

New approaches for assembly of short-read metagenomic data

Martin Ayling1, Matthew D Clark2, Richard M. Leggett1*

1. Earlham Institute, Norwich Research Park, Norwich, UK.

2. Natural History Museum, London, UK

* Corresponding author: richard.leggett@earlham.ac.uk

Abstract

In recent years, the use of longer-range read data combined with advances in assembly

algorithms has stimulated big improvements in the contiguity and quality of genome assemblies.

However, these advances have not directly transferred to metagenomic datasets, as

assumptions made by the single genome assembly algorithms do not apply when assembling

multiple genomes at varying levels of abundance. The development of dedicated assemblers for

metagenomic data was a relatively late innovation and for many years, researchers had to make

do using tools designed for single genomes. This has changed in the last few years and we have

seen the emergence of a new type of tool built using different principles. In this review, we

describe the challenges inherent in metagenomic assemblies and compare the different

approaches taken by these novel assembly tools.

Keywords

Metagenomics, assembly, algorithms, sequencing

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

1. Introduction

The increasing rate of metagenomic data generation represents a serious challenge to

bioinformaticians tasked with analysing and understanding it. The EBI metagenomics portal

alone has seen a tenfold increase in the number of processed samples over the last two years

[1]. The emergence of next generation sequencing technologies brought with it the possibility to

use shotgun sequencing to identify the composition of species within a heterogeneous sample.

As high throughput sequencing technologies become more economical and widespread, the

opportunity to sequence previously uncharacterised organisms directly from their environmental

niche allows for a more complete view of the microbial world. Metagenomics, or envirogenomics,

is a branch of genomics which seeks to explore the composition of complex communities of

organisms. As many organisms can not be grown in the laboratory (e.g. as many as 99% of

bacteria are considered unculturable [2]), sequencing may be the only high throughput method

to measure species diversity in many niches. Metagenomics has been applied to understanding

a diverse range of environments including the human microbiome [3], the New York Subway [4],

the virome of bats [5], the oceans [6,7], the crop rhizosphere [8] and communities of extreme

microbes living in geysers and hot springs [9]. Through metagenomic approaches, we can gain

valuable insights into changing community profiles resulting from environmental changes. In

traditional genomic studies, a single species is isolated and then cultured to produce a DNA-rich

sample to assess. However, many species (particularly viruses) are impossible to study in this

way, and have thus remained unsequenced. Similarly, many studies have used 16S

(prokaryotic) or 18S (eukaryotic) rRNA marker gene protocols, methods which while simple and

cheap are unsuitable for detecting viral species and have limits in their discriminatory power for

other classes of organism. By using whole genome shotgun sequencing (WGS), it is possible to

more completely explore environmental samples without prior isolation and culturing, enabling

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

previously unsequenced species to be present in the resulting datasets. These opportunities

pose new problems in data analysis, as metagenomic samples are inherently heterogeneous

communities, sometimes containing tens of thousands of species [10, 11]. By considering a

single bacterial genome in isolation, the problem of sequence assembly is relatively simple.

However, the assumptions and simplifications which can be made in the case of a single

genome are not applicable to heterogeneous environmental datasets. This presents both

computational and conceptual obstacles necessitating the consideration of the more complicated

problem of extricating as many genomes as possible from a complex mixture.

Though it is possible to analyse sequence data without assembly, most analyses can be

improved by constructing longer more contiguous sequences (contigs). Next generation

(Illumina) sequencing is comparatively cheap, but the short read length limits the information

within a single read. The identification of structures within a genome longer than a read, e.g.

genes or operons, only becomes possible if reads are first assembled into longer sequence

stretches. Whilst metagenomic assembly is a research field still in its relative infancy compared

to genomic assembly, the past few years have seen an increasing interest in its potential and a

subsequent deluge of new software.

In this review, we begin with a brief discussion of the genome assembly problem and then

describe the specific challenges posed by metagenomic data. We describe the approaches

taken by the main metagenomic assembly tools, drawing out common themes and identifying

unique traits. We discuss approaches to simplifying huge datasets prior to assembly, as well as

pipelines that contain assembly as just one step within a more involved analysis. Finally, we

discuss what makes a ‘good’ assembly.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

2. (Single) genome assembly

Assembling short reads into contigs has many advantages. Longer stretches of sequence are

more informative, allowing the researcher to consider whole genes or even gene clusters within

a genome, and to understand larger genetic variants and repeats. Additionally, it has the effect

of removing most sequencing errors, though this can be at the expense of new assembly errors.

First generation (Sanger) sequencing technology produced far fewer reads than second

generation (or ‘next generation’) sequencing technology, but individual reads were significantly

longer (500-1000bp). Assembly of Sanger data used overlap-layout consensus (OLC)

approaches (Figure 1a), in which overlaps are computed by comparing all reads to all other

reads, overlaps are grouped together to form contigs (layout) and finally a consensus contiguous

sequence, or contig, is determined by picking the most likely nucleotides from the overlapping

reads (e.g. Celera [12]). With the advent of second generation technologies, the number of

reads increased exponentially, but the average length of a read shortened significantly. This has

enabled much reduced cost per gigabase of sequence, but the computational requirements of

an OLC strategy become impractical due to the need to compare all reads with every other read

in the dataset (millions or even billions of reads).

To overcome this computational hurdle, de Bruijn graph based assembly strategies were

introduced [13] and have become widespread in the field. A de Bruijn graph (dBg) is a

mathematical construct, where each vertex (or node) in a graph represents a kmer (a string of

nucleotides of length k). Nodes in the graph are connected where they differ by all but one base

and this base labels the edges. A graph is built by first decomposing each read into individual

overlapping kmers, with edges formed by considering each kmer in turn and its overlaps with

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

existing nodes (Figure 1b). In an ideal case, the de Bruijn graph would form a single line, in

which each node, apart from the two edges, is connected to one other node in the forward

orientation and one in the reverse orientation. Converting such a graph into a hypothetical contig

would be a trivial case of starting at one edge node and following labels to reach the second

edge. Of course real datasets never result in such simple graphs and complex branching

structures form as a result of errors, coverage differentials, heterozygosity, repeats and other

structural variants. Thus much of the innovation in genome assembly algorithms has come from

developing heuristics to simplify and navigate complex graphs consisting of millions of kmers to

output contigs, as well as developing approaches to link contigs together in ‘scaffolds’. The

principle advantage of the de Bruijn graph approach is that, unlike OLC, there is no need to

consider all input reads in a pairwise manner, making the problem instantly more tractable.

