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Abstract 
 
Explaining the variability in drug sensitivity across a panel of cell lines using genomic 
information is a key aspect of cancer drug discovery. The results of such analyses may 
ultimately determine which patients are likely to benefit from a new treatment. There are 
numerous experimental factors that can influence the outcomes of cell line screening panels 
such as the number of replicates, number of doses explored etc. Simulation studies can aid in 
understanding how variability in these experimental factors can affect the statistical power of 
a given analysis method. In this study dose response data was simulated for a variety of 
experimental designs and the ability of different methods to retrieve the original simulation 
parameters was compared. The analysis methods under consideration were a combination of 
non-linear least squares and ANOVA, conventional approach, versus non-linear mixed 
effects.  Across the simulation studies explored the mixed-effects approach gave similar and 
in some situations greater statistical power than the conventional approach.  In particular the 
mixed-effects approach gave significantly greater power when there was less information per 
dose response curve, and when more cell lines screened. More generally the best way to 
improve statistical power was to screen more cell lines. This study demonstrates the value of 
simulating data to understand design and analysis choices in the context of cancer drug 
sensitivity screening.  By illustrating the performance of different methods in different 
situations these results will help researchers in the field generate and analyse data on future 
preclinical compounds.  Ultimately this will benefit patients by ensuring that biomarkers of 
drug sensitivity have an increased chance of being identified at the preclinical stage.  
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Introduction 
 
Testing anti-cancer compounds on model systems with different genetic backgrounds to 
assess the correlation of genetic features to compound response is a central tenet of 
biomarker discovery.  The exemplar of this approach is the discovery that loss of BRCA1 or 
BRCA2 conferred an increase in sensitivity to PARP (poly (ADP-ribose) polymerase) 
inhibitors (Bryant et al., 2005; Farmer et al., 2005) Since then, numerous large scale screens 
of hundreds of compounds in panels containing up to 1000 cell lines have been conducted. 
These screening studies are designed to enable hypothesis free discovery of novel biomarkers 
of drug sensitivity (Barretina et al., 2012; Garnett et al., 2012; Seashore-Ludlow et al., 2015; 
Iorio et al., 2016).  Drug discovery groups now routinely screen novel compounds in such 
panels to generate hypotheses on which patient subgroups are most likely to benefit from the 
new compound (McCabe et al., 2012; Mohammad et al., 2015).  Consistency and 
reproducibility of these projects has been a source of debate (Haibe-Kains et al., 2013; 
Bouhaddou et al., 2016; Geeleher et al., 2016; Mpindi et al., 2016; Safikhani et al., 
2016a,b,c).  Efforts have also been made to leverage these datasets for a variety of purposes 
(El-Hachem et al., 2017) and provide infrastructure for analysis (Smirnov et al., 2016). 
 
Within drug discovery, dose response screening on a large scale predominantly involves 
testing a variety of compounds within the same biological system. As a result, experimental 
noise remains approximately the same across compounds.  With cell line screening, however, 
data is being compared from different assays where growth characteristics of cell lines vary.  
One analysis approach that takes this confounding factor into consideration is to calculate the 
concentration at which cell growth rate is reduced by 50%, GR50, (Hafner et al., 2016).  
Other confounding factors that are routinely being accounted for are tissue specific effects 
(Yao et al.), and the general level of drug sensitivity (Geeleher, Cox & Huang, 2016). 
 
Dose response data is conventionally analysed by carrying out a non-linear regression on 
each unique combination of compound and assay to generate an estimate of IC50 or Area 
Under Curve for use in subsequent analyses.  This approach discards uncertainty in the 
estimates, and doesn’t allow information to be shared between curves. The use of mixed 
effects models where data is combined across cell lines and drugs has been shown to increase 
the accuracy of IC50 estimates for large scale screens by sharing information (Vis et al., 
2016).  An extension of this approach is to include the genetic covariate itself in the non-
linear mixed effects model.  Estimating the genetic effect in one step rather than two 
theoretically allows uncertainty information to be retained which may improve precision and 
reduce bias. 
 
Screens can be designed in different ways: number of cell lines screened, concentration 
range, number of concentrations tested, and number of replicates per concentration can all be 
varied.  A large scale screen of 1000 cell lines may have a single replicate per concentration 
and only 8 or 9 different concentrations (Barretina et al., 2012; Garnett et al., 2012) whereas 
a pharmaceutical company may screen a smaller panel of 20 cell lines in triplicate with 10 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27345v1 | CC BY 4.0 Open Access | rec: 13 Nov 2018, publ: 13 Nov 2018



different concentrations.  Inherent or unknown variables that will affect the ability of the 
screen to detect genetic effects include the effect size itself, the proportion of cell lines with a 
feature, the variability in response to compound, the experimental noise, and the efficacy of 
the compound relative to minimum and maximum dose. 
 
