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Identification of biologic objects in images is a major source of biodiversity data. Currently

this is done by scarce taxonomic experts and data is thus limited in scope and

reproducibility. Automated identification in fields such as plankton research or

micropaleontology, where enormous numbers of objects are available, would significantly

improve data quantity and quality, particularly in applied studies of environmental and

climate change. We describe a machine learning workflow based on the MobileNet

convolutional network. The software can identify closely related species of radiolarians, a

morphologically challenging group of microfossils, and from complete species populations

(not only ideal specimens) as they are normally identified in standard transmitted light

microscope preparations. Multiple, partial focus, depth of field limited images were

obtained for each fossil specimen from multiple radiolarian microslides. Images were

normalized and in one test also cropped to remove most systematic slide-linked image

biases (e. g. type of background particles) that could be used by a classifier as non-

taxonomic clues to species assignment. An average of 60 specimens per species for 16

species in two distinct clusters of closely related forms (9 species in the Antarctissa group

and 7 species in the genus Cycladophora) were used to train and test the system. An

overall average classification accuracy of ca 73% was achieved, and for some species

>85%. Using a cutoff for specimens with classifier-calculated low certainty values boosts

overall accuracy close to 90%, but at the cost of ca 1/3 reduction in identifiable specimens.

This latter accuracy is close to the reproducibility of human experts, albeit with more

unidentifiable specimens. The most important constraint to broader use is the time and

effort needed by taxonomic experts to collect and label images to be used in training, as

many species in these diverse biotas are rare, and the numbers of taxonomic experts

available are very limited.
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ABSTRACT10

Identification of biologic objects in images is a major source of biodiversity data. Currently this is done by

scarce taxonomic experts and data is thus limited in scope and reproducibility. Automated identification in

fields such as plankton research or micropaleontology, where enormous numbers of objects are available,

would significantly improve data quantity and quality, particularly in applied studies of environmental and

climate change. We describe a machine learning workflow based on the MobileNet convolutional network.

The software can identify closely related species of radiolarians, a morphologically challenging group

of microfossils, and from complete species populations (not only ideal specimens) as they are normally

identified in standard transmitted light microscope preparations. Multiple, partial focus, depth of field

limited images were obtained for each fossil specimen from multiple radiolarian microslides. Images were

normalized and in one test also cropped to remove most systematic slide-linked image biases (e. g. type

of background particles) that could be used by a classifier as non-taxonomic clues to species assignment.

An average of 60 specimens per species for 16 species in two distinct clusters of closely related forms (9

species in the Antarctissa group and 7 species in the genus Cycladophora) were used to train and test

the system. An overall average classification accuracy of ca 73% was achieved, and for some species

>85%. Using a cutoff for specimens with classifier-calculated low certainty values boosts overall accuracy

close to 90%, but at the cost of ca 1/3 reduction in identifiable specimens. This latter accuracy is close

to the reproducibility of human experts, albeit with more unidentifiable specimens. The most important

constraint to broader use is the time and effort needed by taxonomic experts to collect and label images

to be used in training, as many species in these diverse biotas are rare, and the numbers of taxonomic

experts available are very limited.
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INTRODUCTION31

Paleontologic and neontologic observations of organism occurrences are central to studies of modern32

and past biodiversity. While for some types of studies occurrence data for genera or higher taxa (e.g.33

‘functional groups’ in ecology) may be acceptable (Richardson, 2006; Barton et al., 2016), for many34

types of research it is necessary to classify specimens to species level, e.g. for better understanding of35

modern ecology and ecosystem function, biostratigraphic determination of the geologic age of sediments,36

reconstruction of past environments, biodiversity dynamics, and many other areas of research (CLIMAP37

project members, 1976; Bolli et al., 1985; Prance, 1994; Wiese et al., 2016; Tréguer et al., 2018). This38

data is still overwhelmingly collected by human observation and manual recording of data. This is39

labor intensive and prone to subjective differences between workers that degrade quality in syntheses40

of published data. Particularly in combination with a global shortage of expert taxonomists, this style41

of data collection is a major barrier to the amount and quality of primary data that can be generated42

for (paleo)biodiversity and other research. Although in many areas of paleontologic work fossils are43

very rare (e.g. vertebrates, and in particular hominids), in other areas (some fossil invertebrate groups,44

microfossils), and in biologic research, the amount of material potentially available for observation45

is extremely large, and faster, more objective methods of species occurrence data generation would46
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allow substantial improvement in the scope and quality of research done. In micropaleontology for47

example, where the current recovered deep-sea sediment archives already contain an estimated 1015
48

fossil specimens, it would open a vast repository of evolution, ecology and climate change data to study49

(Lazarus, 2011).50

The potential of automated species identification of specimens for such materials has long been51

recognized, and many attempts have been made to develop computerized automatic identification of52

biologic and paleontologic objects. Early work concentrated on image preprocessing and extraction of53

exterior shell outlines, and algorithms to extract taxonomically useful data for identification from these54

