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Abstract 

In recent years, the use of longer-range read data combined with advances in assembly 

algorithms has stimulated big improvements in the contiguity and quality of genome assemblies. 

However, these advances have not directly transferred to metagenomic datasets, as 

assumptions made by the single genome assembly algorithms do not apply when assembling 

multiple genomes at varying levels of abundance. The development of dedicated assemblers for 

metagenomic data was a relatively late innovation and for many years, researchers had to make 

do using tools designed for single genomes. This has changed in the last few years and we have 

seen the emergence of a new type of tool built using different principles. In this review, we 

describe the challenges inherent in metagenomic assemblies and compare the different 

approaches taken by these novel assembly tools. 
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1. Introduction 

The increasing rate of metagenomic data generation represents a serious challenge to 

bioinformaticians tasked with analysing and understanding it. The EBI metagenomics portal 

alone has seen a tenfold increase in the number of processed samples over the last two years 

[1]. The emergence of next generation sequencing technologies brought with it the possibility to 

use shotgun sequencing to identify the composition of species within a heterogeneous sample. 

As high throughput sequencing technologies become more economical and widespread, the 

opportunity to sequence previously uncharacterised organisms directly from their environmental 

niche allows for a more complete view of the microbial world. Metagenomics, or envirogenomics, 

is a branch of genomics which seeks to explore the composition of complex communities of 

organisms. As many organisms can not be grown in the laboratory (e.g. as many as 99% of 

bacteria are considered unculturable [2]), sequencing may be the only high throughput method 

to measure species diversity in many niches. Metagenomics has been applied to understanding 

a diverse range of environments including the human microbiome [3], the New York Subway [4], 

the virome of bats [5], the oceans [6,7], the crop rhizosphere [8] and communities of extreme 

microbes living in geysers and hot springs [9]. Through metagenomic approaches, we can gain 

valuable insights into changing community profiles resulting from environmental changes. In 

traditional genomic studies, a single species is isolated and then cultured to produce a DNA-rich 

sample to assess. However, many species (particularly viruses) are impossible to study in this 

way, and have thus remained unsequenced. Similarly, many studies have used 16S 

(prokaryotic) or 18S (eukaryotic) rRNA marker gene protocols, methods which while simple and 

cheap are unsuitable for detecting viral species and have limits in their discriminatory power for 

other classes of organism. By using whole genome shotgun sequencing (WGS), it is possible to 

more completely explore environmental samples without prior isolation and culturing, enabling 
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previously unsequenced species to be present in the resulting datasets. These opportunities 

pose new problems in data analysis, as metagenomic samples are inherently heterogeneous 

communities, sometimes containing tens of thousands of species [10, 11]. By considering a 

single bacterial genome in isolation, the problem of sequence assembly is relatively simple. 

However, the assumptions and simplifications which can be made in the case of a single 

genome are not applicable to heterogeneous environmental datasets. This presents both 

computational and conceptual obstacles necessitating the consideration of the more complicated 

problem of extricating as many genomes as possible from a complex mixture. 

 

Though it is possible to analyse sequence data without assembly, most analyses can be 

improved by constructing longer more contiguous sequences (contigs). Next generation 

(Illumina) sequencing is comparatively cheap, but the short read length limits the information 

within a single read. The identification of structures within a genome longer than a read, e.g. 

genes or operons, only becomes possible if reads are first assembled into longer sequence 

stretches. Whilst metagenomic assembly is a research field still in its relative infancy compared 

to genomic assembly, the past few years have seen an increasing interest in its potential and a 

subsequent deluge of new software. 

 

In this review, we begin with a brief discussion of the genome assembly problem and then 

describe the specific challenges posed by metagenomic data. We describe the approaches 

taken by the main metagenomic assembly tools, drawing out common themes and identifying 

unique traits. We discuss approaches to simplifying huge datasets prior to assembly, as well as 

pipelines that contain assembly as just one step within a more involved analysis. Finally, we 

discuss what makes a ‘good’ assembly.  
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2. (Single) genome assembly 

Assembling short reads into contigs has many advantages. Longer stretches of sequence are 

more informative, allowing the researcher to consider whole genes or even gene clusters within 

a genome, and to understand larger genetic variants and repeats. Additionally, it has the effect 

of removing most sequencing errors, though this can be at the expense of new assembly errors. 