In the present study, cell lines and their dose response data were simulated to compare the 
ability of different analysis methods and experimental designs to recapture known genetic 
effects.  The results presented will assist researchers in choosing appropriate analysis 
methods and assist in experimental design strategies to get the best balance of cost and power 
for the scientific question being asked. 
 

Methods 
 
Simulating cell lines 
 
The pIC50 (pIC50 = log10 (IC50)) values for wild-type cell lines were sampled from a normal 
distribution with mean m1 and standard deviation s1. The pIC50 values of the mutant cell 
lines were sampled from a normal distribution with mean m1-k1 and standard deviation s1. 
That is only the population mean of the pIC50 values was assumed to change between mutant 
and wild-type cell lines whereas the variation was assumed to be the same.  
 
Simulating dose response curves 
 
Combining pIC50 values for the wild-type and mutant cell lines gave us a population of 
pIC50 values. For each pIC50 value we then simulated a response value, R, for a cell line i 
(i=1,…,n) at dose j (j = 1,…,m) for replicate k (k = 1,…,l) using, 
 

𝑅𝑖𝑗𝑘 =  (1 −
𝐷𝑗

𝐼𝐶50𝑖+𝐷𝑗
) (1+ 𝑒1𝑖𝑗𝑘) + 𝑒2𝑖𝑗𝑘                                         (E1) 

In the above equation Dj refers to the drug concentration value j used, IC50i refers to cell line 
i’s IC50 value, while e1ijk and e2ijk are the proportional and additive residual error values 
sampled from a normal distribution with standard deviation s2 and s3 respectively. These 
residual error terms perturb the true dose-response to create noisy data. We also created a 
genotype vector Gi, which represents what genotype IC50i came from, E1 equates to the 
mutant cell-line and 0 the wild-type.   
  
Methods for retrieving genetic effect 
 
Given that the data generation process began with sampling pIC50 values the first method we 
used, which can be considered as a benchmark, was to perform an ANOVA with sampled 
pIC50 values with genotype as a covariate. We collected the p-value, from the F-test, and the 
estimated size of the effect together with 95 percent confidence intervals. The R function lm 
was used for this analysis. Therefore we shall refer to this approach as lm. In the subsequent 
methods we used the noisy dose-response data generated.  
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The first of these involved fitting the following dose-response model (E2) to each cell line 
using the nls.lm function from the minpack.lm R package .  
 

𝑅 = 1 −
𝐷

𝐼𝐶50+𝐷
                                                                 (2) 

 
This led to the generation of a distribution of estimated IC50 values which was transformed 
to generate a distribution of pIC50 values for the population of cell lines.  Any pIC50 
estimates that fell either below the minimum concentration tested minus 3 log10 units or 
above the maximum concentration plus 3 log10 units were set to these limits. These 
estimated pIC50 values were then used within an ANOVA in the same way as the lm 
approach detailed above.   This approach is referred to as nls_lm. 
 
The next method involved fitting the dose-response model described in (E2) within a 
hierarchical modelling framework (Vis et al., 2016) using the nlme R package. That is we 
replace the parameter IC50 in (E2) with,  
 

𝑙𝑜𝑔(𝐼𝐶50) = 𝑏0 + 𝑏𝑖                                                         (E3)  
 
where b0 is the population estimate of the log(IC50) value and bi is the distance from b0 for 
each cell line i. The individual pIC50 values derived from the estimation were then 
subsequently used within an ANOVA as stated above.  This approach is referred to as 
nlme_lm. 
 
The final method involved modifying equation (E3) to include genotype in the following 
way,  
 

    𝑙𝑜𝑔(𝐼𝐶50) = 𝑏0 + 𝑐0𝐺𝑖 + 𝑏𝑖                                               (E4) 
 
where c0 is the shift in the population estimate of log(IC50) for the mutant cell lines versus 
the wild-type. Model (E3) can be considered to be nested within model (E4) therefore we 
used the likelihood ratio test to assess if the fit to the data improved with model (E4) over 
(E3). We collected the p-value and the estimate of c0 and the 95 percent confidence intervals.  
This approach is referred to as nlme_gene. 
 
Simulation Setup 
 
Four simulations were carried out to explore different types of experimental design (Table 1).  
 
