model in experiment 2

N γW γ input γbias α Lwashout Ltrain ρW ρout

900 1.5 1 0.5 0.25 2µ 2µ 0.0001 0.0001

For playback, the conceptular synthesis algorithm was altered in two ways. Firstly, the facility was399

added to play back patterns of varying length. Secondly, the algorithm was modified to linearly crossfade400

between conceptors, over a percentage of the pattern length.401

Results402

The trained model reconstructed individual driving audio signals with a mean NRMSE of 0.091 (see403

supplemental figure S4 for reconstruction plots of each pattern). The kick drum sample was resynthesised404

using the conceptular synthesis algorithm, with the crossfade length set at 5% of signal length. The result405

is shown in figures 14 and 15, and included in supplemental audio S7. Both show a close reconstruction406

of the original, with the addition of some small, high frequency artefacts.407

0 2000 4000 6000 8000
Time (samples)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6

A
m

pl
itu

de

Reconstruction
Original

Figure 14. A comparison of the original kick drum sample and the output of the trained model in

experiment 2.

The model responds well to the extended sound synthesis manipulations described earlier. Supple-408

mental audio S8 presents an example of timestretching from 50% up to 800% in 50% steps.409

Analysis410

The experiment began with a failure of constant pattern sizes, and found success by segmenting variable411

length patterns using a simple zero-crossing detection algorithm. The original methods of cutting412

patterns at points based on position but with arbitrary amplitudes introduced high-frequency artefacts413

that negatively impacted the training of the model. By removing these artefacts with segmentation at414

zero-crossing points, the model could be trained to reproduce patterns that matched its broader dynamics,415

which were slowed down with a low α value. The result delivered clean resynthesis of the original sample416

13/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0

64

128

256

512

1024

2048

4096

8192

H
z

Reconstruction

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

0

64

128

256

512

1024

2048

4096

8192

H
z

Original

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 15. Spectrograms comparing the resynthesised kick drum to the original sample in experiment 2.

and reasonable quality timestretching. This new approach was needed because of the low-frequency417

characteristics of the source sample, and probably worked well due to the relatively simple structure of418

the waveform. The next experiment tests these approaches on a more complex sound.419

Experiment 3: Vocal Sound420

The first two experiments attempted to reproduce shorts sounds with fairly simple structures. This next421

experiment attempts a more challenging resynthesis, of the complexity of the human voice. The source422

sample is a recording of someone saying the word ‘two’ (supplemental audio S9, Heston (2013)). This423

was chosen as it has a complex spectral variation over a short time period.424

Method425

Phase 1 An initial approach was to repeat exactly the same settings from experiment two, and to slice426

the sample according to the same zero-crossing algorithm. The only difference was to use α = 0.92,427

which was an optimal value determined through manual experimentation. Segmentation resulted in 197428

driving audio signals, and conceptors were calculated to reproduce each one.429

Phase 2 To refine the initial approach, a subset of the source sample was resynthesised - the ‘oo’ sound430

of ‘two’, described by 70 driving audio signals. To increase the resynthesis quality, the model size was set431

to N = 1400. This was the maximum model size possible given the computing resources available.432

In both phases, sound were resynthesised with a 5% crossfade between conceptors.433

Results434

0 2000 4000 6000 8000 10000
Time (samples)

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75

A
m

pl
itu

de

Reconstruction
Original

Figure 16. A comparison of waveforms: the original ’two’ sample and the resynthesised version from

the model trained in experiment 3.

14/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0

64

128

256

512

1024

2048

4096

8192

H
z

Reconstruction

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

0

64

128

256

512

1024

2048

4096

8192

H
z

Original

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 17. Spectrograms comparing the resynthesised ’two’ to the original sample in phase 1 of

experiment 3.

Phase 1 Figure 16 shows the resynthesis results in the time domain, and figure 17 shows the spectro-435

grams. The mean NRMSE for reconstructed driving audio signals was 3.31. This phase of the experiment436

delivered a poor reconstruction. Subjectively, the word ‘two’ can be heard within the resulting sound (see437

supplemental audio S10), but it is significantly masked by artefacts and distortion. This is reflected in the438

spectra and waveforms, where it can be seen that some elements correspond, but there are also significant439

deviations from the original.440

0 1000 2000 3000 4000
Time (samples)

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

A
m

pl
itu

de

Reconstruction
Original

Figure 18. Waveform comparison of the reconstructed ’oo’ and the original ’oo’, in phase 2 of

experiment 3.