(Lohmann, 1983; Hills, 1988). These systems were used either for broad category identification (Benfield55

et al., 2007), object-background separation (Knappertsbusch et al., 2009), or for extracting general,56

non-species specific morphologic metrics for ecologic or evolutionary studies (Granlund, 1986; Schmidt57

et al., 2004). Later work using more advanced programs have made use of whole image data, a variety of58

general image metrics (both for outlines and internal structures such as texture) and attempt, sometimes59

via custom, taxon specific algorithms, to classify the imagery (Wu et al., 2015; Apostol et al., 2016;60

Keçeli et al., 2017). Lastly, recent work has begun to explore using advanced neural network systems to61

automatically classify objects, e.g. plankton (Zheng et al., 2017) and microfossils (Beaufort and Dollfus,62

2004; Keçeli et al., 2017). So far however, these newer studies have mostly made use of a restrictive set63

of images for training and testing. For example, in both Apostol et al. (2016) and Keçeli et al. (2017) the64

test images are pre-selected for completeness, orientation, separation from background and other image65

optimizations, and each image or image set comes from very distinctive taxonomic groups (genus, family,66

or even ordinal level distinctions). Such work is valuable as it determines the general applicability of these67

newer software systems to the broad range of morphologies encountered in e. g. microfossil identification.68

Real world identification of species however deals with a very different set of images, and a different set69

of classification challenges. Microfossils for example when observed in normal preparations are in mixed70

assemblages of many species, often include non target objects (other groups of microfossils, inorganic71

particles), include taxonomically closely related and thus usually morphologically very similar ‘sister’72

species, the specimens are presented against cluttered backgrounds, sometimes overlapping with other73

objects, and in a wide variety of orientations and image quality. To our knowledge the ability of even74

modern neural network systems to usefully classify images to species level has not yet been adequately75

tested under such conditions. Only the SYRACO system (Dollfus and Beaufort, 1999; Beaufort and76

Dollfus, 2004) has been demonstrated to work under such conditions, but with a very limited number (11)77

of mostly highly distinct, relatively simple image types (bright coccolith images in darkfield illumination).78

In this study we address this issue of selective vs ‘real world’ imagery for species-level classification.79

We use images as they appear in the microscope, not isolated from the complex background of other80

microfossils, and with typical image limitations such as only partial sharp focus due to depth of field81

limitations. Discrimination between closely related taxa is the most difficult task performed by human82

specialists, and is much more challenging than discriminating between more distantly related, morpholog-83

ically distinct forms. We thus also explicitly choose species that are morphologically similar to each other,84

and indeed, are challenging even for human experts to properly separate.85

MATERIALS86

We have chosen to test automated identification systems on fossil Cenozoic radiolarians. Radiolarians87

(in this study, we mean only the group Polycystinea, which form fossils) are one of the major groups of88

organisms used in micropaleontologic research: Cenozoic forms in particular are extensively employed89

in studies of ocean and climate change, to provide geologic age estimates for sediments and rocks, and90

in studies of biologic evolution (Lazarus, 2005). Radiolarians have a high global living diversity of ca91

400 species and an unusually large range of shell architectures, but also due to their high total diversity,92

frequently with >100 species in individual samples, many species are found in a single sample that93

belong to the same genus, and thus have very similar morphologies. Radiolarian shells are constructed94

as 3-dimensional forms out of an open, pore-dominated lattice-work of transparent opaline silica, and95

although a great variety of shell forms exist (spheres, discs, and many others, with various spines or96

other ornamentation), the taxa used in our study are approximately conical in shape. They are normally97

studied using transmitted light microscopy in mixed assemblages of sieved material, including often not98

only radiolarians but other types of microfossils such as diatoms, and non-biogenic particles, extracted99

from sediment or rock samples. Because of their small size (ca 100µm) only a part of the individual100
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751A-1H-1,98 cm dbl 0.10 32 32

1138A-2R-4 27/31 cm jr 0.70 16 19 7 13 2 57

751A-1H-2 7/7 cm jr 1.65 5 5 1 14 52 12 89

693A-6R-5 48/55 cm dbl 3.50 7 15 4 24 50

751A-3-4 85/87 cm jr 4.10 1 26 6 29 3 65

689B-2H-5 55 cm dbl 4.45 50 1 51

693A-18R-4 101/107 cm jr 6.80 47 19 29 28 6 7 136

689B-3H-3 116/118cm jr 7.47 4 25 7 10 25 3 74

689B-4H-4 116/118cm dbl 9.89 3 8 2 18 31

1138A-17-2 105/107cm dbl 10.30 83 6 12 101

751A-10H-1 98 cm dbl 11.20 1 38 59 53 151

845A-19-3,107 cm dbl 12.35 11 8 19

278-20-1 77/78 cm dbl 16.00 1 35 8 24 68

751A-17-CC dbl 18.40 39 39

Total specimens by species 79 45 82 62 84 35 27 31 29 65 90 66 62 90 53 63 963

Table 1. List of samples with numbers of specimens of species. Geological ages in millions of years