The first simulation compared the actual pIC50 with that estimated by the conventional non-
linear regression model (2) and the hierarchical model (3) across a range of pIC50 values and 
with different amounts of additive and proportional noise. 
 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27345v1 | CC BY 4.0 Open Access | rec: 13 Nov 2018, publ: 13 Nov 2018



The second simulation went on to examine how each of the four methods performed at 
retrieving the genetic effect when the pIC50 population mean was altered but the proportion 
of mutant cell lines and the number of cell lines was kept the same. 
 
The third simulation kept the proportion mutated at 0.5 and average pIC50 fixed at 0.5 
(~3𝜇M), varied numbers of cell lines (10, 20, 40), effect size (0.3, 0.5, 1), additive error 
(0.15, 0.4, 1), and variation in pIC50 values (0.4, 1).   
 
The fourth simulation was meant to represent a realistic cell line panel screen of different 
sizes (50, 200, 800 cell lines) with two different amounts of additive error (0.15 and 0.4), 
three different effect sizes (0.3, 0.5, 1) and three different proportions (0.05, 0.1, 0.2). 
 
For each simulation, two different experimental designs were considered: in the first a 10 
point dose response curve with 3 replicates at each dose was simulated (10pt_3rep), whereas 
in the second a 7 point dose response curve with a single replicate was simulated (7pt_1rep).  
The former represents ‘gold standard’ data that might be generated at low throughput, 
whereas the latter represents high throughput data produced in a large scale screen.  
 
For each of the simulation set-ups, 2 to 4, described above and summarised in Table 1 we 
conducted 200 simulations. The distribution of the results were then explored both 
graphically and quantitatively via reporting the statistical power; proportion of simulations 
which gave a p-value <0.05. 
 
Running the simulations 
 
Simulations were carried out in R version 3.4.0 using the pgxsim package (GitHub repo 
https://github.com/chapmandu2/pgxsim).  R scripts for the different simulations and 
instructions for their use can be found on GitHub at 
https://github.com/chapmandu2/pgx_simulation_scripts).  Amazon Web Service c4.x8large 
instances were provisioned using the RStudio Amazon Machine Image maintained by Louis 
Aslett (http://www.louisaslett.com/RStudio_AMI/) and analysis was parallelised using the 
batchtools R package (Lang et al 2017). 
 
 
Results 
 
Simulation 1: Compare real vs estimated pIC50 
 
10 point triplicate dose response curves simulated with varying amounts of additive and 
proportional error with an actual pIC50 of 0 (1uM) are shown in Figure 1.  Consultation with 
a number of scientists and showing them these dose response curves gave rise to the 
consensus view that additive residual error values (sd_add) between 0.4 and 0.8 and 
proportional residual error value (sd_prop) between 0.2 and 0.4 represented the maximum 
noise that would be acceptable in a panel screen.   
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Correlation plots of real versus estimated pIC50 using the nls (non-linear least squares) and 
nlme (non-linear mixed-effects) methods from 10 point triplicate and 7 point single replicate 
dose response curves are shown in Figure 2. As expected, the relationship between actual and 
estimated pIC50 is stronger for the 10 point triplicate than 7 point singe replicate curve, and 
is also stronger when there is less variability in the simulated data. 
 
Whilst the plots for each model are similar, the most visible effect is how estimates of 
pIC50’s outside of the experimental dose response range (vertical green broken lines) are 
handled.  The standard model can produce very large or very small estimates which are 
truncated to a maximum of 3 log units above/below the minimum/maximum concentration.  
By contrast, when there is less information the mixed effects model regularised the estimates 
towards the population mean pIC50.  
 
Simulation 2: Explore effect of mu on estimating genetic effect 
 
Estimated genetic effect sizes and p-values for each simulation are plotted in Figure 3.  There 
is a systematic shrinkage of the estimate of the genetic effect size towards zero for the 
nlme_lm method, while nlme_gene seems to give slightly more precise estimates than 
nls_lm.  However, the distribution of p-values is similar across all methods, with the nls_lm 
method showing slightly worse performance under certain circumstances.  In particular, all 
methods perform less well as the average pIC50 moves above and beyond the maximum dose 
and the difference between the nlme based methods and nls_lm gets more pronounced.  There 
is also a greater difference between methods when there is more variability, and/or more 
points in the dose response curve.   
 
In general, nlme_gene performs the best since it gives the most accurate (or no worse) 
estimate of the genetic effect size, as well as the most power.  In particular, an advantage is 
seen over the nls_lm method when the average pIC50 is near or above the maximum 
concentration of the dose response curve, a situation which is often encountered in practice. 
 