Phase 2 The time domain and spectral comparisons are shown in figures 18 and 19. The driving audio441

signals were reconstructed with an average NRMSE of 0.3. The resynthesis (Supplemental Audio S11),442

subjectively, sounds close to the original, with a NRMSE of 1.38.443

Discussion444

Phase 1 delivered a poor result, yet one that also offered some limited success in that some of the aspects445

of the source sound were resynthesised; the ‘two’ can be heard, albeit a highly distorted version, and the446

broad structure of the sound is followed. The low quality of this result was quite possibly due to the hard447

task imposed on a reservoir to learn so many varying patterns compared to the reservoir size. There may448

also be a tension in setting an α value that will allow a network to reproduce wide variations of frequency.449

Because of these possibilities, phase 2 narrowed the memory requirements of the network by focusing on450

a shorter section, and narrowed the variation requirements by focusing on a single phoneme. The network451

size N was also raised to provide more capacity to resynthesise the complex sonic variation.452

The results of phase two are intriguing; the individual reconstruction of driving audio signals is453

extremely close to the original, but there remain some differences in the resynthesis. In figure 18, the454

15/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0

64

128

256

512

1024

2048

4096

8192

H
z

Reconstruction

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

0

64

128

256

512

1024

2048

4096

8192

H
z

Original

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 19. Spectrograms comparing the resynthesised ’oo’ to the original sample, in phase 2 of

experiment 3.

resynthesised waveform begins very close to, although slightly out of phase with the original sound. It455

then starts to deviate before returning to a close match to the original. The deviation happens when the456

driving audio signals begin to alternate between two frequencies. Speculatively this may again be due to457

difficulties in finding an α value to suit all driving signals. At this stage it’s difficult to determine whether458

the resynthesis quality is linked to inherent issues with the model, or whether it could be improved with459

model size.460

CONCEPTILLATORS461

Initial experiments showed how CCRNNs can reproduce arbitrary waveforms for granular inspired sound462

synthesis. Within this process, they can act as trainable oscillators for arbitrary waveforms; the network463

will continue to loop a pattern until the conceptor is changed. This next experiment explores this oscillatory464

behaviour further, focusing on the potential for these networks to function as pitched oscillators, typically465

used for subtractive synthesis (Alles, 1980), a very common method of sound synthesis. This method466

uses one or more harmonically rich oscillators as sound sources, whose parameters are controlled by467

other signal generators, and which are sculpted and manipulated with signal processors such as envelope468

controlled filters and amplifiers.469

In order to use CCRNNs as oscillators for subtractive synthesis, two additional demands must be470

imposed on them; firstly that they can reproduce harmonically rich waveforms, and secondly, that their471

pitch can be controlled in a reliable and precise way. To test these demands, a set of samples was selected472

from a typical oscillator used for subtractive synthesis (an analogue Doepfer A110 Voltage Controlled473

Oscillator (Mess, 2017)) and these samples were used to train CCRNN models.474

These experiments were conducted with an 8000 Hz sample rate, to reduce the memory demands on475

the network, and to reduce rendering time for longer sequences.476

Experiment 4: A Pitched Square Wave Oscillator477

A model was trained (using the parameters in table 3) to reproduce a square wave, which is a standard478

oscillator waveform for subtractive synthesis. A sample at pitch C2 (65Hz) was chosen, resulting in a479

training pattern that was 123 samples long. As can be seen in figure 21, the oscillator is not a perfect480

square wave, although it is typical of the waveforms generated by analogue synthesisers.481

Figure 21 shows the trained model’s reproduction contrasted with the original sample, the square wave482

is reproduced with an NRMSE of 0.094. A spectral comparison is shown in figure 20. The reconstruction,483

16/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0

64

128

256

512

1024

2048

Hz
Reconstruction

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

0

64

128

256

512

1024

2048

Hz

Original

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 20. A spectral comparison of a 65Hz square wave, and the model’s reconstruction in experiment

4.