Additionally the repetition inherent in so many reads may be compressed, reducing memory

requirements. The main drawback of the dBg is the loss of context that results from breaking

reads into smaller kmers which can result in the joining up of disparate parts of a genome

containing the same kmers - e.g. repeats. As a dBg becomes complex, ascertaining the most

likely paths through it (the predicted genomic sequence) can be difficult.

Most short-read assemblers which have been produced in the past decade utilise de Bruijn

graphs for these reasons. These include popular genomic assemblers such as Velvet [14],

ABySS [15] and SOAPdenovo [16]. There are limitations inherent in de Bruijn graph assembly

however, particularity the initial choice of the size of kmer with which to build the graph.

Choosing an inappropriate kmer size when building a graph may dramatically affect the quality

of an assembly. Smaller kmers lead to more connected graphs; larger ones provide more

specificity and fewer loops, but are more disconnected as the result of gaps or errors within the

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

read data or lack of coverage of the genome. Some assemblers have begun to use a variety of

kmer sizes during assembly to mitigate this issue. IDBA builds graphs iteratively, starting with a

small k-mer size, and using the predicted contigs as hypothetical reads with which to build the

next graph with a longer kmer size [17]. SPAdes [18] employs analogous techniques, moving

from graphs built using smaller kmer sizes to maximise connectivity combined with larger kmer

sizes for simplicity. RAMPART [19] runs a range of different assemblers with an option to

produce multiple assemblies with different kmers, and a report summarising the statistics of

each one. These procedures have become feasible as a result of increased computational

power, but also as a result of increased sequence throughput.

Figure 1: Two different approaches to genome assembly: (a) in Overlap, Layout, Consensus assembly, (i) overlaps
are found between reads and an overlap graph constructed. (ii) Reads are laid out into contigs based on the overlaps
(iii) The most likely sequence is chosen to construct consensus sequence. (b) In de Bruijn graph assembly, (i) reads
are decomposed into kmers by sliding a window of size k across the reads. (ii) The kmers become vertices in the de
Bruijn graph, with edges connecting overlapping kmers. Polymorphisms (red) form branches in the graph. A count is
kept of how many times a kmer is seen, shown here as numbers above kmers. (iii) Contigs are built by walking the
graph from edge nodes. A variety of heuristics handle branches in the graphs - for example, low coverage paths, as
shown here, may be ignored.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

3. The challenge of metagenomic assembly

3.1. Unknown abundance and diversity

In genomic assembly, there is an expectation that a sample contains a single species (apart

from any contamination, which can be screened for prior to assembly) which allows assembly

tools to make certain assumptions. The expected coverage of the target genome can be

predicted from the total size of the dataset (the reads and their length) and the estimated size of

the genome. In turn, it is assumed that nodes or edges in a graph occurring with very low

coverage compared to the expected coverage are likely the result of sequencing errors or low

level contamination, and the graph is simplified considerably by removing such nodes or paths.

Similarly, nodes with much higher than average coverage can be assumed to be part of repeat

structures. The typical optimal sequence coverage for a single genome assembler is in the

20-200x range, with a common “sweet spot” of ~50x [20]. However, in metagenomic datasets

this assumption and simplifications cannot be made. Lower coverage nodes may originate from

genomes with a lower abundance, not from errors, and so should not be discarded out of hand.

Compounding this problem, the number of species within a sample, and the distribution of

abundances of species is unknown. Abundance in heterogeneous samples often follows a

power law [21], which means that many species will occur with similarly low abundances making

the problem of distinguishing one from another problematic. The low coverage of most species

means de novo assembly is unlikely unless the genome in question is relatively small, and

instead we are reliant on reference genomes or gene prediction models/homology for evidence

of the presence of species. It is imperative that a metagenomic assembly tool conserve as much

of the less abundant species sequence as possible.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

3.2. Related species

In a genomic study, it may be assumed that all sequence reads derive from the same original

genome. In metagenomic studies, this is emphatically not the case, with a potentially huge

diversity of species to consider. However, while distinguishing divergent species is already a

difficult problem, an even more challenging problem is that of identifying closely related species

or even strains within species. Often in metagenomic samples, a number of sub-species or

strains are present, and this is particularly evident with viral communities which typically contain

an abundance of haplotypes. Related species or subspecies introduce extensive overlaps in a

kmer set, and therefore create assembly graphs which are considerably more complex as

multiple genomes occupy much of the same kmer space. Branches or loops between these

homologous regions make traversing the graph more complex, and if either species occurs with

a low abundance, then identifying the presence of separate species will be difficult and

deconvolving the graph is extremely complex. Mistakes at this point can lead to chimeric contigs

containing sequence from more than one (sub-)species and a failure to capture the true diversity

of the sample.

3.3. Memory and processing challenges

Metagenomic assembly brings additional processing challenges when compared to genomic

assembly of similar sized organisms. Obtaining sufficient sequence coverage depth of a

complex and diverse metagenomic sample can result in many times the volume of data than for

a single organism, but excessive coverage can also result in observing more sequencing errors

in the higher abundance genomes. As a consequence, a de Bruijn graph built to represent a

metagenomic sample can require greater amounts of memory than one built to represent a

similarly sized genomic sample, and will be more fragmented making graph traversal more

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

complicated. These challenges are mitigated directly by some assemblers, but can also be

tackled using preprocessing methods before assembly, such as screening out likely host reads,

subsampling and digital normalisation [22] to limit the effect of sequencing errors, or

filtering/binning of reads and graph partitioning.

