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Abstract  29 

 30 

Background.  Natural product libraries are important tools for drug discovery.  However, until 31 

now, there has not been a system to allow projections of the potential number of hits from 32 

creating these libraries.  The objective of this study was to develop a stochastic model system 33 

that predicts the number of hits from creating a natural product library.   34 

Methods.  A Monte Carlo simulation was developed with data from the peer-reviewed literature.  35 

Using types of endemic New Zealand terrestrial flora as examples, the number of antibacterial 36 

hits expected from creating natural product libraries were calculated.   37 

Results.  The model predicts the following bounds for the 90% range of validated antibiotic 38 

leads for the categories of the terrestrial endemic flora of New Zealand with a right skewed 39 

distribution: [grasses: 1.43-6.50; liverworts: 2.75-12.5; fungi: 45.2-207; mosses: 0.98-4.48; 40 

vascular plants: 21.4-97.8].  Furthermore, per full-time equivalent (FTE) person employed on the 41 

project, a mean of 1.31 hits (90% range 0.48-2.42) is expected.   42 

Discussion.  This model system allows the number of expected hits to be calculated when 43 

developing a natural product library for a therapeutic target.  There is an opportunity to create a 44 

natural product library from New Zealand endemic terrestrial flora.  This model is scalable to 45 

other geographic areas as well as to other therapeutic targets and screening systems. 46 

  47 
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Introduction 48 

 49 

Nearly 30% of FDA-approved drugs from 2008 to 2012 originated from natural products (Tao et 50 

al. 2014).  This percentage is remarkably high, considering the deliberate commercial shift to 51 

combinatorial-chemistry products as opposed to natural products as a starting point for drug 52 

discovery (Li & Vederas 2009; Lipinski & Hopkins 2004).  Extrapolation from biodiversity 53 

analyses and the endogenous characteristics of natural products indicate this natural-product 54 

resource is a future source of drugs (Zhu et al. 2012). The primary challenge continues to be that 55 

prior to evaluation of natural products for bioactivity, product libraries need to be created 56 

(Harvey et al. 2015a). 57 

 58 

New Zealand has unique natural history (Mortimer 2004) and has a remarkably high rate of 59 

endemism.  For example, 68% of the identified plants are endemic (McGlone et al. 2001) 60 

resulting in an identifiable population of  2357 endemic vascular plants (De Lange et al. 2006) 61 

potentially with more still unidentified (De Lange et al. 2009).  Similarly, New Zealand has 62 

approximately >300 endemic liverworts (more than any other country), 157 endemic grasses, and 63 

108 endemic mosses, and >5000 endemic fungi.  Few of these endemic plants have undergone 64 

comprehensive evaluation for novel drug leads, although many have uses in indigenous Maori 65 

culture.  This historic use can be a valuable tool (Atanasov et al. 2015; Gu et al. 2014; 66 

Gyllenhaal et al. 2012; Schwikkard & Mulholland 2014; Sucher 2013), however ethnographic 67 

information needs to be rigorously evaluated (Albuquerque et al. 2014). 68 

 69 
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There is a need for new antibiotics (Fischbach & Walsh 2009) and natural products are a 70 

promising source of material for new antimicrobial drug leads (Clardy et al. 2006; Cragg & 71 

Newman 2013).  Bioprospecting natural sources for new antimicrobials is reasonable (Gu et al. 72 

2013), especially since the generalized characteristics of natural products are superior to 73 

combinatorial chemistry products for antimicrobials (Berdy 2012) primarily because these 74 

compounds generally adhere to Lipinski’s Rule of Five (Harvey 2008).  However, assessing the 75 

risk and reward of these natural-product prospecting activities can be challenging.   76 

 77 

Stochastic models are commonly used in drug discovery and development as a technical tool in 78 

post-library-creation screening or process management (Michelson et al. 2006; Yu 2012).  79 

However, these tools have not been used to extrapolate the potential number of hits returned for 80 

generation of a new natural product library.  Using stochastic models in this context allows the 81 

probability of identifying a hit from a potential natural product library to be calculated; 82 

particularly in geographies where a deliberate approach to developing natural product library has 83 

yet to occur.   84 

 85 

Here we present a stochastic model that projects: 1) the number of potential new antibiotic hits 86 

that would be identified in a screen using endemic New Zealand terrestrial flora; and, 2) the time 87 

commitment necessary to accomplish this bioprospecting and screening.  This is the first time a 88 

simulation has been used to model the development of a natural product library and this 89 

framework is readily scalable to other geographies or therapeutic targets. 90 
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 91 

Figure 1.  Schematic diagram of the inputs and outputs of the Monte Carlo simulation.  92 

These variables capture the primary activities required from identification of the sample to 93 

results of the initial screening.  These values and their distributions can be dynamically adjusted 94 

in the model system. 95 

 96 

Methods 97 

 98 

A schematic diagram with associated variables was developed describing the process of 99 

generating the natural product library of endemic New Zealand terrestrial flora (Figure 1).  On 100 

the basis of this framework, values for input variables were collected from the literature and a 101 