Table 3. Model parameters for training a model to reproduce an analog oscillator waveform in

experiment 4.

N γW γ input γbias α Lwashout Ltrain ρW ρout

800 1.5 1 0.5 0.5 4µ 8µ 0.001 0.001

17/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

as in other experiments, loses some high frequency detail, and adds in small artefacts. The oscillator was484

resynthesised as described in equations 10 and 11.485

The reproduction can be heard in supplemental audio S12. These results show that the network is486

capable of modelling this richly harmonic waveform to a high degree of accuracy. Having established487

this first requirement, we need to ask if the network can be pitch controlled with good accuracy. Earlier488

experiments revealed that the leak rate α has an effect on pitch.489

0 25 50 75 100 125 150 175 200
Time (samples)

0.2

0.1

0.0

0.1

0.2
Am

pl
itu

de

Reconstruction
Original

Figure 21. A 65Hz square wave sample from the Doepfer A110 and the model’s reconstruction, in

experiment 4.)

To investigate this further, a leak rate scaling parameter (scaleα) was used during resynthesis. This490

was increased linearly from 0 to 2 over 120000 samples, the resulting audio can be seen in the spectrogram491

in figure 22 and heard in supplemental audio S13. As scaleα rises from 0 to 1.0, the pitch seems also492

to rise in a linear manner and consistent tone. From this point, some high-frequency artefacts begin to493

appear, and when scaleα reaches approiximately 1.3, we see the network adopt a radically different mode494

of behaviour. Experiments with different randomly-initialised networks showed this type of behaviour to495

be characteristic: pitch rises linearly when scaleα < 1.0, and then transitions to a non-linear response for496

higher values.497

0

64

128

256

512

1024

2048

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 22. A spectrogram showing the output of a model trained to reproduce an analogue square wave

oscillator, while moving scaleα linearly from 0 - 2.

The relationship between scaleα and the resultant audio pitch was verified using pitch analysis of this498

audio. A zero-crossing pitch detector (as in equation 15) was used to analyse the audio, with the results499

(see figure 23) revealing a linear relationship500

f requency = f requencyoriginal 7 scaleα (16)

where f requencyoriginal is the frequency of the training pattern, in this case 65Hz.501

Given this linear relationship between oscillator frequency and scaleα , we can calculate values of502

scaleα that correspond to musical pitches using the standard method for converting linear pitch values to503

frequencies (Collins, 2010, p. 279). For example, if we use a 12 semitone scale, the equation504

scaleα = 2
n

12 (17)

tells us the value of scaleα for note n, relative to the original oscillator frequency.505

18/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

0 10000 20000 30000 40000 50000 60000
Time (samples)

0
10
20
30
40
50
60

Fr
eq

ue
nc

y
(H

z)

Figure 23. Pitch analysis of synthesised audio from a square wave oscillator model in experiment 4,

when raising scaleα from 0 - 1

This was tested with a toy musical example, controlling the oscillator to reproduce a melody. Given506

that the network worked best when lowering its frequency with scaleα , giving a usable range of notes507

below C2, a bassline was chosen, taken from Interface by Prince Jammy (Computerised Dub, Prince508

Jammy (1986)). The transcribed pitches were converted into values of scaleα as shown in figure 24.509

When controlled in this way, the network successfully reproduced the melody. The results can be heard in510

supplemental audio S14. The changes in tone through this audio file are caused by variation in Wscaling.511

0 20000 40000 60000 80000 100000
Time (samples)

0.0

0.2

0.4

0.6

0.8

sc
al
e

Figure 24. Control values of scaleα needed to reproduce the note sequence in the bassline for Interface

by Prince Jammy

Experiment 5: Tonal Variation in Oscillators512

Experiment 4 established that CCRNNs can be trained with harmonically rich waveforms, and accurately513

pitch controlled using the leak rate α . This final experiment explored oscillators further, looking at tonal514

variation. Earlier experiments with conceptular synthesis demonstrated how CCRNNs can morph between515

sounds by controlling the RNN using linear mixes of conceptors. This experiment shows how a network516

can be trained with several waveforms, and then control signals can be used during synthesis to control517

the mixing levels of conceptors and morph between these waveforms.518

A network was trained with three waveforms: a saw wave which was also sampled from the Doepfer519

A110, the square wave used in the previous experiment, and a computationally generated sine wave, all at520

pitch C2 (65Hz). After training, the network successfully reproduced these waveforms with NRMSEs of521

0.012, 0.161 and 0.004 respectively.522

Table 4. Model parameters for training an oscillator with mixed waveforms in experiment 5.

