
For and Against PEGs: Why we need
Multi-Ordered Grammars

Nick Papoulias
University of La Rochelle, France

npapoylias@gmail.com

Abstract—Since their introduction in 2004, Parsing Expression
Grammars (PEGs for short) have been gaining widespread
adoption both in industry and academia. More than 400 sub-
sequent works 1 cite B. Ford’s original paper, while a total
of 29 implementations in 14 different programming languages
are reported in active use 2. Nevertheless reviewing PEG-related
bibliography reveals that the original argumentation in favor of
PEGs has actually been weakened by subsequent work, regarding
basic parsing features such as (a) recursion handling and (b)
associativity support. To this day all proposed enhancements
either address these issues in isolation or in implementation
specific ways. It is still unclear if there is a single way to parse
PEGs without facing these issues or introducing implementation
directives external to the formalism. Our subsequent analysis
takes us a step further, questioning the very core of the initial
PEG proposal: (c) by design unambiguous grammars. We then
discuss why a form of ordered choice and conditional operators
that PEGs advocate are worth saving, but only within a wider
synthesis that could address the aforementioned issues. To this
end we present our on-going effort with the Gray algorithm and
MOGs (Multi-Ordered Grammars), a possible alternative to the
PEG and CFG formalisms.

Index Terms—Parsing, PEGs, Multi-Ordered Grammars,
LALR, Earley, Gray

I. INTRODUCTION: PEGS’ PAST

Parsing is everywhere. From rudimentary data storage and
retrieval, to protocol and communication structures and from
there to file-formats, domain-specific dialects and general
purpose language specifications. It’s ubiquitous application can
partially explain why it is still such an active area of research,
or as L. Tratt describes it: ”The Solved Problem That Isn’t”.
3 With so many different areas of application, come inherent
trade-offs in terms of expression power, speed, comprehen-
sibility or memory consumption of different approaches. Yet
on 2004, B. Ford in one of the most influential papers in the
domain [1] made the following startling claim:

”For decades we have been using Chomskys generative sys-
tem of grammars, particularly context-free grammars (CFGs)
and regular expressions (REs) [...] The power of generative
grammars to express ambiguity is crucial to their original
purpose of modelling natural languages, but this very power

1439 citations according to Google Scholar as of 30/09/2018:
https://scholar.google.com/scholar?q=Parsing+expression+grammars%3A+a+
recognition-based+syntactic+foundation

2implementations reported in http://bford.info/packrat/
3Parsing: The Solved Problem That Isn’t. (https://tratt.net/laurie/blog/

entries/parsing the solved problem that isnt.html)

makes it unnecessarily difficult both to express and to parse
machine-oriented languages using CFGs.”

In essense Ford argues that most of our problems with pars-
ing have been due to our bias towards linguistic solutions [2],
[3] that are suitable for NLP (Natural Language Processing).
We thus have been disregarding the needs of ”easier” domains
such as data or programming language specifications, where
expressing ambiguity is unessary, leading to cumbersome
solutions and implementations.

He then goes on to propose the PEG formalism as an
alternative, which he shows to be reducible to earlier well un-
derstood systems such as TS/TDPL and gTS/GTDPL [4], [5].
PEGs by construction cannot express nondeterministic (i.e.,
unordered) choice, thus avoiding ambiguities. They instead use
prioritized (ordered) choice when presented with parsing al-
ternatives, making the choice deterministic and efficient. Only
if a chosen alternative fails directly (not through subsequent
backtracking), will PEG-parsers try its alternatives. This is
much like how a human developer will manually hard-code
alternatives in a top-down parser. Since determining a correct
order often involves look-aheads, PEGs also introduce the !
(not) and & (and) operators, which recognize (i.e., determine
if rule A is/not followed by rule B) but do not consume their
input.

