
Eclipse CDT code analysis and unit testing

Shaun C. D’Souza ∗

Wipro Limited
shaun.dsouza1@wipro.com

Abstract

In this paper we look at the Eclipse IDE and its support for CDT (C/C++ Development Tools).
Eclipse is an open source IDE and supports a variety of programming languages including plugin func-
tionality. Eclipse supports the standard GNU environment for compiling, building and debugging appli-
cations. The CDT is a plugin which enables development of C/C++ applications in eclipse. It enables
functionality including code browsing, syntax highlighting and code completion. We verify a 50X im-
provement in LOC automation for Fake class .cpp / .h and class test .cpp code generation.

Keywords— Software Maintenance, Software Testing, Object-oriented, Regression Testing

1 Introduction

Eclipse supports a number of programming languages including C/C++ [8, 2], Java, PHP, XML, and HTML. It is
an open source IDE and can be used on multiple platforms including Windows, Linux. It supports plugins to extend
the functionality of the IDE for source code language modeling and analysis.

In our paper we study the use of Eclipse to enable an automation framework for generation of unit tests and fake
classes for code debug [6]. Eclipse supports the parsing and compilation of code into an index file. The index file is
used to store code binding information including identifiers bindings, source file location, macros and include files.

2 Stages of compilation parser

Source code
Lexical analysis

Token stream
Syntax analysis

Abstract Syntax Tree
Semantic analysis

Table 1: Stages of compilation parser

Scanning converts the input character stream into a stream of tokens. Eg. ‘I’ ‘n’ ‘t’ is converted to a token
object of type int. Preprocessing involves macro expansion, conditional compilation and inclusion of header files.
Parsing converts the C++ language semantics into an abstract syntax tree structure [3]. The AST is an intermediate
program representation for the code and captures all the semantic information for the source - Table 4. Source code
is optimized for human readability.

∗Currently at Accenture (shaun.c.dsouza@accenture.com)

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

2.1 Lexical analysis

Natural language: “I shot an elephant in my pajamas”
I shot an elephant in my pajamas

Programming language: “if (a == 0) a = b + 1”
if (a == 0) a = b + 1

2.2 Syntax analysis

Natural Language
The cat sat on the mat

det noun verb prep det noun

subject predicate prep object

Programming language
if (a == 0) a = b + 1

test assignment

if-statement

2.3 Semantic analysis

Natural Language
The green apple ate a juicy bug

det adj noun noun det noun noun

Programming language
if (a == 0) a = foo

test assignment

Semantic analysis will report an error.

3 CDT Core

We use the CDT to function as a compiler frontend and use the AST to generate unit tests [4]. The CDT uses a
translation unit to represent a source file cpp and h. The CDT core supports a Visitor API which is used to traverse
the AST [1]. AST rewrite API is used to update the source code. We access the code AST using the Eclipse CDT
API.

C-Model: ITranslationUnit for a workspace file

IPath path= new Path("project/folder/file.cpp");

IFile file= ResourcesPlugin.getWorkspace().getRoot().getFile(path);

// Create translation unit for file

ITranslationUnit tu= (ITranslationUnit) CoreModel.getDefault().create(file);

C-Model: ITranslationUnit for file in the editor

IEditorPart e= PlatformUI.getWorkbench().getActiveWorkbenchWindow().getActivePage().getActiveEditor

();

// Access translation unit of the editor.

ITranslationUnit tu= (ITranslationUnit) CDTUITools.getEditorInputCElement(editor.getEditorInput());

C-Index: IIndex for project

ICProject project= CoreModel.getDefault().getCModel().getCProject("project");

IIndex index= CCorePlugin.getIndexManager().getIndex(project);

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

Eclipse supports the use of IBinding [5]. Binding completely represents the C/C++ entity. It contains information
about the type of a variable, return type and parameters of a function. A compiler is used to translate one program
representation to another. Most commonly the information is a program. We use the Eclipse CDT in our investigation
to process the source tree and generate a set of Fake class and unit test files [7].

The CDT is not a compiler and is designed to support compiler frontend features. It is designed for performance
and is able to parse code skipping included header files. The parsers do not perform any semantic analysis or type
checking during the parse. The phases of parsing include scanning and preprocessing. During the scanning phase
a stream of character inputs is converted into a stream of tokens. Preprocessing also involves macro expansion,
conditional compilation and inclusion of header files. Parsing is used to convert the input token stream to an AST.
The parser converts concrete syntax into an abstract syntax tree representation. The AST is used in semantic analysis
of the code to implement type checking of the code definitions.

We implemented an ASTVisitorImpl class to traverse the code AST. This allows us to obtain all the declaration
information for the functions in a class. We traverse all declarations in the code. Function and constructor information
is used to construct the Fake Class .cpp and .h header files. This is then integrated into the unit testing framework.
We store a list of function declarations and class information to create the Fake class files and unit tests.