(Ma) from deep-sea drill section age model library at www.nsb-mfn-berlin.de.

shells are in sharp focus (within the microscope’s depth of field) at any one time. As the preparation101

method (Moore Jr, 1973) simply deposits particles randomly over the surface of the microscope slide,102

specimens are found in all possible 3-dimensional orientations, even if due to their shape, individual103

species tend to orient in only a few preferred positions on the slide surface. Lastly, the random distribution104

of particles results in numerous specimens touching, or partially overlapping with other particles on the105

slide. Radiolarian shells typically have both external and internal structures, both used for classification.106

Internal structures can usually be imaged, albeit with loss of clarity, due to the transparent nature of the107

shell material of the outer shell wall, and the ability to image, via control over the depth of field, only a108

narrow plane within the shell. These aspects – very high variety of objects, highly porous lattice structure,109

focus limitations, 3D orientation variation, and overlapping objects – all add to the challenge of object110

identification, beyond those present in most biologic materials such as broken specimens, within-species111

variation in morphology, and the taxonomic differences between different species’ shell morphologies.112

The specific materials chosen are limited by two additional practical considerations. Neural network113

systems work by first being trained on a large number of reference images of the categories that they114

should learn. There is no fixed number of reference images required, but at least several dozen, and115

ideally several hundred are normally needed. This requirement intersects with the reality that (as is true116

of most biotas), within radiolarian assemblages only a few species are common, while most are rather117

rare (< 1% abundance). As we wish to present the neural system with images as they are encountered118

in the microscope in daily work, we have chosen not to use only pre-selected, optimized images from119

the literature, but new images from specimens taken from actual samples. Thus, to collect reasonable120

numbers of specimen images (here we chose a minimum of ca 30 specimens per taxon) from sets of121

closely related taxa, we are compelled to look for species which are mostly rare, requiring substantial122

effort in scanning assemblages to locate individuals. This in turn limits the number of taxa that can be123

managed in our study. We have therefore chosen a total of 16 species, distributed in two different clusters124

of similar morphologies. These provide us with two independent tests of identification performance on125

closely related taxa, and the opportunity to compare performance as well to identification between the126

morphologically more dissimilar clusters. We also chose taxa groups and samples (Antarctic, where127

radiolarian diversity is substantially lower than in the tropics) where many, if not most of our target128

species were, if not common, also not extremely rare.129

The first morphologic group consists of antarctissids - 9 species in the radiolarian genus Antarctissa130
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or closely related forms that are currently assigned to the genera Lithomelissa and Helotholus. Generic131

assignments in Cenozoic radiolarians are currently rather arbitrary and many closely related forms are132

still assigned distinct generic names that probably should be synonymized. This situation is due to the133

highly artifical generic classification created by early workers such as E. Haeckel, which has not yet134

been formally revised due to limited manpower by current workers (Lazarus et al., 2015). The species135

chosen are Antarctissa denticulata (Ehrenberg 1844), A. strelkovi Petrushevskaya 1967, A. cylindrica136

Petrushevskaya 1967, A. ballista Renaudie and Lazarus 2012, A. robusta Petrushevskaya 1975, A.137

deflandrei (Petrushevskaya 1975), Helotholus? praevema Weaver 1983, H?. vema Hays 1965 and138

Lithomelissa setosa Jörgensen 1900 (Figure 1). Full citations to taxon authors for all species used in139

this study but A. ballista can be found in Lazarus et al. (2015). Antarctissid species are topologically140

segmented-conical, and are constructed out of a large, spherical to thumb-like apical ‘segment’ (the141

cephalis) and a larger, more or less cylindrical lower part to the shell (the thorax), plus several bars and142

struts inside the shell. Their formal taxonomy is not fully resolved, and there are differences of opinion,143

even among the authors of this paper, on the best set of morphologic characters to use for species and144

genus assignment. Due to these differences in choice of characters, different specialists sometimes assign145

identical specimens to different species names. However, a single specialist normally can consistently146

assign species using his or her preferred criteria, with only a small number (< 5%) of individuals being147

ambiguous (not including specimens that cannot be confidently assigned due to orientation, preservation148

or other problems described above). For this study all antarctissids were identified by a single person (JR)149

to ensure consistency in the training set. Species assignment was based both on the external shape and150

lattice wall characteristics of the shell, and as well the number and arrangement of the internal bars and151

struts.152

The second morphologic group examined are species within the genus Cycladophora. Species in153

this genus have a small, subspherical apical segment, a long, variously shaped conical ‘thorax’, and154

depending on species, a short, variously shaped third segment at the base of the shell (Figure 2). The155

taxonomy of this genus has been revised by prior work (Lombari and Lazarus, 1988) and the criteria for156

species discrimination (relative size of main segments, conical angle, outline of shell, pore size and shape,157

etc) are well defined. The differences between some pairs of species are however subtle, and published158

usage by other radiolarian specialists has not always been consistent with the primary definitions given159

in Lombari and Lazarus (1988). Seven species were used: Cycladophora davisiana Ehrenberg 1873, C.160

pliocenica (Hays 1965), C. conica Lombari and Lazarus 1988, C. cosma Lombari and Lazarus 1988, C.161

spongothorax (Chen, 1975), C. humerus (Petrushevskaya, 1975) and C. golli (Chen, 1975). Again, all162

assignments of specimens were done by a single person (DL) to ensure consistency.163

