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Abstract15

In this paper, we discuss an extension to two popular approaches to modelling complex16

structures in ecological data: the generalized additive model (GAM) and the hierarchical17

model (HGLM). The hierarchical GAM (HGAM), allows modelling of nonlinear functional18

relationships between covariates and outcomes where the shape of the function itself varies19

between different grouping levels. We describe the theoretical connection between these20

models, HGLMs and GAMs, explain how to model different assumptions about the degree of21

inter-group variability in functional response, and show how HGAMs can be readily fitted22

using existing GAM software, the mgcv package in R. We also discuss computational and23

statistical issues with fitting these models, and demonstrate how to fit HGAMs on example24

data.25

I: Introduction26

Two of the most popular and powerful modelling techniques currently in use by ecologists are27

generalized additive models (GAMs; Wood, 2017a) for modelling flexible regression functions,28
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and generalized linear mixed models (“hierarchical generalized linear models” (HGLMs)29

or simply “hierarchical models”; Bolker et al., 2009; Gelman et al., 2013) for modelling30

between-group variability in regression relationships.31

At first glance, GAMs and HGLMs are very different tools used to solve different problems.32

GAMs are used to estimate smooth functional relationships between predictor variables and33

the response. HGLMs, on the other hand, are used to estimate linear relationships between34

predictor variables and response, but impose a structure where predictors are organized into35

groups (often referred to as “blocks”) and the relationships between predictor and response36

may differ between those groups. Either the slope or intercept, or both, may be subject to37

grouping. A typical example of HGLM use might be to include site-specific effects in a model38

of population counts, or to model individual level heterogeneity in a study with repeated39

observations of multiple individuals.40

However, the connection between HGLMs and GAMs is quite deep, both conceptually and41

mathematically (Verbyla et al., 1999). HGLMs and GAMs fit highly variable models by42

“pooling” parameter estimates towards one another, by penalizing squared deviations from43

some simplier model. In an HGLM, this occurs as group-level effects are pulled towards global44

effects (penalizing the squared differences between each group-level parameter estimate and45

the global effect). In a GAM, this occurs in the enforcement of a smoothness criterion on46

the variability of a functional relationship, pulling parameters towards some function that is47

assumed to be totally smooth (such as a straight line) by penalizing squared deviations from48

that totally smooth function.49

Given this connection, a natural extension to the standard GAM framework is to allow smooth50

functional relationships between predictor and response to vary between groups, but in such a51

way that the different functions are in some sense pooled toward a common shape. We often52

want to know both how functional relationships vary between groups, and if a relationship53

holds across groups. We will refer to this type of model as a hierarchical GAM, or HGAM.54

There are many potential uses for HGAMs. For example, we can use HGAMs to estimate55

how the maximum size of different fish species varies along a common temperature gradient56

(figure 1). Each species will typically have its own response function, but since the species57

overlap in range, they should have similar responses over at least some of the temperature58

gradient; figure 1 shows all three species reach their largest maximum sizes in the centre of59

the temperature gradient. Estimating a separate function for each species throws away a lot60

of shared information and could result in highly noisy function estimates if there were only a61

few data points for each species. Estimating a single average relationship could result in a62

function that did not predict any specific group well. In our example, using a single global63

temperature-size relationship would miss that the three species have distinct temperature64

optima, and that the orange species is significantly smaller at all temperatures than the other65

two (figure 1). We prefer a hierarchical model that includes a global temperature-size curve66

plus species-specific curves that were penalized to be close to the mean function.67

This paper discusses several approaches to group-level smoothing, and corresponding trade-offs.68

We focus on fitting HGAMs with the popular mgcv package for the R statistical programming69

language, which allows for a variety of HGAM model structures and fitting strategies. We70
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Figure 1: Hypothetical example of functional variability between different group levels. Each
line indicates how the abundance for different species of fish in a community might vary as
a function of average water temperature. The orange species shows lower abundance at all
temperatures, and the red and blue species differ at which temperature they can achieve the
maximum possible size. However, all three curves are similiarly smooth and peak close to one
another relative to the entire range of tested temperatures.

discuss options available to the modeller and practical and theoretical reasons for choosing71

them. We demonstrate the different approaches across a range of case studies.72

This paper is divided into five sections. Part II is a brief review of how GAMs work and their73

relation to hierarchical models. In part III, we discuss different HGAM formulations, what74

assumptions each model makes about how information is shared between groups, and different75

ways of specifying these models in mgcv. In part IV, we work through example analyses using76

this approach, to demonstrate the modelling process and how HGAMs can be incorporated into77

the ecologist’s quantitative toolbox. Finally, in part V, we discuss some of the computational78

and statistical issues involved in fitting HGAMs in mgcv. We have also included all the code79

needed to reproduce the results in this manuscript in supplemental code (online), and on the80

GitHub repository associated with this paper github.com/noamross/mixed-effects-gams.81