First generation (Sanger) sequencing technology produced far fewer reads than second 

generation (or ‘next generation’) sequencing technology, but individual reads were significantly 

longer (500-1000bp). Assembly of Sanger data used overlap-layout consensus (OLC) 

approaches (Figure 1a), in which overlaps are computed by comparing all reads to all other 

reads, overlaps are grouped together to form contigs (layout) and finally a consensus contiguous 

sequence, or contig, is determined by picking the most likely nucleotides from the overlapping 

reads (e.g. Celera [12]). With the advent of second generation technologies, the number of 

reads increased exponentially, but the average length of a read shortened significantly. This has 

enabled much reduced cost per gigabase of sequence, but the computational requirements of 

an OLC strategy become impractical due to the need to compare all reads with every other read 

in the dataset (millions or even billions of reads). 

 

To overcome this computational hurdle, de Bruijn graph based assembly strategies were 

introduced [13] and have become widespread in the field. A de Bruijn graph (dBg) is a 

mathematical construct, where each vertex (or node) in a graph represents a kmer (a string of 

nucleotides of length k). Nodes in the graph are connected where they differ by all but one base 

and this base labels the edges. A graph is built by first decomposing each read into individual 

overlapping kmers, with edges formed by considering each kmer in turn and its overlaps with 
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existing nodes (Figure 1b). In an ideal case, the de Bruijn graph would form a single line, in 

which each node, apart from the two edges, is connected to one other node in the forward 

orientation and one in the reverse orientation. Converting such a graph into a hypothetical contig 

would be a trivial case of starting at one edge node and following labels to reach the second 

edge. Of course real datasets never result in such simple graphs and complex branching 

structures form as a result of errors, coverage differentials, heterozygosity, repeats and other 

structural variants. Thus much of the innovation in genome assembly algorithms has come from 

developing heuristics to simplify and navigate complex graphs consisting of millions of kmers to 

output contigs, as well as developing approaches to link contigs together in ‘scaffolds’. The 

principle advantage of the de Bruijn graph approach is that, unlike OLC, there is no need to 

consider all input reads in a pairwise manner, making the problem instantly more tractable. 

Additionally the repetition inherent in so many reads may be compressed, reducing memory 

requirements. The main drawback of the dBg is the loss of context that results from breaking 

reads into smaller kmers which can result in the joining up of disparate parts of a genome 

containing the same kmers - e.g. repeats. As a dBg becomes complex, ascertaining the most 

likely paths through it (the predicted genomic sequence) can be difficult.  

 

Most short-read assemblers which have been produced in the past decade utilise de Bruijn 

graphs for these reasons. These include popular genomic assemblers such as Velvet [14], 

ABySS [15] and SOAPdenovo [16]. There are limitations inherent in de Bruijn graph assembly 

however, particularity the initial choice of the size of kmer with which to build the graph. 

Choosing an inappropriate kmer size when building a graph may dramatically affect the quality 

of an assembly. Smaller kmers lead to more connected graphs; larger ones provide more 

specificity and fewer loops, but are more disconnected as the result of gaps or errors within the 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018



 

read data or lack of coverage of the genome. Some assemblers have begun to use a variety of 

kmer sizes during assembly to mitigate this issue. IDBA builds graphs iteratively, starting with a 

small k-mer size, and using the predicted contigs as hypothetical reads with which to build the 

next graph with a longer kmer size [17]. SPAdes [18] employs analogous techniques, moving 

from graphs built using smaller kmer sizes to maximise connectivity combined with larger kmer 

sizes for simplicity. RAMPART [19] runs a range of different assemblers with an option to 

produce multiple assemblies with different kmers, and a report summarising the statistics of 

each one. These procedures have become feasible as a result of increased computational 

power, but also as a result of increased sequence throughput.  

 

 

Figure 1: Two different approaches to genome assembly: (a) in Overlap, Layout, Consensus assembly, (i) overlaps 
are found between reads and an overlap graph constructed. (ii) Reads are laid out into contigs based on the overlaps 
(iii) The most likely sequence is chosen to construct consensus sequence. (b)  In de Bruijn graph assembly, (i) reads 
are decomposed into kmers by sliding a window of size k across the reads. (ii) The kmers become vertices in the de 
Bruijn graph, with edges connecting overlapping kmers. Polymorphisms (red) form branches in the graph. A count is 
kept of how many times a kmer is seen, shown here as numbers above kmers. (iii) Contigs are built by walking the 
graph from edge nodes. A variety of heuristics handle branches in the graphs - for example, low coverage paths, as 
shown here, may be ignored. 
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3. The challenge of metagenomic assembly 

3.1. Unknown abundance and diversity 

In genomic assembly, there is an expectation that a sample contains a single species (apart 

from any contamination, which can be screened for prior to assembly) which allows assembly 

tools to make certain assumptions. The expected coverage of the target genome can be 

predicted from the total size of the dataset (the reads and their length) and the estimated size of 

the genome. In turn, it is assumed that nodes or edges in a graph occurring with very low 

coverage compared to the expected coverage are likely the result of sequencing errors or low 

level contamination, and the graph is simplified considerably by removing such nodes or paths. 