The specimens were imaged from standard radiolarian microscope slides made from ocean sediment164

samples from various deep-sea drilling sections from the Southern Ocean (DSDP Site 278; and ODP Sites165

689B, 693A, 747A, 751A and 1138A) ranging in age from the middle Miocene to the Pleistocene. The166

use of multiple radiolarian slides from different samples was necessary as different species have distinct,167

partially non-overlapping geologic age ranges, and not all time intervals are equally well represented or168

preserved in each deep-sea geologic section. All slides are currently stored in the micropaleontological169

collections of the Museum für Naturkunde, Berlin. Due to images being collected by different workers,170

and in part in different locations, three different microscropes were used for image collection.171

A total of 963 radiolarian specimens were imaged for this study, with an average of 60 individuals per172

species (range 27–90). Details of numbers of specimens by species, samples and slides used are given in173

Table 1.174

METHODS175

Depending on the species and the specimen’s orientation, several focal planes were used to illustrate most176

specimens, so that all or most determining characters could be observed for each specimen, even if not177

all in a single image. Target specimens were approximately centered in the image. The images were178

otherwise not edited or masked, i. e. additional radiolarians and other microfossils were normally present179

in the image background. All the pictures were either taken as JPEG or converted afterwards to JPEG.180

The colorspace was normalized to greyscale. Finally, to make all the pictures comparable to one another,181

they were all resized to a common resolution, i. e. the same pixel to micrometer ratio (8.9 pixel per µm).182

For each species, specimens were randomly split into 10 sets: eight of them constitute the training183

dataset, one the validation dataset and the final one the testing dataset. The training and validation datasets184
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were used by the neural network in an iterative process of trying image analysis algorithms on the training185

images to create classifications of the images, checking with the validation set that the provisionally found186

algorithm is useful (the classifications were at least partially correct), and repeating many times (i. e.187

4000 training steps) to improve the algorithm, i.e. by checking each time the correctness against the188

validation set. The result of this was then compared to the testing dataset to see how well the algorithm189

found by the network performed. This entire procedure was itself repeated, each time using a different190

assignment of the initial 10 sets to the training, validation or testing datasets, to ensure that the specific191

assignment of images to the test dataset was not biasing the estimate of how well the system worked192

(10-fold cross-validation: Mosteller and Tukey, 1968; Stone, 1974).193

The neural network algorithm selected in this study is the MobileNet convolutional neural network194

(Howard et al., 2017). The concept of a convolutional neural network is for the algorithm to learn195

what series of image filters to apply on the picture to optimize the discrimination between the various196

classes (here species). The image filters (also called kernels) are similar in principle to those found197

in many image manipulation programs, where small windows (e. g. 3×3 pixels) containing rules for198

calculating outputs are slid across the source image. Filters of this type are used e.g. for edge detection or199

other image modifications. The MobileNet convolutional neural network uses a specific type of filters:200

depth-wise separable filters. As the name implies, MobileNets were conceived to be computable in theory201

on machines with no more computing power than mobile phones, meaning they are not as computationally202

intensive as more complex models. Two parameters can be modified to simplify the model: the width203

multiplier and the resolution multiplier. Here we chose to keep large multipliers (i. e. a width multiplier204

of 1.0 and an input resolution of 224), to maintain a high level of accuracy.205

The optimization metric that the learning process uses is simply the fraction of images correctly206

classified (ideally 1, when all images are identified correctly). Technically, the software does this by207

trying to minimize the top-1 classification rate. Top–N classification rate is defined as the sum of pictures208

for which none of the first N classes attributed by the algorithm are correct, divided by N. As here N = 1,209

it corresponds simply to the number of cases in which the class (here the species) was incorrectly guessed210

by the algorithm. Classification is based on the confidence value computed by the network that a given211

image belongs to a certain class (species), with the value ranging from 1 to 0.212

Tests suggest that the algorithm performs better if provided with a training dataset including specimens213

pictured in multiple focal planes. In our study the image in each such set of images for a specimen that214

produced the most highly ranked assignment confidence was used to identify the specimen to a species.215