3.4. Filtering

An initial classification of reads within a dataset into likely taxonomic bins can be an effective first

step in a metagenomic study. Removing reads from the dataset which are readily identifiable as

derived from an available reference genome can streamline the process of assembling complex

samples. MEGAHIT [23] stratifies the dataset into reads that are well supported by coverage,

and those that are not; less well supported reads can still be included in an assembly as long as

they extend well supported contigs. MetaCRAM [24], a metagenomic pipeline tool, uses Kraken

[25], a kmer based taxonomic identification tool, to initially align reads to reference genomes and

remove any known sequences from a dataset prior to assembly.

3.5. Graph partitioning

As metagenomic samples often contain multiple closely related species, the assembly graphs

are often linked by shared sets of kmers, but this can also occur purely as a result of sequencing

errors. This presents a challenge to assembler heuristics and can lead to the production of

chimeric contigs which contain a mixture of sequence from multiple genomes. This would be

problematic for two reasons: firstly, the chimeric contig in question may imply detection of a new

species, a real possibility given the nature of metagenomics; and secondly, it would also reduce

the likelihood of the contig mapping to either of the genomes underlying the chimera, thus

affecting their abundance levels or even obscuring their presence. As a consequence, it can be

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

preferable to pre-partition the graph into sub-graphs, sacrificing contiguity for a more accurate

community profile overall.

In practice, assemblers partition graphs by attempting to identify the nodes that join what appear

to be distinct subgraphs, and removing them from the dataset. These nodes are often assessed

as belonging in separate graphs as a result of differences in coverage, taking advantage of the

notion that different species will be present in the original sample at different abundances. This

difference in coverage is typically exploited on a localised basis to avoid the problems

associated with the global coverage assumptions of genomic assemblers. IDBA-UD [26] and

MEGAHIT both remove a node from within a graph if its coverage is significantly different to its

neighbouring nodes. As a result of the iterative nature of both of these assemblers, any read

which is not present in the graph as a result of this node removal will still be considered in the

next round of graph building and so might be placed elsewhere in the graph (i.e. it is not

discarded at this point). Metavelvet considers the overall distribution of kmers within the dataset,

aiming to identify distinct peaks in a kmer distribution and using this as an indication of separate

genomes with those approximate abundances. The graph is then split along these lines,

maintaining local coverage within a subgraph. The critical joining node is not removed from the

graph, but rather corresponding nodes are introduced into each subgraph to maintain

connectivity.

Omega, although utilising an overlap based approach rather than a dBg based one, performs a

similar step to graph partitioning [27]. During the process of building contigs, a contig will be split

apart if the coverage of a constituent read is ”significantly” below that of the rest of that contigs

coverage.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

Ray Meta [28] and MetaVelvet-SL [29] do not split graphs strictly based on coverage.

MetaVelvet-SL trains a support vector machine (SVM) to recognise probable chimeric nodes and

remove them. Ray Meta operates a heuristic graph traversal procedure, which is based upon the

minimum and peak coverages for each given read path through a graph.

3.6. Read pair information

Read pairs - both short-range paired end and long-range mate pair - are invaluable in de novo

assembly of single genomes, providing links between disconnected contigs, scaffolding contigs

and spanning areas of repeats. However, the benefits in metagenomic assembly are less clear

cut, with paired information often lending support to more than one route through the graph.

Some assemblers still attempt the same scaffolding process used in genomic assembly, but

others (MEGAHIT [23], Omega [27], PRICE [30], SPAdes [18], BIGMAC [31]) instead used

paired reads to detect and resolve chimeric contigs produced from the misassembly of different

genomes. Given the uneven coverage and low abundance of many of the species in most

metagenomic samples, this produces more useful assemblies.

4. Approaches taken by metagenomic assemblers

Though initially most researchers used the common genome assembly tools to assemble

metagenomic sequence data, the last few years have seen the emergence of a series of

dedicated metagenomic assemblers. Here, we summarise the approaches taken, starting with

the smaller group of assemblers based on overlap strategies and then considering those utilising

de Bruijn graphs. Table 1 summarises the tools discussed and provides a brief comparison of

their features.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

Tool Method Key concepts Reference

BBAP OLC Blast based overlap assembly, with optional intermediary assembly stage Lin et al. 2017 [43]

Genovo OLC Generative probabilistic model; applies a series of hill-climbing steps

iteratively until convergence; randomly (CRP prior) picks a contig to align

read 'i' to. breaks up chimeric contigs by taking the edge reads off of

contigs every ~5 iterations.

Laserson et al. 2011

[32]

Afiahayati et al. 2013

[35]

IDBA-UD dBg Build graph; remove dead ends (<2k-1); merge bubbles; break graph on

progressive (local) depth; error correction in reads (map reads to

confident contigs; reads which match in all but a few bases can be

'corrected' to map perfectly); use mate pair info to build a 'local' assembly,

avoid repeats and chimeras; hold trivial contigs, remove reads; make next

graph; after k_max, partitions graph, clips tips, based on progressive

(local) depth; PE requires long contigs to be effective.

Peng et al. 2012 [26]

IVA (Iterative

Virus

Assembler)

OLC Aimed at viruses. Greedy kmer based extension. The most abundant

kmer in the set is used as a seed, and this seed is grown out using a read

which perfectly maps to it. A new kmer is drawn from the prefix of this

read, which must be much more abundant than any other of the same

size, and occur more than ten times in the dataset.

Hunt et al. 2015 [36]

MAP OLC Reads are filtered before overlap (reduce pairwise alignments made),

simple paths found first, mate pair support used to simplify paths, edges

removed with contradictory/insufficient mate pair support.

Lai et al. 2012 [41]

MEGAHIT dBg Solid kmers (occur more than a set threshold) and mercy kmers

(remainder); mercy kmers that occur between two solid kmers in a read

are kept; build a succinct dBG (dBG with BWT); remove tips, bubbles,

progressively remove low local coverage edges; increasing kmer size,

extract kmers from contigs and reads, build next graph.