Figures 1 to 3 show us how a parsing algorithm using
the vanilla PEG formalism described by Ford, compares to
two of the most prominent CFG-based algorithms (LALR [6],
[7] and Earley [8], [9]) when describing a simple expression
grammar. For being precise in our comparison we use the
same BNF symbols (::= and |) for rule definition and choice
in all examples (instead of the PEG-only variants <– and
/) assuming the appropriate semantics (ordered choice for
PEGs and unordered choice for CFGs) in each case. Note that
number is a rule with a right-hand side terminal represent-
ing integers and that expression, power, product, sum are
non-terminal rules for arithmetic operations (caret ˆ denotes
exponentiation). Finally all other non-bracketed sequence of
characters represent terminal character sequences and groups
of ordinary regular expressions.

Starting with Section 2, we will discuss the different flavors
of the expression grammar shown in Figures 1 to 3 in detail.
We will argue that although PEG-related bibliography tried
to enhance Ford’s initial proposal, it has actually provided
insights that weaken the argumentation in favor of PEGs.

In Section 3, we will explain why this apparent stagnation

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27358v3 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019

https://scholar.google.com/scholar?q=Parsing+expression+grammars%3A+a+recognition-based+syntactic+foundation
https://scholar.google.com/scholar?q=Parsing+expression+grammars%3A+a+recognition-based+syntactic+foundation
http://bford.info/packrat/
https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html
https://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt.html

Fig. 1: The Earley CFG for expressions

〈expression〉 ::= 〈expression〉 [+-] 〈expression〉
| 〈expression〉 [*/] 〈expression〉
| 〈expression〉 ˆ 〈expression〉
| 〈number〉

〈number〉 ::= [0-9]+

Fig. 2: The LALR CFG for expressions

%right ’ˆ’
%left ’[+-]’
%left ’[*/]’

〈expression〉 ::= 〈expression〉 [+-] 〈expression〉
| 〈expression〉 [*/] 〈expression〉
| 〈expression〉 ˆ 〈expression〉
| 〈number〉

〈number〉 ::= [0-9]+

of the PEG project hints to a need for expressing ambigu-
ity during design (even in cases considered ”simpler” than
NLP) while providing support for incremental dis-ambiguation
within a new formalism. To this end we will present our
on-going effort with the Gray algorithm and MOGs (Multi-
Ordered Grammars), a possible alternative to the PEG and
CFG formalisms. Finally, Section 4 concludes the paper and
discusses future perspectives.

II. PROBLEM STATEMENT: PEGS’ PRESENT

The expression grammar frequently appears in literature, not
only because it is one of the simplest ”realistic” examples.
It is also an example where the need for handling left/right
recursion, precedence and associativity, co-occur. The initial
PEG paper does not provide such examples, but as we will
promptly see these have been the focus of subsequent PEG-
related papers.

Regarding the different grammar flavors (understood by
Earley, LALR and PEG-parser respectively) in Figures 1 to
3, we observe the following:
(a) The shortest (and in our view the most natural way) to

express the grammar is by using the Earley algorithm.
This is despite the fact that the algorithm was explicitly
designed for NLP. This conclusion is in contrast to what
Ford argues, since the expression grammar falls under
the ”simpler than NLP” problems described in his initial
paper. Nevertheless the result provided by Earley is indeed
highly problematic, since it consists of all possible parsing
trees (e.g., for an expression as simple as: 2∗3+4∧5∧6
Earley will answer all 14 possible trees). Only manually
re-writing the grammar (that will end-up resembling a lot
like the PEG version) can produce an unambiguous Earley
parse.

(b) The LALR algorithm is closer to Earley but in order to
avoid ambiguity we need to provide implementation spe-
cific hints to handle shift/reduce and reduce/reduce con-
flicts. These are the three percentage (%) directives han-
dling operator precedence (lower directives have higher
precedence) and associativity (operators are explicitly
stated as left or right associative). The Generalized LR
algorithm can return the ambiguous forest as Earley does,
with a few caveats (see 1.5: ”Writing GLR Parsers” in
[10]). Nevertheless neither LALR or GLR algorithms in
state-of-the-art implementations (as in GNU/Bison) can
handle all precedence or reduce conflicts (See Sections
5.7: ”Mysterious Conflicts” and 5.3.6: ”Using Precedence
For Non Operators” in [10]) without grammar rewriting
(as in the case of Adaptive LL(*) parsing[11]).