Similarly, nodes with much higher than average coverage can be assumed to be part of repeat 

structures. The typical optimal sequence coverage for a single genome assembler is in the 

20-200x range, with a common “sweet spot” of ~50x [20]. However, in metagenomic datasets 

this assumption and simplifications cannot be made. Lower coverage nodes may originate from 

genomes with a lower abundance, not from errors, and so should not be discarded out of hand. 

Compounding this problem, the number of species within a sample, and the distribution of 

abundances of species is unknown. Abundance in heterogeneous samples often follows a 

power law [21], which means that many species will occur with similarly low abundances making 

the problem of distinguishing one from another problematic. The low coverage of most species 

means de novo assembly is unlikely unless the genome in question is relatively small, and 

instead we are reliant on reference genomes or gene prediction models/homology for evidence 

of the presence of species. It is imperative that a metagenomic assembly tool conserve as much 

of the less abundant species sequence as possible. 
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3.2. Related species 

In a genomic study, it may be assumed that all sequence reads derive from the same original 

genome. In metagenomic studies, this is emphatically not the case, with a potentially huge 

diversity of species to consider. However, while distinguishing divergent species is already a 

difficult problem, an even more challenging problem is that of identifying closely related species 

or even strains within species. Often in metagenomic samples, a number of sub-species or 

strains are present, and this is particularly evident with viral communities which typically contain 

an abundance of haplotypes. Related species or subspecies introduce extensive overlaps in a 

kmer set, and therefore create assembly graphs which are considerably more complex as 

multiple genomes occupy much of the same kmer space. Branches or loops between these 

homologous regions make traversing the graph more complex, and if either species occurs with 

a low abundance, then identifying the presence of separate species will be difficult and 

deconvolving the graph is extremely complex. Mistakes at this point can lead to chimeric contigs 

containing sequence from more than one (sub-)species and a failure to capture the true diversity 

of the sample. 

 

3.3. Memory and processing challenges 

Metagenomic assembly brings additional processing challenges when compared to genomic 

assembly of similar sized organisms. Obtaining sufficient sequence coverage depth of a 

complex and diverse metagenomic sample can result in many times the volume of data than for 

a single organism, but excessive coverage can also result in observing more sequencing errors 

in the higher abundance genomes. As a consequence, a de Bruijn graph built to represent a 

metagenomic sample can require greater amounts of memory than one built to represent a 

similarly sized genomic sample, and will be more fragmented making graph traversal more 
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complicated. These challenges are mitigated directly by some assemblers, but can also be 

tackled using preprocessing methods before assembly, such as screening out likely host reads, 

subsampling and digital normalisation [22] to limit the effect of sequencing errors, or 

filtering/binning of reads and graph partitioning. 

 

3.4. Filtering 

An initial classification of reads within a dataset into likely taxonomic bins can be an effective first 

step in a metagenomic study. Removing reads from the dataset which are readily identifiable as 

derived from an available reference genome can streamline the process of assembling complex 

samples. MEGAHIT [23] stratifies the dataset into reads that are well supported by coverage, 

and those that are not; less well supported reads can still be included in an assembly as long as 

they extend well supported contigs. MetaCRAM [24], a metagenomic pipeline tool, uses Kraken 

[25], a kmer based taxonomic identification tool, to initially align reads to reference genomes and 

remove any known sequences from a dataset prior to assembly. 

 

3.5. Graph partitioning 

As metagenomic samples often contain multiple closely related species, the assembly graphs 

are often linked by shared sets of kmers, but this can also occur purely as a result of sequencing 

errors. This presents a challenge to assembler heuristics and can lead to the production of 

chimeric contigs  which contain a mixture of sequence from multiple genomes. This would be 

problematic for two reasons: firstly, the chimeric contig in question may imply detection of a new 

species, a real possibility given the nature of metagenomics; and secondly, it would also reduce 

the likelihood of the contig mapping to either of the genomes underlying the chimera, thus 

affecting their abundance levels or even obscuring their presence. As a consequence, it can be 
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preferable to pre-partition the graph into sub-graphs, sacrificing contiguity for a more accurate 

community profile overall. 