Li et al. 2015 [23]

Li et al. 2016 [68]

Metavelvet dBg dBG is first built with Velvet; population structure estimated from coverage

of nodes (poisson distributions); dBg is partitioned into hypothetical

Namiki et al. 2012 [46]

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

subgraphs (possibly different species) using these peaks as a guide; only

nodes from primary distribution are considered - chimeric and repeat

contigs are identified and split by PE info and coverage differences.

Assembly produced for primary distribution; procedure repeated for next.

MetaVelvet-SL dBg Similar to metavelvet - but the decision for identifying chimeric contigs is

done using an SVM trained on (PE, coverage, contig lengths) for each

dinucleotide (AA, AT...GG); a training set is generated from a similar

population, the SVM is trained on this, then passed over the de bruijn

graph for decomposition.

Afiahayati 2015 [29]

Omega OLC Read prefix/suffix (+/-) are stored in hashes; graph is built of V(r); simple

paths (1 in, 1 out) are contracted, and transitive edges are reduced; tips

removed (<10r) and bubbles are removed (hold edges with more r);

minimum cost flow analysis for short (<1000bp) contigs; MP inserts are

estimated from the assembly now, used to support contigs; scaffolding

with LMP; remaining unresolved contigs are merged on similar coverage

Haider et al. 2014 [27]

PRICE OLC Reads are 'collapsed' if identical, then if near identical; then (single

strand) dbg used to assemble (essentially) - greedy walking, start at

highest coverage; identical contigs collapsed, then near identical contigs

(ungapped) and finally gapped.

Ruby et al. 2013 [30]

Ray Meta dBg Extension of Ray – no graph partitioning performed, doesn't use a single

peak for kmer coverage, min and peak coverage are specific for each

read path; heuristics-based graph traversal; graph is coloured according

to an expected taxonomic profile.

Boisvert et al. 2012 [28]

SAVAGE OLC Aimed at viral quasispecies recovery. Strict overlap conditions reproduces

quasi-species assembly with minimal misassemblies.

Baaijens et al. 2017 [42]

SPAdes and

metaSPAdes

dBg SPAdes started out as a tool aiming to resolve uneven coverage in single

cell genome data; metaSPAdes builds specific metagenomic pipeline on

top of SPAdes. Mulitple kmer sizes of dBG, starting with lowest kmer size

and adding hypothetical kmers of (pref smallest useful size) to connect

Bankevich et al. 2012

[18]

Nurk et al. 2017 [47]

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

graph.

VICUNA Overlap A min hash algorithm based on pairwise genetic distance threshold,

inexact matching first (reads with similar or identical hash are merged)

and then string matching of prefix/suffix of hashes is matched; (optional)

target like reads are kept first (similar reads binned, similarity of bin is

used), everything else removed.

Yang et al. 2012 [69]

Table 1: Metagenomic assembly tools: key concepts and references to papers.

4.1. Overlap based assemblers

Genovo [32] was one of the first metagenomic assemblers and is built using a generative

probabilistic model that applies a series of hill-climbing steps iteratively. At each step, Genovo

considers the position of every read and attempts to assign it to a new contig; upon finding a

sufficiently good alignment it is added to that contig, otherwise a new contig is created. The

assembly of chimeric contigs is prevented by removing the edge reads from all contigs every 5

iterations; should those reads have been correctly placed originally, they will be placed there

again in the following steps. Genovo has been used in the reconstruction of bacterial and viral

genomes from metagenomic samples [33, 34], and an extension to the assembler which made

use of paired end read information was released later [35].

IVA [36] was developed for use with RNA virus populations, making it one of the few assemblers

(along with VICUNA and SAVAGE) which specifically aims at viral rather than bacterial or

eukaryotic samples. It performs greedy extensions within the dataset, starting with the most

abundant kmer. This kmer is used as a seed, and this seed is grown outwards using a read

which perfectly maps to it. A new kmer is drawn from the prefix of this read, and this kmer must

also be common to the whole set; it must be much more abundant than any other kmer of the

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

same size, and occur more than ten times in the dataset. Though this assembler is not designed

primarily as a metagenomic assembler, the authors assert that it is capable of performing well

with samples of uneven coverage, a problem encountered when assembling environmental or

heterogeneous samples. The software has been used in the assembly of viruses such as Zika

virus and H1N1 influenza [37, 38]. Following a similar strategy, PRICE [30] also builds out an

assembly using greedy paired end extension. However, it requires an initial assembly produced

by a different assembler to start from, and then extends starting from the reads with the highest

observed coverage, collapsing identical (and near-identical) reads to simplify the problem. Unlike

other assemblers, it only functions in a single stranded orientation. The assembler has been

used with Bunyavirus [39] and multiple water sample based metagenomic studies [40].

MAP [41] uses paired end information and specifically aims to break apart chimeric contigs in

the assembly. Reads are filtered before the overlap stage to reduce the pairwise alignments

required by the process, and simple paths joining reads are discovered first. Paired end reads

are then used to support and simplify paths, with edges removed that are insufficiently supported

in the dataset.

Omega [27] addresses the computational difficulties of OLC based assembly with a hash

function built of the prefix and suffix of each read in the dataset which it uses to compute

overlaps. A bi-directed graph is built up by matching reads to one another, and this is simplified

by removing transitive edges (reads which are completely contained within a larger contiguous

structure). Minimum cost flow analysis is performed on the basis of string copy number, to

simplify the graph further, and long mate pair information is used to scaffold the contigs. There is

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

no explicit stage for resolving chimeric contigs; it is assumed that the nature of an OLC approach

will hinder their formation.

SAVAGE [42] is an overlap based assembler of viral quasi-species, which reconstructs

individual haplotypes in the final assembly by conservatively building overlap graphs (with strict

minimal overlap length and of sequence similarity requirements). BBAP (the BLAST-based

assembly pipeline [43]) creates a partial intermediary assembly which acts as a

pseudo-reference for the remainder of the assembly process.