(c) The PEG version is the most verbose of the three, since it
cannot directly handle left recursion or associativity and
thus needs to distinguish between products, powers and
sums. No support for left-recursion also means that the
parsing output will be wrongly right-associative by default.
Precedence is only partially defined using ordered choice,
since we need to hard-code explicit right-recursive rela-
tions between sums, products and numbers. Nevertheless
the parsing is indeed unambiguous without resorting to
implementation specific directives.

Fig. 3: The PEG version for parsing expressions

〈expression〉 ::= 〈sum〉

〈sum〉 ::= 〈product〉 [+-] 〈sum〉
| 〈product〉

〈product〉 ::= 〈pow〉 [*/] 〈product〉
| 〈pow〉

〈pow〉 ::= 〈number〉 ˆ 〈pow〉
| 〈number〉

〈number〉 ::= [0-9]+

The expression grammar shows us that Ford’s initial argu-
ment against CFG is at least partially false (ie CFGs do express
more naturally and correctly grammars outside NLP).

Subsequent refinements to PEGs from literature tried to
remedy these problems, adding support for left-recursion [12]
as seen in Figure 4 and associativity [13], as seen in Figure 5. It
is worth noting here that these solutions address the problems
either in isolation (A. Warth et al [12] where concerned
only with left-recursion) or in implementation specific ways
(N. Laurent and K. Mens introduce implementation specific
directives to guide PEG parsing for their specific system called
”Autumn” [13]). Both solutions report additional performance
penalties for supporting these extentions [12], [13].

To this day it is still unclear if PEGs can successfully resolve
these issues without introducing implementation directives

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27358v3 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019

external to the formalism. To make things worse, a direct
comparison of state-of-the-art PEG extensions (Figure 5) and
the classic LALR solution with directives (Figure 2) differ
only in their taste of implementation specific directives. While
LALR needs the directives to avoid conflicts and ambiguity,
PEG parsers need them to actually produce the correct parsing
tree in a readable manner. This is why we argue that sub-
sequent contributions to the PEG-bibliography have further
weakened the initial PEG vs CFG argumentation, by ending
up mimicking CFGs.

Fig. 4: Left-recursion extention for PEGs

〈expression〉 ::= 〈sum〉

〈sum〉 ::= 〈sum〉 [+-] 〈product〉
| 〈product〉

〈product〉 ::= 〈product〉 [*/] 〈pow〉
| 〈pow〉

〈pow〉 ::= 〈number〉 ˆ 〈pow〉
| 〈number〉

〈number〉 ::= [0-9]+

Is there any reason then to use PEGs instead of CFGs ?

• Possible Efficiency: In examples where it’s possible to
hard-code precedence and associativity without using left-
recursion or extra directives in the grammar, we can
benefit from a linear-parsing time. Then again, such
a grammar is likely to be well-behaved under CFG
algorithms as well.

• Guaranteed Output: Given that neither Earley nor
LALR can provide unambiguous grammars without ad-
ditional effort, we might choose to use PEG parsers
that are guaranteed to at least provide some kind of
output (even if this output is initially wrong). The trade-
off here is with arcane shift/reduce, reduce/reduce errors,
or with getting back the whole parsing forest (as in the
case of Earley). This of course means that the argument
in favor of PEGs being ”unambiguous” (although not
technically wrong) is misleading. PEGs are guaranteed to
provide a single (possibly wrong) output, with which we
need to experiment and possibly provide further directives
(external to PEGs) to circumvent restrictions imposed by
the formalism.