This, at least partially, simulated the way human workers identify species, by looking through the different216

focal plane views to identify key morphologic characters that distinguish species. Human workers however217

combine information from different images in making identification decisions, an important ability which218

our method currently does not include.219

As a result of the training phase, a tailored classification network graph is produced, i. e. a set of220

instructions containing specific filters to apply to the pictures to determine which class (= species) it221

belongs to. Classification using this corrected graph is then applied to the testing dataset: in real case222

scenarios, of course, the testing dataset is the dataset composed of pictures of radiolarians that needs to223

be classified. For each specimen, the classifier outputs a list of top guesses alongside their associated224

certainty.225

All code was run using Python 2.7 (Python Software Foundation, 2010) along with the python module226

TensorFlow (Abadi et al., 2016) which implements graph-based neural networks.227

Three different versions of the images were analyzed. The first version ‘raw’ consisted of the raw228

images with only normalization of size. In the second version ‘leveled’ image grey-levels were adjusted229

to the same mean values. This was done to ensure that consistent differences in grey levels that existed230

between microscopes and/or individual microscope slide image sets could not be used by the neural231

classifier as an indirect source of information for species identification. This would be possible as232

different species were imaged primarily by different workers using different microscopes. A last version233

of the images were ‘cropped’ versions of the leveled images. Here most of the background except that234

immediately surrounding the specimen was removed. This was done for reasons similar to leveling:235

some microscope slides that were the source of the majority of specimens for one or another species236

have characteristically different types of background such as many or few diatoms (a different group237

of microfossils preserved in the same samples), or other non-species related but nonetheless potentially238

usable information that might bias our results. The cropping process was automatic, taking a fixed area at239
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Species # raw levels crop average

over 3

treatments

Antarctissa strelkovi 62 56.45% (35) 54.84% (34) 51.61% (32) 54.30%

Antarctissa ballista 45 71.11% (32) 71.11% (32) 75.56% (34) 72.59%

Antarctissa cylindrica 82 57.32% (47) 54.88% (45) 59.76% (49) 57.32%

Antarctissa deflandrei 84 85.71% (72) 88.10% (74) 85.71% (72) 86.51%

Antarctissa denticulata 79 62.03% (49) 67.09% (53) 68.35% (54) 65.82%

Antarctissa robusta 35 85.71% (30) 94.29% (33) 88.57% (31) 89.52%

Helotholus praevema 31 67.74% (21) 64.52% (20) 70.97% (22) 67.74%

Helotholus vema 29 86.21% (25) 86.21% (25) 93.10% (27) 88.51%

Lithomelissa setosa 27 59.26% (16) 44.44% (12) 81.48% (22) 61.73%

Cycladophora conica 67 61.19% (41) 62.69% (42) 65.67% (44) 63.18%

Cycladophora cosma 62 66.13% (41) 61.29% (38) 67.74% (42) 65.05%

Cycladophora davisiana 65 81.54% (53) 76.92% (50) 76.92% (50) 78.46%

Cycladophora golli 63 80.95% (51) 80.95% (51) 76.19% (48) 79.37%

Cycladophora humerus 53 73.58% (39) 71.70% (38) 86.79% (46) 77.36%

Cycladophora pliocenica 90 86.67% (78) 90.00% (81) 80.00% (72) 85.56%

Cycladophora spongothorax 90 65.56% (59) 70.00% (63) 82.22% (74) 72.59%

all species 71.47% 71.68% 74.59% 72.58%

Antarctissids 68.99% 69.20% 72.36% 70.18%

Cycladophora 73.88% 74.08% 76.76% 74.90%

Table 2. Classification accuracy of specimens by species, and by image treatment: raw (only size

normalization), levels (also greyscale normalization), cropped (most other objects trimmed away).

the center of the images. In about 5% of the images the crop also removed some part of the target species240

image (usually only a small fraction on one edge), but we do not think this had a significant effect on the241

results, or if any, was conservative in reducing our reported success rate.242

RESULTS243

Our results are summarized in Table 2, and the detailed, picture by picture, results are given in the244

Supplementary Material. Over the range of all different image treatments and all specimens the average245

accuracy in species identification was 72.6%, with only a moderate degree of variation due to image246

treatment (71–75%). There was only a slightly greater range of accuracy between the two major groups247

of radiolarians studied, or by treatment: a minimum of 68.99% for antarctissids in the raw image set,248

vs 76.76% for cropped images of Cycladophora. There was however noticeably more variation in249

performance at the level of individual species. For species, a minimum accuracy was obtained for A.250

strelkovi with ca 52% specimens being on average correctly identified (here we exclude L. setosa’s 44.4%251

in the leveled image set: due to the low number of specimens for this species, its results vary in the252

different image sets widely from 44 to 81% and are therefore statistically unreliable). A maximum253

accuracy of 90% was obtained for Cycladophora pliocenica (if we again exclude H. vema’s 93.1% and A.254

robusta’s 94.3% for the same reason of low specimen numbers).255

A striking feature of the results are the differences in the aggregate degree of confidence between the256

population of specimens that are correctly classified vs those that are incorrectly classified (Figure 3). The257

distribution of confidence values for correctly identified pictures is very strongly asymmetric and centered258

near 1.0: for cropped images its median is 0.98, and its skewness -0.51. By contrast, incorrect pictures259

confidence values are scattered over a wider range of values (between 0.3 and 1) with a flatter distribution:260

for cropped images its median is 0.77, and its skewness -0.14.261

Inspection of specimens incorrectly classified shows that the misindentification occurs mostly between262

closely-related species (See Figure 4): antarctissids are almost always misindentified for other species of263

antarctissids and rarely for species of Cycladophora and vice versa.264
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DISCUSSION265