4.2. De Bruijn Graph based assemblers

In general when assembling using de Bruijn graph based tools, an a priori decision must be

made about the size of the kmer in the underlying graph. This decision can greatly affect the

resulting assembly - if the kmer size is too large, the resulting graph structure may be too

disconnected, but if kmer size is too small, the graph may become overly connected making it

harder to navigate paths through it. The IDBA family of assemblers (e.g. IDBA-UD) attempts to

solve this problem by iterating through increasing kmer sizes, pruning the graph and merging

bubbles (loops) along the way. The graph is broken up at points of significantly differing

coverage, with information from paired end data included (although this is less informative in

metagenomic rather than genomic cases). IDBA-UD has been used for assembly of a diverse

range of bacterial and viral metagenomes (e.g. [44, 45]). More recently, MEGAHIT has used the

process of increasing kmer size in assembly, but coupled it with succinct de Bruijn graphs which

are more efficient in computational terms. This assembler is several orders of magnitude faster

and requires significantly less memory in the process of assembly, and shows further

performance increases when run on a GPU. This attention to computational performance as well

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

as to assembly completeness has made MEGAHIT one of the most popular of the current crop

of metagenomic assemblers.

Velvet, a popular genome assembler, has received two updates aimed at metagenomic

assembly in the form of MetaVelvet [46] and MetaVelvet-SL [29]. In MetaVelvet, a dBg graph is

built using Velvet and the population structure is estimated from the coverage of nodes

(modelled as Poisson distributions). The graph is then partitioned into subgraphs (each a

hypothetical different species) using these coverage peaks as a guide. Chimeric and repeat

contigs are identified and split using paired end information and local differences in coverage.

This assumes that genomes are distinct mostly on coverage information (which will be relative to

abundance), which may not be the case with low abundance genomes that are more susceptible

to stochastic noise. MetaVelvet-SL is an extension of MetaVelvet that improves upon the

decision making process for identifying chimeric contigs. An SVM (support vector machine) is

trained on multiple criteria (paired end information, coverage, contig lengths) for each

dinucleotide pairing (AA, AT...GG); a training set is generated from a similar population to the

sample, the SVM is trained on this, and then passed over the sample graph for decomposition.

Ray is another commonly used genomic assembly to have received a metagenomic adaption in

the form of RayMeta [28]. This is an extension of Ray, where no graph partitioning is performed,

but unlike Ray (where a single peak coverage is expected for the whole graph and kmers with a

significantly lower coverage are excluded), in RayMeta a localised coverage distribution is

generated for each read path. These graphs are then walked using heuristic methods. A big

emphasis for RayMeta is on computational efficiency and a lot of effort has been focused on

scalability and distributability across standard clusters. This enables complex datasets to be

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

processed across a networked cluster of low memory machines, avoiding the need for

expensive, large memory architectures.

Although not specifically a metagenomic assembler, SPAdes [18] is aimed at genome assembly

from single cell data, but its core assumptions of uneven coverage also make it suitable for

metagenomic assembly. It builds multiple dBgs with differing kmer sizes, and adds hypothetical

kmers to ensure a connected graph. Chimeric contigs which are produced by these hypothetical

kmers are then identified and split in a later stage. metaSPAdes [47] incorporates SPAdes into a

metagenomic assembly pipeline and introduces new heuristics for differentiating intergenomic

repeats between species.

Finally, VICUNA is one of the few assemblers released which focuses on reconstructing viral

genomes. It uses neither a dBg nor an OLC approach. Rather it clusters similar reads together

first, by generating a hash value for each read. Reads which are identical or similar will share the

same hash value. These reads are then used to construct contigs, based on shared kmers, and

reads which appear in multiple hashes can enable contigs to be merged. This is not guaranteed

to detect all good suffix/prefix matches however, so a further seed based extension is performed

on the now greatly reduced dataset. The authors propose this for populations of diverse but

non-repetitive genomes, with high but variable coverage.

5. Assembly pipelines

A number of software pipelines are available that combine read pre-processing, metagenomic

assemblers and post-assembly analysis. Perhaps the most comprehensive example is

MetAMOS [48], which, at the time of writing, supports almost 20 genomic and metagenomic

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

assemblers, along with a wide range of pre-processing, filtering, validation and annotation tools.

Users can create workflows containing combinations of the tools that are suited to their datasets.

InteMAP [49] integrates output from two dBG assemblers (ABySS, IDBA-UD) and one OLC

assembler (Celera) by separately merging low and high coverage contigs from pairs of

assemblers. The authors of EnsembleAssembler also argue that merging the output from dBG

and OLC assemblies can produce improved results [50]. MetaCRAM [24] is focussed on efficient

storage via compression of metagenomic datasets. It taxonomically classifies reads and then

assembles unclassified reads using IDBA-UD. Both the aligned reads and the unaligned read

assemblies are then compressed for storage. MetaCompass [51] first maps reads against

reference datasets, then generates reference-guided contigs, polishes them with Pilon [52] and

finally combines unmapped reads with the polished contigs using MEGAHIT.

6. Assessing assembly quality

With an ever increasing range of metagenomic assemblers available, how can researchers

choose the tool for their application? The N50 is an oft quoted statistic that is casually used to

imply the quality of an assembly. If all contigs in an assembly are ordered by length, the N50 is

the minimum size of contigs that contains 50% of the assembled bases. For example an N50 of

10,000 bp means that 50% of the assembled bases are contained in contigs of at least 10,000

bp. This statistic only indicates the contiguity of the assembled bases, is easy to manipulate (e.g.

tools make different decisions on removal of small contigs which they consider noise or chaff),

and gives no measure of assembly accuracy. A new assembler could generate long strings of

random As, Cs, Gs and Ts and achieve high N50 but with no accuracy to the underlying

genome, indeed the N50 could even be larger than the biological genome. Thus while it is the

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

most used assembly statistic, it must be used cautiously and its significance understood. For

example well established assembly tools designed for single genomes may produce assemblies

of metagenomic datasets with high N50 values. However, this may have been achieved by

removing kmers representing lower coverage species or collapsing inter-strain variation e.g.

sacrificing complexity for contiguity.