Our goal of course here is not to refute Ford (more than
a decade later hindsight is 20/20). But to open a concrete
discussion for ways to move forward, in what we perceive as
stagnation. Moreover we believe that the ordered choice and
conditional operators that PEGs advocate are worth saving,
but only within a wider synthesis that could address the
aforementioned issues.

Fig. 5: Associativity solution for PEGs

〈expression〉 ::= 〈expression〉 [+-] 〈expression〉
@+ @left_recur

| 〈expression〉 [*/] 〈expression〉
@+ @left_recur

| 〈expression〉 ˆ 〈expression〉
| 〈number〉 @+

〈number〉 ::= [0-9]+

III. BEYOND PEGS: MOGS AND THE GRAY ALGORITHM

Since the PEG program seems to be now mimicking CFGs
we might conclude that the last 15 years of research have
come full-circle. Nevertheless as we saw in Section 3 PEGs
did provide us with a means of ”dis-ambiguation” (the ordered
choice) that despite its multiple problems, can be used to
explore the ”domain of possible parse trees” without resorting
to cryptic errors and conflicts.

This dimension of exploration through dis-ambiguation is
the starting point of our own efforts. Unlike Ford, we begin by
embracing the ambiguity of CFGs and the non-deterministic
nature of algorithms inspired by NLP. But, given the insights
that we gained from the PEG program, we are experimenting
with incremental dis-ambiguation through ordered-choice
operators acting within (not instead of) an ambiguous gram-
mar. This led us to the following research questions:

Are multi-ordered grammars possible ? Can a mix of or-
dered (deterministic) and unordered (non-deterministic) rules
produce consistent grammar semantics ?

To answer these questions we are developing in parallel a
possible MOG (Multi-Ordered Grammar) formalism and an
accompanying parsing algorithm (the Gray algorithm, short
for ”Grammar Ray”) that is able to analyze MOGs. Our short
exposition here of both MOGs and Gray here, aims only to
show that this is an alternative worth exploring. Depending on
your point of origin (CFGs or PEGs), MOGs can be loosely
described as, either:

MOG = PEG+ Unorderedc +RecOrderedc (1)

That is a MOG is a PEG augmented by unordered and
recursively ordered choice operators, or as:

MOG = CFG+LAheado+Orderedc+RecOrderedc (2)

That is a MOG is a CFG augmented by the two lookahead
operators LAheado (& and !), plus the ordered and recursively
ordered choices. Besides this experimental mixing of ordered
and unordered choices, on other thing unique to MOGs are
the RecOrderedc (Recursively Ordered Choice operators).
Their meaning (as well as that of all other MOG operators) is
described in Table I.

Figures 6 and 7 shows what we can currently achieve with
MOGs, in terms of exploring ambiguity and incrementally dis-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27358v3 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019

Operators Appears In Description

*, +, () MOG,EBNF,PEG,RE Semantics from reg-expression rules, for zero/one-or-more and
grouping.

| MOG,EBNF,BNF Unordered choice. In MOGs unordered choice can be tainted
(see below)

|| MOG(scoped),PEG Ord. choice. Appears as / in PEGs. In MOGs ordered choice
can be exhaustive, and introduces a new scope for recursive
ordering that is MOG-specific. All ordered rules, taint (i.e., order
their alternatives)

/ , \ MOG-only Recursive Ord. choice (MOGs only), comes in two flavors: self-
recursive (/) and simply-recursive (\). Has identical semantics
to (||) unless the rule is recursively invoked, in which case
parsing continues from prevously seen (self-recursive) or next
(simply-recursive) alternatives.

& , ! MOG, PEG Recognize but do not consume. Determine if A is/not followed
by B

TABLE I: Operators common in MOGs and other formalisms

Fig. 6: Exploration: The MOG Expr. Grammar and Tooling

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27358v3 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019

Fig. 7: Disambiguation: The MOG Expr. Grammar and Tooling

ambiguating naturally expressed grammars (screen-shots from
our prototype with Gray).