N γW γ input γbias α Lwashout Ltrain ρW ρout

1200 1.5 1 0.5 0.4 4µ 8µ 0.0001 0.0001

The network was trained using the parameters in table 4. Note that a higher N was used, anticipating523

the additional memory capacity for extra waveforms.524

The sound synthesis process had 5 parameters: 3 parameters describing the amount of each conceptor525

(saw, square, sine) to use, scaleW and scaleα . Figure 25 shows a set of control sequences amounting to a526

musical score. scaleα is used to create an arpeggiator-like sequence of pitches, continually repeating 3527

19/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

notes. scaleW is used to create an enveloping effect to delineate notes. It begins with a sharp attack, and528

moves into a slow attack midway through the sequence. The depth and offset of this variable changes529

across the sequence, which has the effect of changing high-frequency tonality. Throughout the sequence,530

the mix parameters for the three conceptors are modulated. It was found that if the mix of conceptors did531

not add up to 1.0, then the output would become very unpredictable or silent. The audio output can be532

heard in Supplemental Audio S15, and the spectrogram of the output is shown in figure 26.533

0 50000 100000 150000 200000 250000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Square
Tri
Sine
Weight Scaling
Leak Rate Scaling

Figure 25. Control sequences used to produce an arpeggiated sequence in experiment 5, for tonal and

melodic control.

Figure 26. A spectrogram of the output of the mixed waveform model in experiment 5, when controlled

used the tonal variation and arpeggiated sequences in figure 25.

Discussion534

Experiments 4 and 5 show how a CCRNN can be used as an oscillator for sound synthesis, and how the535

inherent dynamics of network can be manipulated to create melodic and tonal variations. Pitch can be536

controlled accurately using the scaleα parameter, which creates coherent pitch changes at frequencies537

lower than that of the original sample(s) used to train the network. This has some advantages in538

computational efficiency as we can use a smaller training sample and therefore a smaller network to create539

lower pitches. This does come at a cost, however, of loss of quality in waveform shape compared to the540

original; this can be seen in figure 27 which shows a square wave pitched down to 1 and two octaves below541

the original pitch using scaleα values of 0.5 and 0.25. The lower frequency waveforms progressively542

lose the detail present in the original. This method of controlling audio oscillators may be comparable to543

20/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

using interpolated wavetables (Bristow-Johnson, 1996), which will also lose quality when pitched down544

from the original sample. A full comparison between these methods is beyond the scope of this paper.545

CCRNNs however give us the additional advantages of combining sounds with conceptor logic, morphing546

between sounds in coherent ways, and the potential of sonically serendipitous behaviours when driving547

the network into non-linear behaviours, for example by raising scaleW or scaleα above 1.0. To prevent548

artefacts from pitch changes, a more detailed system could use a set of models trained with samples at549

different frequencies, and switch between these models to obtain the highest possible quality rendering550

for a particular frequency.551

0 100 200 300 400 500
Time (samples)

0.3
0.2
0.1
0.0
0.1
0.2

Am
pl

itu
de Original Pitch

Original Pitch * 0.5
Original Pitch * 0.25

Figure 27. A synthesised square wave at the original pitch, and pitched down by 1 and 2 octaves.