Assembly contiguity is important - after all, the whole point of assembling a metagenomic

dataset is to obtain longer sequences for downstream analysis. However, the ability to capture

the metagenomic diversity of a sample - including the lower abundance species and strains -

may be equally important. Thus there is a compromise between the desire for long contiguous

sequence and the desire for an accurate representation of community composition, possibly

down to the strain level. The aim of the project should lead to a choice of assembler and

assembly parameters - particularly kmer size - that moves the emphasis one way or another.

A number of tools exist for assessing metagenome assembly quality. MetaQUAST [53] performs

a BLAST search of contigs against a database of 16S rRNA genes and will automatically

download the top 50 references. It then performs a reference-based quality assessment of

contigs that align to these references. Such an approach is limited only to bacterial sequences.

BUSCO (Benchmarking Universal Single-Copy Orthologs) uses gene content to assess

assembly quality and completeness [54]. It comes with a database of single-copy vertebrate,

arthropod, metazoan, fungi and eukaryotic genes, as well as a smaller set of prokaryotic

universal marker genes. CheckM also uses the presence of marker genes to assess assembly

quality, but incorporates information about the position of a genome within a reference genome

tree and collocation of genes in order to improve accuracy [55]. The Assembly Likelihood

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

Framework (ALE) evaluates genomic and metagenomic assemblies with a reference-free

approach that incorporates read quality, mate pair orientation, read pair insert length,

sequencing coverage, read alignment and k-mer frequency [56].

In the field of single genome assembly, contests have been used in an attempt to compare the

performance of different algorithms. In metagenomic assembly, the Critical Assessment of

Metagenome Interpretation (CAMI) set out to develop an “independent, comprehensive and

bias-free evaluation” of both binning and assembly methods [57]. Its success relied on

developers of tools and pipelines being willing to submit answers to a set of challenges and the

organisers received six entries to the metagenomic assembly contest. Contestants were

required to submit reproducible assemblies of three simulated metagenomic communities which

were created from real sequencing data of newly sequenced viruses, bacteria and their

plasmids. The results demonstrated substantial differences between the assemblies produced

by the six teams - for example total assembly size ranged from 12.32 Mb to 1.97 Gb for a

dataset with an expected assembly size of 2.80 Gb. Results also varied substantially according

to the parameter settings chosen for each tool. Notably assemblers using multiple kmers

performed better than those using a single kmer size. All tools struggled with assembly of closely

related genomes and the authors describe this as an “unsolved problem”. Overall, there were

three assembly tools that performed better - MEGAHIT, Meraga (MEGAHIT combined with

Meraculous [58]) and Minia [59] - but it’s not clear that this will necessarily be the case with all

datasets, or in the hands of all researchers.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

7. Conclusion

Assembling genomes out of heterogeneous samples is an extremely challenging problem and

one that remains unsolved. The first specialised metagenomic assembly tool was released

comparatively recently, in 2011, and the intervening years have seen the introduction of a wealth

of new tools. Picking the right tool and then picking the right parameters for a specific dataset

are not straightforward tasks. Projects like the CAMI competition can contribute to the

understanding of the strengths and weaknesses of different approaches, but researchers will

benefit from trying a range of tools and parameters. As such, there is really no substitute for

dedicated post-assembly analysis using both automated tools such as MetaQUAST and manual

analysis by the researchers themselves.

The focus of this article has been on assembly tools for short-read metagenomics, as Illumina

remains the dominant platform for metagenomics [1] due to the lowest cost per Gbp of sequence

and the need for high depth of sequencing of metagenomics samples. New library methods for

Illumina sequencers e.g. Illumina synthetic long reads [60], Dovetail in vitro HiC [61], and 10x

Genomics microfluidics created read clouds [62] allow more contiguous assemblies but require

longer DNA (10kb for synthetic long reads, and over 50kb for Dovetail and 10x Genomics) which

may be hard to extract from all samples, especially without introducing bias. In vivo HiC

cross-links DNA within live cells, allowing scaffolding similar to Dovetail, but uniquely it also

allows grouping of chromosomes and plasmids in the same original cells [63].

Researchers are increasingly attracted to long-read technologies e.g. from established Pacific

Biosciences [64] or the cheap, portable Oxford Nanopore Technologies MinION [65]. Both may

simplify the need for assembly (with individual reads spanning multiple genes) or allow for

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

generation of much longer contiguous sequence. Assembly of reads from these third generation

platforms abandons de Bruijn graph approaches and returns to the Overlap/Layout/Consensus

models used in the earlier days of Sanger sequencing. As yet, there are no published tools

dedicated solely to assembly of metagenomes from third generation platforms, but impressive

results are possible using genome assembly tools such as Canu [66] or the very computationally

efficient Minimap [67]. As the cost comes down and the accuracy and yields improve, these new

technologies are likely to seem increasingly attractive platforms for metagenomic experiments.

References

1. Mitchell AL, Scheremetjew M, Denise H et al. (2017). EBI Metagenomics in 2017: enriching

the analysis of microbial communities, from sequence reads to assemblies. Nucl. Acids Res.

46(D1):D726-D735.

2. Ling LL, Schneider T, Peoples AJ et al. (2015). A new antibiotic kills pathogens without

detectable resistance. Nature 517:455-459.

3. The Human Microbiome Project Consortium (2012). Structure, function and diversity of the

healthy human microbiome. Nature 486(7402):207–214.

4. Afshinnekoo E, Meydan C, Chowdhury S et al. (2015). Geospatial Resolution of Human and

Bacterial Diversity with City-Scale Metagenomics. Cell Systems 29;1(1):72-87.

5. Baker KS, Leggett RM, Bexfield NH et al. (2013) Metagenomic study of the viruses of African

straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus.

Virology 441(2):95–106.