4 Fake class plugin UML

discovery/storage/FakeStorageSCSI_DiscoveryAlgorithm.cpp

FakeStorageSCSI_DiscoveryAlgorithm::FakeStorageSCSI_DiscoveryAlgorithm()

: StorageSCSI_DiscoveryAlgorithm()

, fake_run("FakeStorageSCSI_DiscoveryAlgorithm::run")

, fake_associate("FakeStorageSCSI_DiscoveryAlgorithm::associate")

, fake_getDuplicatedHardDriveList("FakeStorageSCSI_DiscoveryAlgorithm::getDuplicatedHardDriveList"

)

, fake_addUniqueHardDrive("FakeStorageSCSI_DiscoveryAlgorithm::addUniqueHardDrive")

, fake_isDuplicateBackplane("FakeStorageSCSI_DiscoveryAlgorithm::isDuplicateBackplane")

}

void FakeStorageSCSI_DiscoveryAlgorithm::verifyFakeMethodUsage(const std::string& testCondition)

{

TestUtility::verifyFakeMethodUsage(fake_run, testCondition);

TestUtility::verifyFakeMethodUsage(fake_associate, testCondition);

TestUtility::verifyFakeMethodUsage(fake_getDuplicatedHardDriveList, testCondition);

TestUtility::verifyFakeMethodUsage(fake_addUniqueHardDrive, testCondition);

TestUtility::verifyFakeMethodUsage(fake_isDuplicateBackplane, testCondition);

}

void FakeStorageSCSI_DiscoveryAlgorithm::run(UI_Facade& uiFacade)

{

return fake_run(uiFacade);

}

discovery/storage/StorageSCSI_DiscoveryAlgorithmTest.cpp

StorageSCSI_DiscoveryAlgorithm_data()

: fakeDeviceReporter()

, fakeDiscoveryRepository()

, fakeIoConnectionOperations()

, fakeTransportFactory()

, fakeDiscoveryOperationsFactory()

, fakeDiscoveredDeviceOperationsFactory()

, fakeFusionIO_AcceleratorFactory()

, fakePciOperationsFactoryPtr(new FakePCI_OperationsFactory())

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

Figure 1: Fake class plugin UML.

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

Parsing Parsing
Lowering Lowering
Interpreter Analysis + Optimization
JIT compiler Code gen

Table 2: V8 JS, g++ compiler

, fakeFileSystemOperations()

, fakeSmbiosOperationsPtr(new FakeSMBIOS_Operations())

, fakeIloOperationsPtr(new iLO::Fake_iLO_Operations())

, fakeTimeOperationsPtr(new FakeTimeOperations())

, failureEventStatus(FakeEvt::failure)

, goodEventStatus()

{

}

Refactoring is changing restructuring existing code without changing its behaviour. We use the ASTRewrite class
functionality to modify code dynamically by describing changes to the AST. Eclipse supports modification of specific
code declarations in the source using the CDT.

IASTTranslationUnit tu = ...;

ASTRewrite r = ASTRewrite.create(tu);

IASTNode lit = r.createLiteralNode(String code);

r.replace(declaration, lit, null);

Change c = r.rewriteAST();

c.perform(new NullProgressMonitor());

New AST nodes can be created using the getASTNodeFactory().

IASTBreakStatement breakStatement = tu.getASTNodeFactory().newBreakStatement();

However for our implementation in Fake class and unit test generation we use ASTRewrite createLiteralNode
method. We however look at the use of getASTNodeFactory in implementing refactoring and extending the fake class
and unit test functionality.

ASTRerwite uses the following functions to implement code refactoring.

void remove(IASTNode n, TextEditGroup eg)

ASTRewrite replace(IASTNode n, IASTNode repl, TextEditGroup eg)

ASTRewrite insertBefore(IASTNode p, IASTNode insPoint, IASTNode newN, TextEditGroup eg)

5 Conclusion

We enable an Eclipse CDT framework as a design for performance best practise. The developed unit test productivity
accelerator, framework components facilitate source code integration. The plugin is developed for generation of unit
test code and software engineering. Source files are input to the plugin in the project. We verify a 50X improvement
in LOC automation for Fake class .cpp / .h and class test .cpp code. The open source plugin automates code analysis
and unit test generation.

References

[1] Api for c/c++ ast. http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Fguide%
2Fdom%2Findex.html.

[2] Gnu g++. http://gcc.gnu.org.

[3] Overview of parsing. http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing.

[4] M. Dickheiser. Game Programming Gems 6, chapter 1. GAME DEVELOPMENT SERIES. Charles River Media,
2006.

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Fguide%2Fdom%2Findex.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Fguide%2Fdom%2Findex.html
http://gcc.gnu.org
http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing

[5] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language Specification, Java SE 8 Edition.
Java Series. Pearson Education, 2014.

[6] P. Hamill. Unit Test Frameworks. O’Reilly, first edition, 2004.

[7] G. Li, I. Ghosh, and S. P. Rajan. Klover: A symbolic execution and automatic test generation tool for c++
programs. In International Conference on Computer Aided Verification, pages 609–615. Springer, 2011.

[8] B. Stroustrup. The C++ programming language. Pearson Education, 2013.

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27350v1 | CC BY 4.0 Open Access | rec: 15 Nov 2018, publ: 15 Nov 2018

	Introduction
	Stages of compilation parser
	Lexical analysis
	Syntax analysis
	Semantic analysis

	CDT Core
	Fake class plugin UML
	Conclusion