Experiments 4 and 5 were run on a GPU using Tensorflow, and the audio in experiment 5 was rendered552

at approximately six times slower than realtime. This performance could be improved with optimisation,553

but it still limits this method of sound synthesis to offline for the near-future.554

CONCLUSIONS AND FUTURE WORK555

The experiments presented here show how recurrent neural networks under conceptor control, as originally556

described in (Jaeger, 2014b), can be configured, trained and run as sample-level sound synthesisers. Two557

methods of sound synthesis have been demonstrated. The first technique, conceptular synthesis, is an558

extension of granular synthesis, where a CCRNN is trained to reproduce very short segments of a sound559

sample using conceptors to recall the different patterns. It is controlled at runtime to recombine these short560

segments into a longer continuous sound. Experiments 1-3 demonstrate how it can be used to resynthesise561

variations of the sound sample it was originally trained on, and also used for pitch-independent time-562

stretching. This technique was reasonably successful at resynthesising arbitrary short sound samples,563

as measured by the ability of the model to reproduce the original sample. Of the four sounds where564

resynthesis was attempted, the technique was least successful at reproducing a complex vocal sound,565

but made better resynthesised versions of less complex percussive sounds. Experiments demonstrated566

optimal segment sizes to increase resynthesis quality, and also showed how using variable sized grains by567

segmenting at zero-crossings could improve the models.568

The models were not limited to straight-forward sound reproduction; the flexibility of CCRNNs569

presented a large variety of creative options for synthesising new sounds based on the training sample(s).570

Techniques included classic granular synthesis methods for recombining segments in varied ways, and571

were extended by the new possibilities of combining conceptors, using boolean conceptor logic, and using572

linear combinations of conceptors to morph between patterns. The leak rate of RNN nodes and the RNN573

spectral radius can be manipulated at runtime to create new sonic possibilities.574

The second method of sounds synthesis was the conceptillator. Experiments 4 and 5 demonstrated575

that CCRNNs can be trained and exploited as accurately pitch-controlled oscillators for harmonically rich576

waveforms, as typically used in subtractive synthesis. The use of conceptor combinations and CCRNN577

runtime parameters extends the potential of these models, to create new sonic variations based on the578

original training samples.579

The experiments outlined common limitations between these two sound synthesis techniques. There580

was always some high-frequency loss in the reproduction of the original driving audio signals, some581

further experimentation is needed to discover the source of this issue. Issues with high frequencies are582

affected by the choice of leak rate α , which needs to be chosen carefully to slow down RNN dynamics583

for reproduction of low frequency patterns, while also preserving enough high-frequency dynamics. It’s584

21/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

possible that oversampling may help, although the efficiency impact of oversampling could be significant585

considering the computational cost of training and running these models.586

The synthesis techniques both required large models (of approximately 800 nodes upwards) to produce587

reasonable results, resulting in slow resynthesis times. The large size of these models was required for588

them to be able to learn either long patterns or high volumes or short patterns. Neither technique was fast589

enough to run in realtime, with conceptular synthesis running at around 28 times slower than realtime590

on a modern laptop CPU and conceptillators running at around six times slower than realtime on a591

contemporary GPU. The memory requirements for conceptular synthesis were particularly large, as a592

conceptor was needed to reproduce each training pattern, resulting in model sizes between 0.5 and 1 GB593

in the experiments above. These computation requirements still may be considered lightweight compared594

to some deep learning sound-synthesis techniques, nevertheless it would be a considerable success if595

these models could be optimised to reach realtime at reasonable sample rates. The GPU model is getting596

close, so there is some hope of achieving this. Recent research into deep architectures in echo state597

networks may offer promise for increasing computational efficiency, as they have been shown to have598

better memory capacity compared to classical ESNs with similar numbers of nodes (Gallicchio et al.,599

2018). More broadly, the exponential relationship between memory capacity and computation time will600

be a limit on sound synthesis with CCRNNS and their potential to move beyond short sound samples,601

until methods are found to change architectures and reduce this dependency.602

This initial demonstration of the potential of sound synthesis with CCRNNs stimulates further603

questions. Future research should establish:604

1. how these techniques can be scaled upwards to facilitate learning models of longer sound samples605

2. whether high-frequency loss in resynthesis can be resolved606

3. how to optimise the RNN leak rate α for sounds with wide frequency ranges607

4. how the techniques identified in this paper can be extended for the purpose of generative sound608

generation. Experiment 1 hinted at generative possibilities, when coherent variations of patterns609

were produced by starting the RNN from different random states. These variations were small,610

and it would be extremely interesting to explore this potential further to see if the variations could611

be significantly broadened while maintaining coherence, as with generative adversarial networks612