 

In practice, assemblers partition graphs by attempting to identify the nodes that join what appear 

to be distinct subgraphs, and removing them from the dataset. These nodes are often assessed 

as belonging in separate graphs as a result of differences in coverage, taking advantage of the 

notion that different species will be present in the original sample at different abundances. This 

difference in coverage is typically exploited on a localised basis to avoid the problems 

associated with the global coverage assumptions of genomic assemblers. IDBA-UD [26] and 

MEGAHIT both remove a node from within a graph if its coverage is significantly different to its 

neighbouring nodes. As a result of the iterative nature of both of these assemblers, any read 

which is not present in the graph as a result of this node removal will still be considered in the 

next round of graph building and so might be placed elsewhere in the graph (i.e. it is not 

discarded at this point). Metavelvet considers the overall distribution of kmers within the dataset, 

aiming to identify distinct peaks in a kmer distribution and using this as an indication of separate 

genomes with those approximate abundances. The graph is then split along these lines, 

maintaining local coverage within a subgraph. The critical joining node is not removed from the 

graph, but rather corresponding nodes are introduced into each subgraph to maintain 

connectivity. 

 

Omega, although utilising an overlap based approach rather than a dBg based one, performs a 

similar step to graph partitioning [27]. During the process of building contigs, a contig will be split 

apart if the coverage of a constituent read is ”significantly” below that of the rest of that contigs 

coverage. 
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Ray Meta [28] and MetaVelvet-SL [29] do not split graphs strictly based on coverage. 

MetaVelvet-SL trains a support vector machine (SVM) to recognise probable chimeric nodes and 

remove them. Ray Meta operates a heuristic graph traversal procedure, which is based upon the 

minimum and peak coverages for each given read path through a graph. 

 

3.6. Read pair information 

Read pairs - both short-range paired end and long-range mate pair - are invaluable in de novo 

assembly of single genomes, providing links between disconnected contigs, scaffolding contigs 

and spanning areas of repeats. However, the benefits in metagenomic assembly are less clear 

cut, with paired information often lending support to more than one route through the graph. 

Some assemblers still attempt the same scaffolding process used in genomic assembly, but 

others (MEGAHIT [23], Omega [27], PRICE [30], SPAdes [18], BIGMAC [31]) instead used 

paired reads to detect and resolve chimeric contigs produced from the misassembly of different 

genomes. Given the uneven coverage and low abundance of many of the species in most 

metagenomic samples, this produces more useful assemblies.  

 

4. Approaches taken by metagenomic assemblers 

Though initially most researchers used the common genome assembly tools to assemble 

metagenomic sequence data, the last few years have seen the emergence of a series of 

dedicated metagenomic assemblers. Here, we summarise the approaches taken, starting with 

the smaller group of assemblers based on overlap strategies and then considering those utilising 

de Bruijn graphs. Table 1 summarises the tools discussed and provides a brief comparison of 

their features. 
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Tool Method Key concepts Reference 

BBAP OLC Blast based overlap assembly, with optional intermediary assembly stage Lin et al. 2017 [43] 

Genovo OLC Generative probabilistic model; applies a series of hill-climbing steps 

iteratively until convergence; randomly (CRP prior) picks a contig to align 

read 'i' to. breaks up chimeric contigs by taking the edge reads off of 

contigs every ~5 iterations. 

Laserson et al. 2011 

[32] 

Afiahayati et al.  2013 

[35] 

IDBA-UD dBg Build graph; remove dead ends (<2k-1); merge bubbles; break graph on 

progressive (local) depth; error correction in reads (map reads to 

confident contigs; reads which match in all but a few bases can be 

'corrected' to map perfectly); use mate pair info to build a 'local' assembly, 

avoid repeats and chimeras; hold trivial contigs, remove reads; make next 

graph; after k_max, partitions graph, clips tips, based on progressive 

(local) depth; PE requires long contigs to be effective. 

Peng et al. 2012 [26] 

IVA (Iterative 

Virus 

Assembler) 

OLC Aimed at viruses. Greedy kmer based extension. The most abundant 

kmer in the set is used as a seed, and this seed is grown out using a read 

which perfectly maps to it. A new kmer is drawn from the prefix of this 

read, which must be much more abundant than any other of the same 

size, and occur more than ten times in the dataset. 

Hunt et al. 2015 [36] 

MAP OLC Reads are filtered before overlap (reduce pairwise alignments made), 

simple paths found first, mate pair support used to simplify paths, edges 

removed with contradictory/insufficient mate pair support. 