Simulation 3: Exploring error in dose response 
 
Estimated genetic effect sizes and p-values for each simulation are plotted in Figure 4.  As in 
Simulation 2, a systematic shrinkage of effect size estimates is seen using nlme_lm.  For low 
number of cell lines little difference is seen between the methods in terms of power, most 
likely because there is not enough information to share between cell lines within the mixed 
effects methodology to improve outcomes.  As expected the difference between the baseline 
lm method and the methods using dose response data increases as noise is added to the dose 
response data (increasing sd_add), and where there is less information in each dose response 
curve (7 points single replicate vs 10 points triplicate).  In general, however, this simulation 
shows that the mixed effects approach does no worse than the conventional approach, 
although there is shrinkage of the effect size estimates in the nlme_lm method, and in some 
situations performs better. 
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Simulation 4: Exploring experimental design 
 
Estimated genetic effect sizes and test-level p-values for each simulation are plotted in Figure 
5 and the results of a power calculation are plotted in Figure 6.  As seen previously, there is a 
shrinkage effect in the estimates of the effect size using nlme_lm. As expected, beta estimates 
are more precise, and p-values are smaller when more cell lines are simulated and when the 
effect size is bigger.  With the 10-point triplicate dose response curves, the methods perform 
equivalently well but with the 7-point single replicate dose response curve differences are 
observed.  For instance when the effect size is smaller, and the additive noise is increased, the 
nlme methods are more powerful than the nls_lm method.  This is manifested by the 
separation of the methods in the power calculation (Figure 6) and the differences in p-values 
in Figure 5.  The power calculation also shows that in general the best way to increase power 
is to examine more cell lines.  
 
Discussion 
 
Correlating genomic features to drug sensitivity measures such as IC50 values across a panel 
of cancer cell-lines is a core activity carried out by pharmacogenomics researchers within 
both academic and industrial settings. There is a lack of literature within this field on the 
design of dose-response experiments but an interest in exploring new metrics and analytical 
methods for such experiments (Vis et al., 2016; Hafner et al., 2016; Geeleher, Cox & Huang, 
2016; El-Hachem et al., 2017). The aim of this study was to show how simulation studies can 
be used to aid in the design of dose-response experiments and assist in the choice of analysis 
method to be applied.  
 
Simulation studies are encouraged by the statistical community to assist with understanding 
the data generation process and the limitations of the planned analysis methods used to 
analyse real data (cite the statistical rethinking book). Here we set-up a simulation protocol to 
generate noisy dose-response data for a population of cell lines whose sensitivity to drug is 
dependent on mutation status. The simulation protocols considered here explored varying 
degrees of the following:  i) number of doses and noise in the dose-response curves; ii) 
number of technical and biological replicates; iii) proportion and effect size of drug sensitive 
cell lines within a cell population;  and v) population mean and variance of IC50 values.  
 
We considered 3 different analysis methods with increasing technical complexity. The first 
and simplest approach, defined as nls_lm, involves estimating an IC50 value for each cell 
line one at a time and then assessing whether the pIC50 (pIC50 = log10(IC50)) values 
correlate to cell-line mutation status using ANOVA. The second, defined as nlme_lm, is 
similar to the first except that IC50 values are estimated using the non-linear mixed effects 
method i.e. pooling all dose-response data together to first estimate the population IC50 mean 
and variance values before estimating each individual cell lines IC50 value (cite Vis et al.). 
Finally, the third and most technically complex method, defined as nlme_gene, involves 
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exploring the correlation between IC50 values and cell-line mutation status by including 
mutation status as a covariate within the mixed-effects framework.  
 
From the simulation studies conducted here we found that only under certain conditions did 
the most complex method, nlme_gene, give us an improvement in statistical power over the 
simplest method, nls_lm. These cases were when there were fewer data points in the dose 
response curve and the numbers of cell-lines were high. We found that in situations when the 
numbers of cell-lines were low, regardless of the number of data points, the simplest 
approach had just as low power as the most complex approach. We also saw a shrinkage of 
the genetic effect size in the nlme_lm approach, a phenomenon that has been described 
previously in the context of pharmacokinetic studies (Xu et al., 2012).  Overall, the 
nlme_gene method was shown to have increased power when looking across all designs 
without exhibiting the shrinkage effect. This result makes intuitive sense since the complex 
method, nlme_gene, uses more information to estimate measurement uncertainty than the 
simple method, nls_lm.  
 
The simulation methodology and software described here will enable scientists within the 
pharmacogenomics field to assess the power of different experimental designs and analysis 
methods. This should enable the community to design better and more cost-effective 
experiments which will hopefully improve the outcome of analyses.  
 