6. Venter JC, Remington K, Heidelberg JF et al. (2004). Environmental Genome Shotgun

Sequencing of the Sargasso Sea. Science 304(5667):66-74.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

7. Sunagawa S, Coelho LP, Chaffron S et al. (2015). Structure and function of the global ocean

microbiome. Science 348(6237).

8. Turner TR, Ramakrishnan K, Walshaw J et al. (2013). Comparative metatranscriptomics

reveals kingdom level changes in the rhizosphere microbiome of plants. The ISME Journal

(2013) 7, 2248–2258.

9. Strazzulli A, Fusco S, Cobucci-Ponzano B et al. (2017). Metagenomics of microbial and viral

life in terrestrial geothermal environments. Reviews in Environmental Science and

Bio/Technology 16(3):425-454.

10. Daniel R. (2005). The metagenomics of soil. Nature Reviews Microbiology 3:470-478.

11. Nesme J, Achouak W, Agathos SN et al. (2016). Back to the Future of Soil Metagenomics.

Frontiers in Microbiology 7:73. Doi: doi: 10.3389/fmicb.2016.00073.

12. Myers EW, Sutton GG, Delcher AL et al. (2000). A whole-genome assembly of Drosophila.

Science 287(5461):2196-204.

13. Pevzner PA, Tang H, Waterman MS (2001). An Eulerian path approach to DNA fragment

assembly. Proc Natl Acad Sci USA 98(17): 9748–9753.

14. DR Zerbino and E Birney (2008). Velvet: Algorithms for de novo short read assembly using

de Bruijn graphs. Genome Research 18(5): 821–829.

15. Simpson JT, Wong K, Jackman SD et al. (2009). ABySS: A parallel assembler for short read

sequence data. Genome Research 19(6):1117–1123.

16. Li R, Zhu H, Ruan J et al. (2010). De novo assembly of human genomes with massively

parallel short read sequencing. Genome Research 20: 265-272.

17. Peng Y, Leung HCM, Yiu SM et al. (2010). IDBA – a practical iterative de Bruijn graph de

novo assembler. In: Berger B (eds) Research in Computational Molecular Biology. RECOMB

2010. Lecture Notes in Computer Science, vol 6044. Springer, Berlin, Heidelberg.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

18. Bankevich A, Nurk S, Antipov D et al. (2012). SPAdes: A New Genome Assembly Algorithm

and Its Applications to Single-Cell Sequencing. Journal of Computational Biology 19(5) (2012),

455-477.

19. Mapleson D, Drou N, Swarbreck D (2015). RAMPART: a workflow management system for

de novo genome assembly. Bioinformatics 31(11):1824-6.

20. Desai A, Marwah VS, Yadav A et al. (2013). Identification of Optimum Sequencing Depth

Especially for De Novo Genome Assembly of Small Genomes Using Next Generation

Sequencing Data. PLOS One 12;8(4):e60204. doi:10.1371/journal.pone.0060204.

21. Matthews TJ, Whittaker RJ (2014). On the species abundance distribution in applied ecology

and biodiversity management. Journal of Applied Ecology 52(2):443-454.

22. Howe AC, Jansson JK, Malfatti SA et al. (2014). Tackling soil diversity with the assembly of

large, complex metagenomes. PNAS 111(13):4904–4909.

23. Li D, Liu CM, Luo R et al. (2015). MEGAHIT: an ultra-fast single-node solution for large and

complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31(10):1674-6.

24. Kim M, Zhang X, Ligo JG et al. (2016). MetaCRAM: an integrated pipeline for metagenomic

taxonomy identification and compression. BMC Bioinformatics 17:94.

25. Wood DE, Salzberg SL (2014). Kraken: ultrafast metagenomic sequence classification using

exact alignments. Genome Biology 15:R46.

26. Peng Y, Leung HC, Yiu SM et al. (2012). IDBA-UD: a de novo assembler for single-cell and

metagenomic sequencing data with highly uneven depth. Bioinformatics 1;28(11):1420-8.

27. Haider B, Ahn TH, Bushnell B et al. (2014). Omega: an overlap-graph de novo assembler for

metagenomics. Bioinformatics 30(19):2717-22.

28. Boisvert B, Raymond F, Godzaridis E et al. (2012). Ray Meta: scalable de novo

metagenome assembly and profiling. Genome Biology 13:R122.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

29. Afiahayati, Sato K, Sakakibara Y (2015). MetaVelvet-SL: an extension of the Velvet

assembler to a de novo metagenomic assembler utilizing supervised learning, DNA Research

22(1):69–77.

30. Ruby JG, Bellare P, Derisi JL (2013). PRICE: software for the targeted assembly of

components of (Meta) genomic sequence data. G3 20;3(5):865-80.

31. Lam K, Hall R, Clum A et al. (2016). BIGMAC : breaking inaccurate genomes and merging

assembled contigs for long read metagenomic assembly. BMC Bioinformatics 17:435.

32. Laserson J, Jojic V, Koller D (2011). Genovo: de novo assembly for metagenomes. Journal

of Computational Biology 18(3):429-43.

33. Gupta A, Kumar S, Prasoodanan VPK et al. (2016). Reconstruction of Bacterial and Viral

Genomes from Multiple Metagenomes. Frontiers in Microbiology 7:469.

34. Vázquez-Castellanos JF, García-López R, Pérez-Brocal V et al. (2014). Comparison of

different assembly and annotation tools on analysis of simulated viral metagenomic communities

in the gut. BMC Genomics 15:37.

35. Afiahayati, Sato K, Sakakibara Y (2013). An extended genovo metagenomic assembler by

incorporating paired-end information. PeerJ 1:e196.

36. Hunt M, Gall A, Ong SH et al. (2015). IVA: accurate de novo assembly of RNA virus

genomes. Bioinformatics 31(14):2374-6.

37. Lahon A, Arya RP, Kneubehl AR et al. (2016). Characterization of a Zika Virus Isolate from

Colombia. PLoS Neglected Tropical Diseases 10(9):e0005019.