Lai et al. 2012 [41] 

MEGAHIT dBg Solid kmers (occur more than a set threshold) and mercy kmers 

(remainder); mercy kmers that occur between two solid kmers in a read 

are kept; build a succinct dBG (dBG with BWT); remove tips, bubbles, 

progressively remove low local coverage edges; increasing kmer size, 

extract kmers from contigs and reads, build next graph. 

Li et al. 2015 [23] 

Li et al. 2016 [68] 

Metavelvet dBg dBG is first built with Velvet; population structure estimated from coverage 

of nodes (poisson distributions); dBg is partitioned into hypothetical 

Namiki et al. 2012 [46] 
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subgraphs (possibly different species) using these peaks as a guide; only 

nodes from primary distribution are considered - chimeric and repeat 

contigs are identified and split by PE info and coverage differences. 

Assembly produced for primary distribution; procedure repeated for next. 

MetaVelvet-SL dBg Similar to metavelvet - but the decision for identifying chimeric contigs is 

done using an SVM trained on (PE, coverage, contig lengths) for each 

dinucleotide (AA, AT...GG); a training set is generated from a similar 

population, the SVM is trained on this, then passed over the de bruijn 

graph for decomposition. 

Afiahayati 2015 [29] 

Omega OLC Read prefix/suffix (+/-) are stored in hashes; graph is built of V(r); simple 

paths (1 in, 1 out) are contracted, and transitive edges are reduced; tips 

removed (<10r) and bubbles are removed (hold edges with more r); 

minimum cost flow analysis for short (<1000bp) contigs; MP inserts are 

estimated from the assembly now, used to support contigs; scaffolding 

with LMP; remaining unresolved contigs are merged on similar coverage 

Haider et al. 2014 [27] 

PRICE OLC Reads are 'collapsed' if identical, then if near identical; then (single 

strand) dbg used to assemble (essentially) - greedy walking, start at 

highest coverage; identical contigs collapsed, then near identical contigs 

(ungapped) and finally gapped.  

Ruby et al. 2013 [30] 

Ray Meta dBg Extension of Ray – no graph partitioning performed, doesn't use a single 

peak for kmer coverage, min and peak coverage are specific for each 

read path; heuristics-based graph traversal; graph is coloured according 

to an expected taxonomic profile. 

Boisvert et al. 2012 [28] 

SAVAGE OLC Aimed at viral quasispecies recovery. Strict overlap conditions reproduces 

quasi-species assembly with minimal misassemblies. 

Baaijens et al. 2017 [42] 

SPAdes and 

metaSPAdes 

dBg SPAdes started out as a tool aiming to resolve uneven coverage in single 

cell genome data; metaSPAdes builds specific metagenomic pipeline on 

top of SPAdes. Mulitple kmer sizes of dBG, starting with lowest kmer size 

and adding hypothetical kmers of (pref smallest useful size) to connect 

Bankevich et al. 2012 

[18] 

Nurk et al. 2017 [47] 
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graph. 

VICUNA Overlap A min hash algorithm based on pairwise genetic distance threshold, 

inexact matching first (reads with similar or identical hash are merged) 

and then string matching of prefix/suffix of hashes is matched; (optional) 

target like reads are kept first (similar reads binned, similarity of bin is 

used), everything else removed. 

Yang et al. 2012 [69] 

Table 1: Metagenomic assembly tools: key concepts and references to papers. 

 

4.1. Overlap based assemblers 

Genovo [32] was one of the first metagenomic assemblers and is built using a generative 

probabilistic model that applies a series of hill-climbing steps iteratively. At each step, Genovo 

considers the position of every read and attempts to assign it to a new contig; upon finding a 

sufficiently good alignment it is added to that contig, otherwise a new contig is created. The 

assembly of chimeric contigs is prevented by removing the edge reads from all contigs every 5 

iterations; should those reads have been correctly placed originally, they will be placed there 

again in the following steps. Genovo has been used in the reconstruction of bacterial and viral 

genomes from metagenomic samples [33, 34], and an extension to the assembler which made 

use of paired end read information was released later [35]. 