The accuracy of species identifications in our study depends on several factors, but the one that makes the266

largest difference is simply the ‘rejection rate’, i.e. the percent of specimens that are left as ‘unidentifiable’267

vs those that are classified into one of the training categories. If we are willing to accept fairly high268

levels of ‘unidentifiable’ specimens (a bit over 40% of the specimens in the imaged dataset), we can269

achieve nearly 90% accuracy in those specimens that are classified, vs only 71% accuracy if we try270

to classify all specimens in the full dataset. The idea of using an identification system that skips over271

‘uncertain’ specimens in scientific data collection may seem at first to be of questionable validity. In272

reality however human workers also routinely skip specimens that they cannot confidently identify. This273

is true, from our own experience, in all areas of micropaleontologic research, and is presumably true274

as well for all workers that identify biologic specimens in real-world materials. For example, in this275

study, we included every specimen encountered on the slides that we, as experts, felt at least moderately276

confident in correctly identifying, but skipped a significant number of specimens where we were unsure277

of the correct identification. The reasons for uncertainty were varied, including incomplete preservation278

of characters, difficult orientation, obscuring of the view by overlapping other specimens, as well as279

specimens with uncharacteristic/mixed characters. The numbers skipped varied according to observer,280

slide and taxon. Given the uncertain boundary to specimens not only unidentifiable to species level,281

but also to the genus-level category (antarctissids or Cycladophora), we did not attempt to count the282

percentages skipped, but subjectively around 30% of potential specimens were skipped by us and not283

imaged for the study. Thus, an automatic classifier that skips an additional percent of specimens is not284

doing anything fundamentally different than a human worker does, even if the absolute values of skipped285

specimens are much higher. Given the huge numbers of specimens available for study, an automated286

system would simply trade identification completeness for larger numbers of specimens examined. The287

only problem would be if the ‘unidentified’ category is systematically biased, or even worse, inconsistently288

biased towards different species.289

In Fenton et al. (2018), the authors test the consistency of species identification of planktonic290

foraminifera among specialists and trained but inexperienced students by providing them with a series of291

preselected specimens representative of a few species’ morphological ranges and are asked to identify292

them. The authors find a consistency of 78.5% among specialists and 57% among trained students. With293

an overall accuracy of 72.6%, the convolutional neural network trained on a small set of radiolarian294

pictures presented here thus performs slightly worse than a specialist (which was to be expected) but295

significantly better than a trained student. Similarly, still in Fenton et al. (2018), the authors split this296

consistency in three categories according to the confidence of the identification (‘confident’, ‘maybe’, ‘not297

confident’) and find that the consistency is higher in the ‘confident’ category (overall: 77%; specialists:298

93.1%; students: 75%). Here, the algorithm confidence is given numerically, so should we defined the299

‘confident’ category as values over 0.95 confidence (which concerns 997 of the 1987 pictures; or 639 out300

of 963 specimens), the algorithm accuracy on the cropped dataset increases to 88.3% of the specimens301

or 90.5% of the pictures (see Table 3 and Figure 3), again slightly lesser than the consistency among302

specialists but higher than among trained students. In comparing our results to those of Fenton et al.303

(2018) it should be noted that the initial ‘universe’ of specimens included in the training set is not fully304

identical. Whereas we explicitly have not included specimens in our training set that we found difficult to305

uniquely identify, in Fenton et al. (2018) it is not clear to what extent such specimens were excluded from306

the initial specimen selection. An additional difference is that in Fenton et al. (2018) all specimens that307

were selected were subsequently, via additional effort, classified to the same level of fully confident, even308

if initially there were significant differences in opinion on the identification of the specimen. In our study309

the filtering of such difficult specimens mostly occurred at the initial step of selection for imaging, rather310

than subsequently attempting to resolve ambiguous classifications.311

Though the difference between treatments is minimal, the cropped dataset is sensibly more accurately312

identified, which is most probably due to the gain in resolution allowing the algorithm to make use of313

more morphological details to separate the species, and the elimination of background ‘noise’, such as314

other type of particles (diatoms, sponge spicules fragments, rock fragments, etc.) that the algorithm could315

theoretically pick as non-taxonomic, and thus unreliable, clues.316

Differences in accuracy between species are also significant. In particular the algorithm has difficulty317

differentiating closely-related species of Antarctissa (A. denticulata from A. cylindrica and A. strelkovi318

from H. praevema for instance; see Figure 4). These species are known to be difficult to distinguish by319
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Confidence

band

% Pictures in

confidence band

% of them cor-

rectly classified

% Specimens in

confidence band

% of them cor-

rectly classified

(0,0.5] 5.08% (101) 32.67% (33) 1.55% (15) 32.67% (6)