The main limitations of this study are as follows. First we only considered variation in the 
IC50 value across cell-lines which may not always be the case since others have shown that 
both the steepness and the maximum cell death within a dose-response curve can vary across 
cell-lines under a single drug (Vis et al., 2016). Second, we have only considered genotype as 
a discrete covariate (i.e. mutation status) and thus have not considered continuous genomic 
covariates such as gene expression. Thirdly, we used fixed values of noise for all cell lines 
which is not likely to be the case as the smoothness of the dose-response curve could be cell
line specific. Finally, we have not considered that there could be a correlation structure in the 
IC50 values across the cell line panel i.e. cell-line sensitivity can vary by tissue (Yao et al.).  
All of these limitations can be handled by increasing the complexity of the simulation 
protocol. However in doing so makes the analysis of the results more complex too.  
 

Conclusion 
 
In summary the analysis and methodology highlight the value of conducting simulation 
studies within the field of pharmacogenomics. Within the specific case study relating 
genotype to cell-line response data we found that more complex methods using the mixed-
effects model framework, that are not currently routinely used, can increase the statistical 
power over the current methods. We hope this encourages the pharmacogenomics community 
to conduct more simulation studies but also build on the work described here.  
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Tables 
 
Table 1: Set of simulation parameters used within the studies. 
 
Sim  mu_pIC50 sd_pIC50 Effect size Prop. N sd_add sd_prop Doses 
1 -5 to 4 N/A N/A N/A 181 0.1, 

0.2, 
0.4, 0.8 

0.1, 0.2, 
0.4, 0.8 

7x1, 
10x3 

2 0,1,2,3 0.4, 1 1 0.5 50 0.15, 
0.5 

0.3 7x1, 
10x3 

3 0.5 0.4, 1 0.3, 0.5, 1 0.5 10, 20, 
40 

0.15, 
0.5, 1 

0.3 7x1, 
10x3 

4 0.5 1 0.3, 0.5, 1 0.05, 
0.1, 0.2 

50, 200, 
800 

0.15, 
0.5 

0.3 7x1, 
10x3 

mu_pIC50 - population mean pIC50 value; sd_pIC50 - standard deviation of the distribution 
of pIC50 values; Prop. – proportion of cell lines that have a mutation; sd_add – standard 
deviation of the additive error; sd_prop – standard deviation of the proportional error 
 
Figures 

 
Figure 1: Simulated 10-point triplicate dose response curves from Simulation 1 for a pIC50 
value of 0 with different amounts of proportional (sd_prop) and additive (sd_add) variance. 
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Figure 2: Correlation plot of actual vs estimated pIC50 values from Simulation 1 applying 
the nls (2A/C) and nlme (2B/D) methods across a range of values of additive (sd_add) and 
proportional (sd_prop) variance for two types of dose response curve, 7 point single repliicate 
(2A/B) and 10 point triplicate (2C/D. Blue dotted line is identity line, red solid line is linear 
fit, green dashed vertical lines represent minimum and maximum concentration of the dose 
response curve. 
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Figure 3: Estimated values of the genetic covariate (beta) for Simulation 2 are plotted on the 
y-axis in A and B, where A represents results for the 7-point dose response curve and B 
represents results for the 10-point dose response curve.  In C and D the negative log10 of the 
test-level p-values are plotted on the y-axis for the 7-point and 10-point dose response curves 
respectively.  The x-axis represents the average pIC50.  Each panel represents a different set 
of simulation parameters. 
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Figure 4: Estimated values of the genetic covariate (beta) for Simulation 3 are plotted on the 
y-axis in A and B, where A represents results for the 7-point dose response curve and B 
represents results for the 10-point dose response curve.  In C and D the negative log10 of the 
test-level p-values are plotted on the y-axis for the 7-point and 10-point dose response curves 
respectively.  The x-axis represents the value of the genetic coefficient, beta.  Each panel 
represents a different set of simulation parameters. 
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Figure 5: Estimated values of the genetic covariate (beta) for Simulation 4 are plotted on the 
y-axis in A and B, where A represents results for the 7-point dose response curve and B 
represents results for the 10-point dose response curve.  In C and D the negative log10 of the 
test-level p-values are plotted on the y-axis for the 7-point and 10-point dose response curves 
respectively.  The x-axis represents the number of cell lines simulated.  Each panel represents 
a different set of simulation parameters. 
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Figure 6: Power calculations for simulation 4.  The y-axis represents the proportion of times 
that the test p-value fell below an arbitrary cut off of 0.05 whereas the x-axis represents the 
number of cell lines simulated.  A represents results for the 7-point dose response curve and 
B represents results for the 10-point dose response curve.  Each panel represents a different 
set of simulation parameters. 
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