 

IVA [36] was developed for use with RNA virus populations, making it one of the few assemblers 

(along with VICUNA and SAVAGE) which specifically aims at viral rather than bacterial or 

eukaryotic samples. It performs greedy extensions within the dataset, starting with the most 

abundant kmer. This kmer is used as a seed, and this seed is grown outwards using a read 

which perfectly maps to it. A new kmer is drawn from the prefix of this read, and this kmer must 

also be common to the whole set; it must be much more abundant than any other kmer of the 
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same size, and occur more than ten times in the dataset. Though this assembler is not designed 

primarily as a metagenomic assembler, the authors assert that it is capable of performing well 

with samples of uneven coverage, a problem encountered when assembling environmental or 

heterogeneous samples. The software has been used in the assembly of viruses such as Zika 

virus and H1N1 influenza [37, 38]. Following a similar strategy, PRICE [30] also builds out an 

assembly using greedy paired end extension. However, it requires an initial assembly produced 

by a different assembler to start from, and then extends starting from the reads with the highest 

observed coverage, collapsing identical (and near-identical) reads to simplify the problem. Unlike 

other assemblers, it only functions in a single stranded orientation. The assembler has been 

used with Bunyavirus [39] and multiple water sample based metagenomic studies [40]. 

 

MAP [41] uses paired end information and specifically aims to break apart chimeric contigs in 

the assembly. Reads are filtered before the overlap stage to reduce the pairwise alignments 

required by the process, and simple paths joining reads are discovered first. Paired end reads 

are then used to support and simplify paths, with edges removed that are insufficiently supported 

in the dataset. 

 

Omega [27] addresses the computational difficulties of OLC based assembly with a hash 

function built of the prefix and suffix of each read in the dataset which it uses to compute 

overlaps. A bi-directed graph is built up by matching reads to one another, and this is simplified 

by removing transitive edges (reads which are completely contained within a larger contiguous 

structure). Minimum cost flow analysis is performed on the basis of string copy number, to 

simplify the graph further, and long mate pair information is used to scaffold the contigs. There is 
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no explicit stage for resolving chimeric contigs; it is assumed that the nature of an OLC approach 

will hinder their formation.  

 

SAVAGE [42] is an overlap based assembler of viral quasi-species, which reconstructs 

individual haplotypes in the final assembly by conservatively building overlap graphs (with strict 

minimal overlap length and of sequence similarity requirements). BBAP (the BLAST-based 

assembly pipeline [43]) creates a partial intermediary assembly which acts as a 

pseudo-reference for the remainder of the assembly process. 

 

4.2. De Bruijn Graph based assemblers 

In general when assembling using de Bruijn graph based tools, an a priori decision must be 

made about the size of the kmer in the underlying graph. This decision can greatly affect the 

resulting assembly - if the kmer size is too large, the resulting graph structure may be too 

disconnected, but if kmer size is too small, the graph may become overly connected making it 

harder to navigate paths through it. The IDBA family of assemblers (e.g. IDBA-UD) attempts to 

solve this problem by iterating through increasing kmer sizes, pruning the graph and merging 

bubbles (loops) along the way. The graph is broken up at points of significantly differing 

coverage, with information from paired end data included (although this is less informative in 

metagenomic rather than genomic cases). IDBA-UD has been used for assembly of a diverse 

range of bacterial and viral metagenomes (e.g. [44, 45]). More recently, MEGAHIT has used the 

process of increasing kmer size in assembly, but coupled it with succinct de Bruijn graphs which 

are more efficient in computational terms. This assembler is several orders of magnitude faster 

and requires significantly less memory in the process of assembly, and shows further 

performance increases when run on a GPU. This attention to computational performance as well 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018



 

as to assembly completeness has made MEGAHIT one of the most popular of the current crop 

of metagenomic assemblers. 

 

Velvet, a popular genome assembler, has received two updates aimed at metagenomic 

assembly in the form of MetaVelvet [46] and MetaVelvet-SL [29]. In MetaVelvet, a dBg graph is 

built using Velvet and the population structure is estimated from the coverage of nodes 

(modelled as Poisson distributions). The graph is then partitioned into subgraphs (each a 

hypothetical different species) using these coverage peaks as a guide. Chimeric and repeat 

contigs are identified and split using paired end information and local differences in coverage. 

This assumes that genomes are distinct mostly on coverage information (which will be relative to 

abundance), which may not be the case with low abundance genomes that are more susceptible 

to stochastic noise. MetaVelvet-SL is an extension of MetaVelvet that improves upon the 

decision making process for identifying chimeric contigs. An SVM (support vector machine) is 

trained on multiple criteria (paired end information, coverage, contig lengths) for each 

dinucleotide pairing (AA, AT...GG); a training set is generated from a similar population to the 

sample, the SVM is trained on this, and then passed over the sample graph for decomposition. 