(0.5,0.95] 44.74% (889) 52.19% (464) 32.30% (312) 52.19% (151)

(0.95,1] 50.18% (997) 90.47% (902) 66.15% (639) 88.26% (564)

Table 3. Classification accuracy of pictures and specimens (in the cropped dataset) by confidence

categories, in percent, followed by the actual number of correct identifications vs total number of

identifications in the categorie.

experts, and in fact are often lumped in may studies together as ‘Antarctissa spp.’, or in the case of A.320

strelkovi–praevema, are often considered to be one variable species. Separating such species necessitate321

the combined observations of external and internal characters. One limitation of the MobileNet algorithm322

is that it automatically resizes the pictures to a lower resolution in order to process them in a more323

manageable timeframe (as the algorithm complexity increases significantly with the size of the pictures).324

Problematically, nassellarian radiolarians (and in particular this cluster of Antarctissa species) have a325

complex series of internal spicules that can be diagnostic at the species- or genus-level: these spicules326

(as can be seen on Figure 1.1B, 3 or 6B) are usually only a few micrometer wide (usually close to 1327

µm). This spicular system complexity is probably mostly lost to the downsized image resolution used by328

MobileNet and thus also the taxonomic information that could have been used to identify species.329

Similarly, in the confusion matrix (Figure 4), Cycladophora spongothorax and C. humerus cluster330

together (meaning that they are often mistaken for one another by the algorithm): one of the main331

differences between the two species is the presence in most, but not all, specimens of C. spongothorax332

of a spongy outer layer that obscures the primary morphologic characters of the main shell, and which,333

if not in sharp focus, creates a blurry grey image similar to typical background image areas - clumps of334

sediment, out-of-focus centric diatoms, etc.335

However without knowing the details of how the network classifiers for these species were constructed336

we cannot be sure whether or not these specific features were strongly weighted by the algorithm. This337

points to another aspect of neural networks which remain problematic when employed for species338

identification: they produce good results, but how they were calculated, and in particular which aspects339

of the morphology were used to discriminate species are not clear. It is possible to extract a report of340

the image processing steps (filter series) but as these are extremely long and complicated, and do not341

directly link to image features their meaning for a taxonomist or other user is quite limited. Efforts to342

back-map the processing steps to image morphologic characters have been attempted (e. g. Zeiler and343

Fergus, 2014) but the methods are not accessible to non-technical specialists and the outputs still too344

vague to be of much use for taxonomic work. Although classical methods e. g. linear measurements,345

landmarks or outline analysis (Lohmann, 1983) lack the classification power of network methods they346

provide a better link to classical taxonomic knowledge of species, and thus their results can be better347

placed in a scientific context.348

The above suggests that it would also be of interest to know how well classical morphometrics349

would perform with the same materials. Unfortunately there has been only a limited amount of such350

work done on these taxa. Granlund (1986, 1990) used manually measured linear and hand-digitized351

image outline data to study morphologic variation in Antarctissa, but did not distinguish between species.352

Lombari and Lazarus (1988) gave hand-recorded linear measurements made with an eyepiece micrometer353

for most species pairs of Cycladophora used in the current study and showed that bivariate plots of354

selected characteristics were usually sufficient to distinguish between most taxa. For neither genus, to our355

knowledge, has their been any prior attempt to identify and discriminate between species with automated356

methods. Recent work (Christodoulou et al., 2018) suggests that (automated) use of classic morphometric357

methods would result in a similar accuracy range as the CNN algorithm used here.358

In our study, multiple images of the same specimen taken at different focal planes were used in359

specimen classification, but each image was treated individually by the network classifier, with synthesis360

of information limited to choosing the image with the highest confidence value for specimen assignment.361