38. Watson SJ, Langat P, Reid SM et al. (2015). Molecular Epidemiology and Evolution of

Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of

Virology 89(19):9920–9931.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

39. Chandler JA, Thongsripong P, Green A et al. (2014). Metagenomic shotgun sequencing of a

Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic

history of the Phleboviruses. Virology 464:312-319.

40. Ross DE, Gulliver D (2016). Reconstruction of a Nearly Complete Pseudomonas Draft

Genome Sequence from a Coalbed Methane-Produced Water Metagenome. Genome

Announcements 4(5):e01024-16.

41. Lai B, Ding R, Li Y et al. (2012). A de novo metagenomic assembly program for shotgun

DNA reads. Bioinformatics 28(11):1455-62.

42. Baaijens JA, El Aabidine AZ, Rivals E et al. (2017). De novo assembly of viral quasispecies

using overlap graphs. Genome Research 27:835–848.

43. Lin Y, Hsieh C, Chen J et al. (2017). De novo assembly of highly polymorphic metagenomic

data using in situ generated reference sequences and a novel BLAST-based assembly pipeline.

BMC Genomics 18:223.

44. Norman JM, Handley SA, Baldridge MT et al. (2015). Disease-Specific Alterations in the

Enteric Virome in Inflammatory Bowel Disease. Cell 160(3):447-460.

45. Di Rienzi SC, Sharon I, Wrighton KC et al. (2013). The human gut and groundwater harbor

non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife

2:e01102.

46. Namiki T, Hachiya T, Tanaka H et al. (2012). Metavelvet: an extension of velvet assembler

to de novo metagenome assembly from short sequence reads. Nucleic Acids Research 40:e155.

47. Nurk S, Meleshko D, Korobeynikov A et al. (2017). metaSPAdes: a new versatile

metagenomic assembler. Genome Research 27: 824-834.

48. Treangen TJ, Koren S, Sommer DD et al. (2013). MetAMOS: a modular and open source

metagenomic assembly and analysis pipeline. Genome Biology 14:R2.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

49. Lai B, Wang F, Wang X et al. (2015). InteMAP: Integrated metagenomic assembly pipeline

for NGS short reads. BMC Bioinformatics 16:244.

50. Deng X, Naccache SN, Ng T et al. (2015). An ensemble strategy that significantly improves

de novo assembly of microbial genomes from metagenomic next-generation sequencing data.

Nucleic Acids Research 43(7):e46.

51. Cepeda V, Liu B, Almeida M et al. (2017). MetaCompass: Reference-guided Assembly of

Metagenomes. bioRxiv. doi:10.1101/212506.

52. Walker BJ, Abeel T, Shea T et al. (2014). Pilon: An Integrated Tool for Comprehensive

Microbial Variant Detection and Genome Assembly Improvement. PLoS One 9:e112963.

53. Mikheenko A, Saveliev V, Gurevich A (2016). MetaQUAST: evaluation of metagenome

assemblies. Bioinformatics 32(7):1088-1090.

54. Simão FA, Waterhouse RM, Ioannidis P et al. (2015). BUSCO: assessing genome assembly

and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212.

55. Parks DH, Imelfort M, Skennerton CT et al. (2015). CheckM: assessing the quality of

microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research

25:1043-1055.

56. Clark SC, Egan R, Frazier PI et al. (2013). ALE: a generic assembly likelihood evaluation

framework for assessing the accuracy of genome and metagenome assemblies. Bioinformatics

29(4):435-443.

57. Sczyrba A, Hofmann P, Belmann P et al. (2017). Critical Assessment of Metagenome

Interpretation - a benchmark of metagenomics software. Nature Methods 14, 1063–1071.

58. Chapman J, Ho I, Sunkara S et al. (2011). Meraculous: de novo genome assembly with

short paired-end reads. PLoS One 6, e23501.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

59. Chikhi R, Rizk G (2013). Space-efficient and exact de Bruijn graph representation based on

a Bloom filter. Algorithms for Molecular Biology 8:22.

60. McCoy RC, Taylor RW, Blauwkamp TA et al. (2014). Illumina TruSeq Synthetic Long-Reads

Empower De Novo Assembly and Resolve Complex, Highly-Repetitive Transposable Elements.

PLOS One 27(5):757-767.

61. Putnam NH, O’Connell BL, Stites JC et al. (2016). Chromosome-scale shotgun assembly

using an in vitro method for long-range linkage. Genome Research 26(3):342-50.

62. Weisenfeld NI, Kumar V, Shah P et al. (2017). Direct determination of diploid genome

sequences. Genome Research 27(5):757-767.

63. Stewart RD, Auffret MD, Warr A et al. (2018). Assembly of 913 microbial genomes from

metagenomic sequencing of the cow rumen. Nature Communications 9:870.

64. Frank JA, Pan Y, Tooming-Klunderud A et al. (2016). Improved metagenome assemblies

and taxonomic binning using long-read circular consensus sequence data. Scientific Reports

6:25373.

65. Leggett RM, Clark MD (2017). A world of opportunities with nanopore sequencing. Journal of

Experimental Botany 68(20):5419–5429.

66. Koren S, Walenz BP, Berlin K et al. (2017). Canu: scalable and accurate long-read assembly

via adaptive k-mer weighting and repeat separation. Genome Research 27:722-736.

67. Li H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long

sequences. Bioinformatics 32(14):2103-2110.

68. Li D, Luo R, Liu CM et al. (2016). MEGAHIT v1.0: A fast and scalable metagenome

assembler driven by advanced methodologies and community practices. Methods 102:3-11.

69. Yang X, Charlebois P, Gnerre S et al. (2012). De novo assembly of highly diverse viral

populations. BMC Genomics 13:475.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

Funding

This work was supported by a Biotechnology and Biological Sciences Research Council

(BBSRC) grant to RML (BB/M004805/1), a Core Strategic Programme Grant to Earlham Institute

(BB/J004669/1) and by the Natural History Museum.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27332v1 | CC BY 4.0 Open Access | rec: 8 Nov 2018, publ: 8 Nov 2018