(Donahue et al., 2018) and autoencoders (Engel et al., 2017).613

5. how to optimise the network architecture to achieve realtime performance614

Conceptually, CCRNN architectures are creatively compelling for computer musicians; it can be615

challenging to introduce believable and coherent complexity into the outputs of commonly used linear616

sound generation and editing tools; a common criticism of digital sound synthesis is that it can sound617

cold and clinical and can lack an organic or real feel. With CCRNNs and related dynamical techniques,618

complexity comes for free (indeed CCRNNs and ESNs work best at the edge of chaos) and needs to619

be managed instead of created. The models presented here are inherently variable, and can be easily620

encouraged towards unpredictability and nonlinearity, creating sometimes surprising and serendipitous621

results. The musician must interact with these models, rather than control them. This is reminiscent622

of working with analogue circuitry, which can have a ‘life of its own’, and can also feel organic and623

unpredictable in musically interesting ways.624

The experiments presented here have mapped out initial explorations into sound synthesis with625

CCRNNs. They extend classical sound synthesis methods, bringing boolean logic, pattern morphing and626

non-linear modulation possibilities into granular and subtractive synthesis. The techniques exhibit some627

limitations that need more investigation, but also show unique creative possibilities for musicians, and628

rich potential for further research in this area.629

ACKNOWLEDGMENTS630

Thank you to Sussex Humanities Lab for generous access of their computing facilities631

22/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

REFERENCES632

Alles, H. G. (1980). Music synthesis using real time digital techniques. Proceedings of the IEEE,633

68(4):436–449.634

Bristow-Johnson, R. (1996). Wavetable synthesis 101, a fundamental perspective. In Audio Engineering635

Society Convention 101. Audio Engineering Society.636

Collins, N. (2010). Introduction to computer music. John Wiley & Sons.637

Donahue, C., McAuley, J., and Puckette, M. (2018). Synthesizing Audio with Generative Adversarial638

Networks. ArXiv e-prints.639

Duport, F., Smerieri, A., Akrout, A., Haelterman, M., and Massar, S. (2016). Fully analogue photonic640

reservoir computer. Scientific reports, 6:22381.641

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D., Simonyan, K., and Norouzi, M. (2017). Neural642

audio synthesis of musical notes with wavenet autoencoders. arXiv preprint arXiv:1704.01279.643

Fernando, C. and Sojakka, S. (2003). Pattern recognition in a bucket. Advances in Artificial Life, pages644

588–597.645

Fiebrink, R. (2011). Real-time Human Interaction with Supervised Learning Algorithms for Music646

Composition and Performance. PhD thesis, Princeton University.647

Gabor, D. (1947). Acoustical quanta and the theory of hearing. Nature, 159(4044):591–594.648

Gallicchio, C., Micheli, A., and Silvestri, L. (2018). Local lyapunov exponents of deep echo state649

networks. Neurocomputing, 298:34–45.650

Gast, R., Faion, P., Standvoss, K., Suckro, A., Lewis, B., and Pipa, G. (2017). Encoding and decoding651

dynamic sensory signals with recurrent neural networks: An application of conceptors to birdsongs.652

bioRxiv, page 131052.653

Ghedini, F., Pachet, F., and Roy, P. (2016). Creating music and texts with flow machines. In Multidisci-654

plinary Contributions to the Science of Creative Thinking, pages 325–343. Springer.655

Heston, M. (2013). Two (f). Freesound sample 197016.656

Holzmann, G. (2009a). Echo state networks with filter neurons and a delay and sum readout. Neural657

Networks.658

Holzmann, G. (2009b). Reservoir computing: a powerful black-box framework for nonlinear audio659

processing. In DAFx.660

Ianigro, S. C. and Bown, O. (2018). Exploring continuous time recurrent neural networks through novelty661

search. In Luke Dahl, Douglas Bowman, T. M., editor, Proceedings of the International Conference on662

New Interfaces for Musical Expression, pages 108–113, Blacksburg, Virginia, USA. Virginia Tech.663

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks-with an664

erratum note. Bonn, Germany: German National Research Center for Information Technology GMD665

Technical Report, 148(34):13.666

Jaeger, H. (2002). Short term memory in echo state networks. Technical report, Fraunhofer Institute for667