A stronger approach would be to combine the images together before submission to the network. This in362

principle would allow more characters to be in focus in a single image and thus available to the network363

for building more sophisticated classification rules that better simulate the methods used by human experts.364
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There are however challenges to doing this. As noted above, for some radiolarian species internal as well365

as external characters are important in taxonomy, and no single image can therefore fully represent the366

significant characters needed for accurate classification. Additionally, although several software programs367

are available that automatically composite microscope generated images of several focal planes into a368

single sharp, deep-focus image, the technical requirements (automated microscope controls and control369

systems) substantially raise the costs, and image acquisition times, vs capture of simple multiple images370

as used in our study.371

As mentioned above, the resolution limitation of MobileNet might impede its ability to identify species372

for which the minute inner spicular system is diagnostic. Using a convolutional neural network that uses373

full resolution pictures should thus improve the accuracy rate. Furthermore, in a real-case scenario, the374

accuracy of the algorithm should theoretically increase with a larger number of training specimens used375

for each species, and with an increase in training steps (which we limited here to 4000) and a lowering of376

the learning rate (here 0.01).377

In addition to the basic issue of identification accuracy, there are many other issues that need examina-378

tion before pilot studies such as this can be transformed into systems for routine use in micropaleontology379

or other similar areas of research.380

Our study examined only a very small fraction of the known diversity of fossil radiolaria, which is381

estimated at several thousand valid species descriptions over their entire Phanerozoic geologic range382

(Lazarus, 2005), with probably an even larger number of forms not yet described. How well our system383

would scale to diversity of this magnitude has not been tested. However, our initial tests using our own,384

limited set of taxa (SOM) show that by using transfer learning methods, which make use of the ‘general’385

knowledge about classes learned to speed up training times for related classes (Pan et al., 2010), we obtain386

a linear behavior of run time to classes (taxa), and ca 5 minutes per taxon, so that even several thousand387

species should be manageable with current technology.388

The time and effort needed however to collect and expertly identify large numbers of images, par-389

ticularly for the many rare species is more problematic. Despite selecting faunal assemblages of only390

moderate diversity, and taxa groups where many member species are (relatively) common, we required391

ca 5–10 minutes per specimen to collect imagery, with the time spent approximately equally between392

scanning to find specimens, and taking/labelling images. Although these numbers could be improved393

by optimizations to the work flow (autolabeling of images, etc), the time needed per species (50–100394

specimens on average i. e. ca 1 man-day of effort) is substantial. Indeed, although the ultimate use of395

such systems would be to amplify the rare resource of human expertise by taking over routine counting396

tasks, for many taxonomic groups the available human resources are already so limited that they would be397

stretched simply to collect sufficient images (for e. g. just the Cenozoic radiolaria, several man-years of398

work would be required), and this diversion of effort would be to the serious detriment of other types of399

research. Better tools to harvest existing published imagery, and/or to enable users to post casual new400

images in central, accessible online repositories would help, particularly for rare species, and taxonomic401

groups with few specialists. Machine learning systems that can be trained effectively with fewer images402

would also be extremely beneficial. A more radical approach that could dramatically reduce the time403

required (< 1 minute per specimen) would be where imaging was done for all specimens of radiolarians404

on a slide (i. e. all species at once, not scanning just for a few, mostly rare species within selected groups),405

with software support for improved workflow, e. g. labeling by experts. Such a large scale, dedicated406

effort may be the best approach to converting pilot studies into routine use.407

CONCLUSIONS408

Automatic identification of morphologically complex imagery from radiolarian microfossils, in normal409

mixed assemblages viewed in transmitted light microscopy, is practical using currently available technol-410

ogy (convolutional neural networks), at least for tasks where false positive classification rates of ca 10%411

are acceptable, and a substantial fraction (ca. a third) of the potentially identifiable specimens are not412

included in the collected data.413

Although more studies are needed to confirm and generalize our results, it is possible that routine414

assemblage composition tasks can be automated, such as species counts of common taxa in applied415

environmental and climate change studies.416

Collecting and labeling enough images of each species in order to train the network is a potential417

bottleneck, given low numbers of the available taxonomic specialists that are needed to do this work.418
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Figure 1. Antarctissid species used in this study. 1. Antarctissa ballista with focus on external shell (A)

and internal spicules (B). 2. Antarctissa cylindrica. 3-4. Helotholus? vema with a basal view (3), a

sagittal view with a focus on the external shell (4A) and on the internal spicule (4B). 5. Antarctissa

robusta. 6. Helotholus? praevema. 7. Antarctissa strelkovi. 8. Antarctissa denticulata. 9. Antarctissa

deflandrei. 10. Lithomelissa setosa. Samples: 278-20-1,77 (5), 689B-3-3,116 (1, 2, 6, 7, 8), 751A-3-4,85

(3, 4, 10), 1138A-17-2,105 (9). Scale bar: 50µm
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Figure 2. Cycladophora species used in this study. 1. Cycladophora conica. 2. C. cosma. 3. C.

davisiana. 4. C. pliocenica. 5. C. golli. 6. C. humerus. 7. C. spongothorax. Samples: 278-20-1,77 (2),

689B-2-5,55 (4), 751A-1-1,98 (1), 751A-1-2,7 (3), 751A-10-1,98 (6, 7), 751A-17-CC (5). Scale bar:

50µm
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Figure 4. Confusion matrix of the algorithm on the cropped dataset, reported by picture (and not by

specimen). Rows correspond to the actual, correct identification of the picture while columns correspond

to the algorithm best guess. Cell color corresponds to the relative amount of (mis-)identifications.
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