 

Ray is another commonly used genomic assembly to have received a metagenomic adaption in 

the form of RayMeta [28]. This is an extension of Ray, where no graph partitioning is performed, 

but unlike Ray (where a single peak coverage is expected for the whole graph and kmers with a 

significantly lower coverage are excluded), in RayMeta a localised coverage distribution is 

generated for each read path. These graphs are then walked using heuristic methods. A big 

emphasis for RayMeta is on computational efficiency and a lot of effort has been focused on 

scalability and distributability across standard clusters. This enables complex datasets to be 
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processed across a networked cluster of low memory machines, avoiding the need for 

expensive, large memory architectures. 

 

Although not specifically a metagenomic assembler, SPAdes [18] is aimed at genome assembly 

from single cell data, but its core assumptions of uneven coverage also make it suitable for 

metagenomic assembly. It builds multiple dBgs with differing kmer sizes, and adds hypothetical 

kmers to ensure a connected graph. Chimeric contigs which are produced by these hypothetical 

kmers are then identified and split in a later stage. metaSPAdes [47] incorporates SPAdes into a 

metagenomic assembly pipeline and introduces new heuristics for differentiating intergenomic 

repeats between species. 

 

Finally, VICUNA is one of the few assemblers released which focuses on reconstructing viral 

genomes. It uses neither a dBg nor an OLC approach. Rather it clusters similar reads together 

first, by generating a hash value for each read. Reads which are identical or similar will share the 

same hash value. These reads are then used to construct contigs, based on shared kmers, and 

reads which appear in multiple hashes can enable contigs to be merged. This is not guaranteed 

to detect all good suffix/prefix matches however, so a further seed based extension is performed 

on the now greatly reduced dataset. The authors propose this for populations of diverse but 

non-repetitive genomes, with high but variable coverage. 

 

5. Assembly pipelines 

A number of software pipelines are available that combine read pre-processing, metagenomic 

assemblers and post-assembly analysis. Perhaps the most comprehensive example is 

MetAMOS [48], which, at the time of writing, supports almost 20 genomic and metagenomic 
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assemblers, along with a wide range of pre-processing, filtering, validation and annotation tools. 

Users can create workflows containing combinations of the tools that are suited to their datasets. 

 

InteMAP [49] integrates output from two dBG assemblers (ABySS, IDBA-UD) and one OLC 

assembler (Celera) by separately merging low and high coverage contigs from pairs of 

assemblers. The authors of EnsembleAssembler also argue that merging the output from dBG 

and OLC assemblies can produce improved results [50]. MetaCRAM [24] is focussed on efficient 

storage via compression of metagenomic datasets. It taxonomically classifies reads and then 

assembles unclassified reads using IDBA-UD. Both the aligned reads and the unaligned read 

assemblies are then compressed for storage. MetaCompass [51] first maps reads against 

reference datasets, then generates reference-guided contigs, polishes them with Pilon [52] and 

finally combines unmapped reads with the polished contigs using MEGAHIT. 

 

6. Assessing assembly quality 

With an ever increasing range of metagenomic assemblers available, how can researchers 

choose the tool for their application? The N50 is an oft quoted statistic that is casually used to 

imply the quality of an assembly. If all contigs in an assembly are ordered by length, the N50  is 

the minimum size of contigs that contains 50% of the assembled bases. For example an N50 of 

10,000 bp means that 50% of the assembled bases are contained in contigs of at least 10,000 

bp. This statistic only indicates the contiguity of the assembled bases, is easy to manipulate (e.g. 

tools make different decisions on removal of small contigs which they consider noise or chaff), 

and gives no measure of assembly accuracy. A new assembler could generate long strings of 

random As, Cs, Gs and Ts and achieve high N50 but with no accuracy to the underlying 

genome, indeed the N50 could even be larger than the biological genome. Thus while it is the 
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most used assembly statistic, it must be used cautiously and its significance understood. For 

example well established assembly tools designed for single genomes may produce assemblies 

of metagenomic datasets with high N50 values. However, this may have been achieved by 

removing kmers representing lower coverage species or collapsing inter-strain variation e.g. 

sacrificing complexity for contiguity. 

 

Assembly contiguity is important - after all, the whole point of assembling a metagenomic 

dataset is to obtain longer sequences for downstream analysis. However, the ability to capture 

the metagenomic diversity of a sample - including the lower abundance species and strains - 

may be equally important. Thus there is a compromise between the desire for long contiguous 

sequence and the desire for an accurate representation of community composition, possibly 

down to the strain level. The aim of the project should lead to a choice of assembler and 

assembly parameters - particularly kmer size - that moves the emphasis one way or another. 