Monte Carlo simulation was developed.   102 

 103 

Selection of appropriate model distributions for collection and processing of materials 104 

 105 

For the distribution describing the time necessary to find an organism, a Gumbel distribution 106 

(Gumbel 2012) was employed.   107 

 108 
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 109 

This distribution allowed modelling the maximum extreme of this variable (∞ is the upper limit, 110 

indicating an organism was never found) which results in a conservative model compared to 111 

standard modelling used for forecasting species distribution (Araújo & New 2007; Brown 1984) 112 

and finding new species (Hill 1979).  113 

 114 

For the distribution describing the time necessary to process samples, create voucher specimens 115 

and transport samples, a Weibull (Weibull 1951) distribution was employed: 116 

 117 

���� = �������� exp �− ���	
�
	 

 118 

This distribution is typically used in modelling industrial processes to describe the probability of 119 

events such as time to machine failure (Cassady & Kutanoglu 2005; Nelson 1979).  Practically, 120 

in the current model this distribution is positively skewed indicating there is a probability for the 121 

activity to take longer than expected if timing values were distributed normally.  The numeric 122 

characteristics for these distributions where derived from field experience with these activities 123 

(Table 1; (Buenz et al. 2006; Buenz et al. 2007a; Buenz et al. 2007b; Buenz et al. 2007c). 124 

  125 
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Table 1.  Variables and characteristics of the distributions 126 

Variable Characteristics 

Time to find an organism a=10, b=4, x=10 

Time to process α=2, β=1, x=4 

Time to voucher α=2, β=2, x=9 

Time to transport α=2, β=7, x=25 

Validation of hit µ=0.32, σ=0.24 

Time per screening µ=120, σ=6.2 

 127 

 128 

Selection of appropriate model distributions for hit rate and validation of results 129 

 130 

For the distribution describing the hit rate of antibacterial high-throughput screening, a discrete 131 

distribution (Kleywegt et al. 2002) of values from the literature were used.  These data were 132 

identified from studies that used a terrestrial natural product library and incorporated some type 133 

of extraction or processing (Table 2).   134 

  135 
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Table 2.  Potential hit rates for antibacterial screening activities 136 

Hits/1,000 Source of material Target System Reference 

46 Broad library Bacterial ribosome (Lowell et 

al. 2015) 

27 Microbial extracts Aspergillus fumigatus whole cells (Monteiro 

et al. 2012) 

27 Secondary metabolites 

from endophytic fungi 

Whole cell assay with multidrug-resistant 

Pseudomonas aeruginosa 

(Zhou et al. 

2011) 

32.5 Myxobacteria secondary 

metabolites 

Whole-cell assay w/ Vibrio cholera  (Sergeev et 

al. 2014) 

40 Plant extracts (Brazil) Whole-cell w/ 4 bacteria strains (Younes et 

al. 2007) 

 137 

For the distribution describing the validation of hits, reported failure rates from the literature 138 

32%+/- 24% (Bains 2004; Steinmeyer 2006; Yu 2012) were used and assigned a normal 139 

distribution.  The distribution describing the time to conduct this analysis were assumed normal 140 

using parameters from the clinical laboratory literature to describe the standard deviation (6.3) of 141 

a similar laboratory assay (Espy et al. 2006). 142 

 143 

All time data were normalized to full-time equivalent (FTE) effort using 1645 hours per FTE 144 

based on a 35 hour work week and with 47 weeks of work per year. 145 

 146 

 147 
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Modelling system 148 

 149 

The general calculation structure for the model was built in Excel 2010 (Microsoft, Redmond, 150 

WA, USA) and @Risk
TM

 (Palisade, Ithaca, NY, USA) was used as the stochastic modelling.  151 

SigmaPlot
TM

 (Systat Software, San Jose, CA, USA) was used for statistical analyses.  A total of 152 

100,000 iterations were performed using the simulation.  The entire model is available as the 153 

appendix.   154 

 155 

Results 156 

 157 

Figure 2 illustrates the number of projected validated antibacterial hits from five groups of 158 

endemic terrestrial New Zealand flora using the stochastic model.  The 90% range described 159 

below the distribution highlights the numeric values of the upper 5% and lower 5% values 160 

determined with respective relative frequency in Figure 2A.  161 

  162 
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 163 

 164 

Figure 2.  The number of projected validated antibacterial hits from five groups of endemic 165 

terrestrial New Zealand flora. Using the Monte Carlo simulation frequency plots where 166 

developed (2A).  The 90% range described below the distribution highlights the numeric values 167 

of the 5% upper and lower values determined by the stochastic model with respective relative 168 

frequency (2B).     169 

 170 

Figure 3A displays the relative frequency of the validated antibacterial hits per FTE.  171 

Importantly, these data suggest that in only 5% of the model iterations less than 0.5 / FTE 172 

validated antibacterial leads were identified suggesting that there is little risk of failure to 173 

identify a new lead.  Additionally, a sensitivity analysis (Figure 3B) shows that the two most 174 

significant contributions to the FTE variability for this bioprospecting project are the laboratory 175 

activities of screening validating hits and the initial screening activities. 176 