Autonomous Intelligent Systems.668

Jaeger, H. (2014a). Conceptors: an easy introduction. arXiv preprint arXiv:1406.2671.669

Jaeger, H. (2014b). Controlling recurrent neural networks by conceptors. arXiv preprint arXiv:1403.3369.670

Jaeger, H. (2017). Using conceptors to manage neural long-term memories for temporal patterns. Journal671

of Machine Learning Research, 18(13):1–43.672

Jaeger, H. and Eck, D. (2006). Can’t get you out of my head: A connectionist model of cyclic rehearsal.673

In ZiF Workshop, pages 310–335.674

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M., Turner, R. E., and Eck, D. (2016). Se-675

quence tutor: Conservative fine-tuning of sequence generation models with kl-control. arXiv preprint676

arXiv:1611.02796.677

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a liquid state machine in the bacterium678

escherichia coli? In Artificial Life.679

Keuninckx, L., Danckaert, J., and Van der Sande, G. (2017). Real-time audio processing with a cascade680

of discrete-time delay line-based reservoir computers. Cognitive Computation, 9(3):315–326.681

Kiefer, C. (2014). Musical instrument mapping design with echo state networks. In NIME ’14: Proceed-682

ings of the 12th international conference on New interfaces for musical expression.683

Lukoševičius, M. (2012). A practical guide to applying echo state networks. In Neural networks: tricks of684

the trade, pages 659–686. Springer.685

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: A new686

23/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

framework for neural computation based on perturbations. Neural computation, 14(11):2531–2560.687

McCormack, J., Eldridge, A., Dorin, A., and McIlwain, P. (2009). Generative algorithms for making688

music: emergence, evolution, and ecosystems. na.689

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., and Bengio, Y.690

(2016). Samplernn: An unconditional end-to-end neural audio generation model. arXiv preprint691

arXiv:1612.07837.692

Mess, C. (2017). Doepfer a-110-1 vco rectangle. Freesound sample pack 22359.693

Mudd, T. (2017). Nonlinear Dynamics In Musical Interactions. PhD thesis, The Open University.694

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior,695

A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint696

arXiv:1609.03499.697

Prince Jammy (1986). Computerised Dub. Greensleeves Records.698

Roads, C. (1978). Automated granular synthesis of sound. Computer Music Journal, 2(2):61–62.699

Roads, C. (2004). Microsound. MIT press.700

Sanfilippo, D. and Valle, A. (2013). Feedback systems: An analytical framework. Computer Music701

Journal, 37(2):12–27.702

Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007). An overview of reservoir computing:703

theory, applications and implementations. In Proceedings of the 15th European Symposium on Artificial704

Neural Networks. p. 471-482 2007, pages 471–482.705

Schwarz, D. (2006). Concatenative sound synthesis: The early years. Journal of New Music Research,706

35(1):3–22.707

Slaney, M., Covell, M., and Lassiter, B. (1996). Automatic audio morphing. In Acoustics, Speech, and708

Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Conference709

on, volume 2, pages 1001–1004. IEEE.710

Tidemann, A. and Demiris, Y. (2008). Groovy neural networks. In Proceeding of the 2008 conference on711

ECAI 2008: 18th European Conference on Artificial Intelligence.712

Truax, B. (1986). Real-time granular synthesis with the dmx-1000. In Berg, P., editor, Proceedings of the713

International Computer Music Conference,. Computer Music Association, The Hague.714

Truax, B. (1994). Discovering inner complexity: Time shifting and transposition with a real-time715

granulation technique. Computer Music Journal, 18(2):38–48.716

Wyse, L. (2018). Real-valued parametric conditioning of an rnn for interactive sound synthesis. In717

6th International Workshop on Musical Metacreation, International Conference on Computational718

Creativity (ICCC).719

Xenakis, I. (1971). Formalized Music. Indiana U. Press, Bloomington.720

Yee-King, M. J., Fedden, L., and d’Inverno, M. (2018). Automatic programming of vst sound synthesizers721

using deep networks and other techniques. IEEE Transactions on Emerging Topics in Computational722

Intelligence, 2(2):150–159.723

24/24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27361v1 | CC BY 4.0 Open Access | rec: 19 Nov 2018, publ: 19 Nov 2018