 

A number of tools exist for assessing metagenome assembly quality. MetaQUAST [53] performs 

a BLAST search of contigs against a database of 16S rRNA genes and will automatically 

download the top 50 references. It then performs a reference-based quality assessment of 

contigs that align to these references. Such an approach is limited only to bacterial sequences. 

BUSCO (Benchmarking Universal Single-Copy Orthologs) uses gene content to assess 

assembly quality and completeness [54]. It comes with a database of single-copy vertebrate, 

arthropod, metazoan, fungi  and eukaryotic genes, as well as a smaller set of prokaryotic 

universal marker genes. CheckM also uses the presence of marker genes to assess assembly 

quality, but incorporates information about the position of a genome within a reference genome 

tree and collocation of genes in order to improve accuracy [55]. The Assembly Likelihood 
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Framework (ALE) evaluates genomic and metagenomic assemblies with a reference-free 

approach that incorporates read quality, mate pair orientation, read pair insert length, 

sequencing coverage, read alignment and k-mer frequency [56]. 

 

In the field of single genome assembly, contests have been used in an attempt to compare the 

performance of different algorithms. In metagenomic assembly, the Critical Assessment of 

Metagenome Interpretation (CAMI) set out to develop an “independent, comprehensive and 

bias-free evaluation” of both binning and assembly methods [57]. Its success relied on 

developers of tools and pipelines being willing to submit answers to a set of challenges and the 

organisers received six entries to the metagenomic assembly contest. Contestants were 

required to submit reproducible assemblies of three simulated metagenomic communities which 

were created from real sequencing data of newly sequenced viruses, bacteria and their 

plasmids. The results demonstrated substantial differences between the assemblies produced 

by the six teams - for example total assembly size ranged from 12.32 Mb to 1.97 Gb for a 

dataset with an expected assembly size of 2.80 Gb. Results also varied substantially according 

to the parameter settings chosen for each tool. Notably assemblers using multiple kmers 

performed better than those using a single kmer size. All tools struggled with assembly of closely 

related genomes and the authors describe this as an “unsolved problem”. Overall, there were 

three assembly tools that performed better - MEGAHIT, Meraga (MEGAHIT combined with 

Meraculous [58]) and Minia [59] -  but it’s not clear that this will necessarily be the case with all 

datasets, or in the hands of all researchers. 
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7. Conclusion 

Assembling genomes out of heterogeneous samples is an extremely challenging problem and 

one that remains unsolved. The first specialised metagenomic assembly tool was released 

comparatively recently, in 2011, and the intervening years have seen the introduction of a wealth 

of new tools. Picking the right tool and then picking the right parameters for a specific dataset 

are not straightforward tasks. Projects like the CAMI competition can contribute to the 

understanding of the strengths and weaknesses of different approaches, but researchers will 

benefit from trying a range of tools and parameters. As such, there is really no substitute for 

dedicated post-assembly analysis using both automated tools such as MetaQUAST and manual 

analysis by the researchers themselves.  

 

The focus of this article has been on assembly tools for short-read metagenomics, as Illumina 

remains the dominant platform for metagenomics [1] due to the lowest cost per Gbp of sequence 

and the need for high depth of sequencing of metagenomics samples. New library methods for 

Illumina sequencers e.g. Illumina synthetic long reads [60], Dovetail in vitro HiC [61], and 10x 

Genomics microfluidics created read clouds [62] allow more contiguous assemblies but require 

longer DNA (10kb for synthetic long reads, and over 50kb for Dovetail and 10x Genomics) which 

may be hard to extract from all samples, especially without introducing bias. In vivo HiC 

cross-links DNA within live cells, allowing scaffolding similar to Dovetail, but uniquely it also 

allows grouping of chromosomes and plasmids in the same original cells [63]. 

 

Researchers are increasingly attracted to long-read technologies e.g. from established Pacific 

Biosciences [64] or the cheap, portable Oxford Nanopore Technologies MinION [65]. Both may 

simplify the need for assembly (with individual reads spanning multiple genes) or allow for 
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generation of much longer contiguous sequence. Assembly of reads from these third generation 

platforms abandons de Bruijn graph approaches and returns to the Overlap/Layout/Consensus 

models used in the earlier days of Sanger sequencing. As yet, there are no published tools 

dedicated solely to assembly of metagenomes from third generation platforms, but impressive 

results are possible using genome assembly tools such as Canu [66] or the very computationally 

efficient Minimap [67]. As the cost comes down and the accuracy and yields improve, these new 

technologies are likely to seem increasingly attractive platforms for metagenomic experiments. 
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