 177 
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 178 

 179 

 180 

Figure 3.  The number of validated antibacterial hits per full-time equivalent (FTE) 181 

contribution and variable impact on the outputs.  A sensitivity analysis (3B) shows the 182 

contributions to the FTE variability: hit validation = the subsequent analysis to confirm an initial 183 

hit in the screening activity; Initial hit = the execution of the initial high-throughput screening 184 

activity; Identification = the process of finding and identifying an organism for accession; 185 

Voucher = the process of creating a voucher sample for sample confirmation; Processing = the 186 

activity of creating the samples necessary for subsequent screening programs; Transportation = 187 

moving the samples from the collection to the storage site; and Initial screening = development 188 

of the initial screening assay. 189 

 190 

 191 
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Discussion 192 

 193 

Natural product libraries are an important resource for screening new potential drug leads with 194 

unparalleled diversity (Harvey et al. 2015a).  While many combinatorial chemistry libraries are 195 

large, natural product libraries can be much smaller because of the structural diversity and other 196 

favourable characteristics (Zhu et al. 2012).  As examples, a library from Brazil has 640 samples 197 

(Valli et al. 2013) and a collection from African medical plants has ~1,000 samples (Ntie-Kang 198 

et al. 2013) both of which have been identified as valuable tools in drug discovery (Harvey et al. 199 

2015b; Szelag et al. 2015). 200 

 201 

Previous smaller-scale studies of New Zealand endemic flora have reported potential 202 

antibacterial properties (Earl et al. 2010; Lorimer et al. 1996; Perry & Foster 1995; Ren et al. 203 

2014). Furthermore, earlier work screening ~200 New Zealand vascular plants suggested high 204 

rates of antibacterial properties (Calder et al. 1986), and one of these leads resulted in 205 

identification of a novel antibacterial compound (Hickey et al. 1990).  However, these earlier 206 

efforts did not use contemporary techniques such as Wyeth fractionation that reduce false 207 

positives (Appleton et al. 2007).   208 

 209 

Investigators in Australia have developed the Queensland Compound Library (Frearson & Collie 210 

2009; Simpson & Poulsen 2014) which includes >216,000 fractionated natural compounds in the 211 

Nature Bank collection and >22,000 extracts in the AIMS Natural Product Collection.  New 212 

Zealand does not have similar natural product libraries yet the synthetic analysis presented here 213 

suggests that endemic New Zealand terrestrial flora can be used to generate an endemic natural 214 
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product library.  As globally 30% of the more promising medicinal plants are threatened with 215 

extinction (Brower 2008) and only ~15% of plants have been examined (Saklani & Kutty 2008), 216 

there should be a sense of urgency around developing this underappreciated resource. 217 

 218 

This study has four limitations.  First, data used to develop this model are from disparate sources 219 

and thus there is likely systemic bias.  For example, the publications used to identify hit rates 220 

employed different thresholds for categorization as a hit.  While using a discrete distribution in 221 

the model allows an averaging effect (Kleywegt et al. 2002), there will be variability in the 222 

number of hits based on the threshold selected.  Second, this calculation assumes that for each 223 

organism only one sample is tested.  It is more likely that multiple samples (and furthermore 224 

even fractions) would be created, thus potentially increasing the number of antibacterial hits and 225 

increase time to screen the entire library (Harvey et al. 2015b).  Third, the data around 226 

bioprospecting certain groups of organisms for new antibiotics are sparse. For example, there is 227 

reason to believe that New Zealand liverworts are a promising resource for antibacterial leads 228 

(Lorimer et al. 1996) and thus we may be underestimating the potential hit rate for this group of 229 

organisms.  Fourth, this analysis only focuses on antibacterial potential and that class of 230 

therapeutics may not be the most promising type of therapeutic to pursue in New Zealand 231 

terrestrial endemic flora. 232 

 233 

The goal of developing this model and performing these analyses was to determine the potential 234 

number of novel antibacterial leads that could be identified via high-throughput screening of 235 

endemic New Zealand terrestrial flora.  Certainly there are novel compounds with antibacterial 236 

properties that have already been identified in New Zealand endemic flora (Hickey et al. 1990).  237 
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However, without a broad comprehensive screening effort, likely lead candidates in endemic 238 

terrestrial flora are potentially overlooked.   239 

 240 

Conclusions 241 

 242 

Natural product libraries are valuable tools in the drug discovery process.  Here I have shown 243 

that developing a natural product library of New Zealand endemic terrestrial flora should contain 244 

new, validated hits in a cell-based antibacterial screen.  Clearly, once a natural product library is 245 

developed, a wide variety of screening paradigms and targets can be evaluated.  The high level of 246 

endemism in New Zealand makes developing this type of library particularly promising and the 247 

success of analogous libraries in other world areas suggests a high-potential for success. 248 
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