The successful mixing of the choice alternatives in
Gray (source code available at: https://npapoylias.gitlab.io/
lands-project/) is achieved via an extended set of chart parsing
operators [14] (traditionally used in NLP). We start with a
parsing base similar to that of a 3-op Earley parser (scan,
predict, complete) [8] and first extend with standard EBNF
operators (+,*,()) and the empty rule. On top of this charter
base we implement two additional operations (backtrack and
fork) to handle the full-backtracking ordered choice (||) and
the two lookahead operators (& , !). Then finally we override
the standard predict operators to accommodate for recursive
ordering (/ , \) and the mixing of order with unordered
choices. To optimize scanning and memoization, we pre-
compute all first,follow and predict sets to pre-filter unwanted
alternatives.

IV. CONCLUSION & FUTURE PERSPECTIVES

By reviewing PEG-related bibliography we have argued
that the original motivation for PEGs (i.e., provide a CFG
alternative) has actually been weakened by subsequent work.
In fact we showed that today’s state-of-the-art PEG solutions
are mimicking LALR parsing by introducing implementation
specific directives to circumvent PEG restrictions. We then
showed why ordered choice and conditional operators (that are
PEG-specific), do worth our attention but only within a wider
synthesis that could successfully address precedence, recursion
and associativity issues. A possible route forward with the
Gray algorithm and MOGs (Multi-Ordered Grammars) was
discussed, as alternative to PEG and CFG formalisms. From
this perspective we are preparing for a formalized presentation
of MOGs and Gray, in tandem with a complexity analysis of
the algorithm.

REFERENCES

[1] B. Ford, “Parsing expression grammars: a recognition-based syntactic
foundation,” in ACM SIGPLAN Notices, vol. 39, no. 1. ACM, 2004,
pp. 111–122.

[2] N. Chomsky, “Three models for the description of language,” IRE
Transactions on information theory, vol. 2, no. 3, pp. 113–124, 1956.

[3] ——, “On certain formal properties of grammars,” Information and
control, vol. 2, no. 2, pp. 137–167, 1959.

[4] A. Birman, “The tmg recognition in schema.” Ph.D. dissertation, Prince-
ton., 1970.

[5] A. V. Aho and J. D. Ullman, “The theory of parsing, translating, and
compiling, vol. ii,” 1972.

[6] F. L. DeRemer, “Practical translators for lr (k) languages.” Ph.D.
dissertation, Massachusetts Institute of Technology, 1969.

[7] F. DeRemer and T. Pennello, “Efficient computation of lalr (1) look-
ahead sets,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 4, pp. 615–649, 1982.

[8] J. Earley, “An efficient context-free parsing algorithm,” Communications
of the ACM, vol. 13, no. 2, pp. 94–102, 1970.

[9] ——, “An efficient context-free parsing algorithm,” Communications of
the ACM, vol. 26, no. 1, pp. 57–61, 1983.

[10] C. Donnely and R. Stallman, “Gnu bison–the yacc-compatible parser
generator,” 2015.

[11] T. Parr, S. Harwell, and K. Fisher, “Adaptive ll (*) parsing: the power of
dynamic analysis,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014, pp. 579–598.

[12] A. Warth, J. R. Douglass, and T. D. Millstein, “Packrat parsers can
support left recursion.” PEPM, vol. 8, pp. 103–110, 2008.

[13] N. Laurent and K. Mens, “Parsing expression grammars made practical,”
in Proceedings of the 2015 ACM SIGPLAN International Conference on
Software Language Engineering. ACM, 2015, pp. 167–172.

[14] D. Jurafsky, Speech & language processing. Pearson Education India,
2000.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27358v3 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019

https://npapoylias.gitlab.io/lands-project/
https://npapoylias.gitlab.io/lands-project/

	Introduction: PEGs' Past
	Problem Statement: PEGs' Present
	Beyond PEGs: MOGs and The Gray Algorithm
	Conclusion & Future Perspectives
	References