II: A review of Generalized Additive Models82

The generalized linear model (GLM; McCullagh & Nelder, 1989) relates the mean of a83

response (y) to a linear combination of explanatory variables. The response is assumed to be84

conditionally distributed according to some exponential family distribution (e.g., binomial,85

Poisson or Gamma distributions for trial, count or strictly positive real response, respectively).86

The generalized additive model (GAM; Hastie & Tibshirani, 1990; Ruppert, Wand & Carroll,87

2003; Wood, 2017a) allows the relationships between the explanatory variables (henceforth88

covariates) and the response to be described by smooth curves (usually splines (de Boor,89
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1978), but potentially other structures). In general we have models of the form:90

E (Y ) = g−1

û

ýβ0 +
J

�

j=1

fj(xj)

þ

ø ,

where E(Y ) is the expected value of the response Y (with an appropriate distribution and91

link function g), fj is a smooth function of the covariate xj, β0 is an intercept term and g−1
92

is the inverse link function. Hereafter, we will refer to these smooth functions as smoothers.93

In the example equation above, there are J smoothers and each is a function of only one94

covariate, though it is possible to construct smoothers of multiple variables.95

Each smoother fj is represented by a sum of K simpler, fixed basis functions (bj,k) multiplied96

by corresponding coefficients (βj,k), which need to be estimated:97

fj(xj) =
K

�

k=1

βj,kbj,k(xj).

K, referred to as “basis size”, “basis complexity” or “basis richness”, determines the maximum98

complexity of each smoother.99

It would seem that large basis size could lead to overfitting, but this counteracted by a100

smoothing penalty that influences basis function coefficients so as to prevent excess wiggliness101

and ensure that appropriate complexity of each smoother. For each smoother, one or more102

penalty matrices (S), specific to the form of the basis functions, is pre- and post-multiplied by103

the parameter vector β to calculate the penalty (βT Sβ). A penalty term is then added to the104

model likelihood L, controlling the trade-off via a smoothing parameter (λ). The penalized105

likelihood used to fit the model is thus:106

L − λβT Sβ

Figure 2 shows an example of how different choices of the smoothing parameter (λ) effect the107

shape of the resulting smoother. Data (points) were generated from the blue function and108

noise added to them. In the left plot λ was estimated using Restricted Maximum Likelihood109

(REML) to give a good fit to the data, in the middle plot λ was set to zero, so the penalty has110

no effect and the function interpolates the data, the right plot shows when λ is set to a very111

large value, so the penalty removes all terms that have any wiggliness, giving a straight line.112

To measure the complexity of a penalized smooth terms we use the effective degrees of freedom113

(EDF), which at a maximum is the number of coefficients to be estimated in the model, minus114

any constraints. The EDF can take non-integer values and larger values indicate more wiggly115

terms (see Wood (2017a, Section 6.1.2) for further details). The number of basis functions, k116

sets a maximum for the EDF, as a smoother cannot have more than k EDF. When the EDF117

is well below k, increasing k generally has very little effect on the shape of the function. In118

general, k should be set large enough to allow for potential variation in the smoother while119

still staying low enough to keep computation time low (see section V for more on this). In120

mgcv, the function mgcv::check.gam can be used to determine if k has been set too low.121

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27320v1 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018



0

10

0.00 0.25 0.50 0.75 1.00

x

y
a

0

10

0.00 0.25 0.50 0.75 1.00

x

y

b

0

10

0.00 0.25 0.50 0.75 1.00

x

y

c

Figure 2: Effect of different choices of smoothing parameter (λ) on the shape of the resulting
smoother. Left: λ estimated using REML; middle: λ set to zero (no smoothing); Right: λ is
set to a very large value.

Random effects are also “smooths” in this framework. In this case, the penalty matrix is122

the inverse of the covariance matrix of the basis function coefficients (Kimeldorf & Wahba,123

1970; Wood, 2017a). To include a simple single-level random effect to account for variation124

in group means (intercepts) there will be one basis function for each level of the grouping125

variable, that takes a value of 1 for any observation in that group and 0 for any observation126

not in the group. The penalty matrix for these terms is a ng by ng identity matrix, where127

ng is the number of groups. This means that each group-level coefficient will be penalized128

in proportion to its squared deviation from zero. This is equivalent to how random effects129

are estimated in standard mixed effect models. The penalty term is then proportional to the130

inverse of the variance of the fixed effect estimated by standard hierarchical model software131

(Verbyla et al., 1999).132

This connection between random effects and splines extends beyond the varying-intercept133

case. Any single-penalty basis-function representation of a smooth can be transformed so134

that it can be represented as a combination of a random effect with an associated variance,135

and possibly one or more fixed effects. See Verbyla et al. (1999) or Wood, Scheipl & Faraway136

(2013) for a more detailed discussion on the connections between these approaches.137

Basis types and penalty matrices138

Different types of smoothers are useful for different needs, and have different associated139

penalty matrices for their basis function coefficients. In the examples in this paper, we will use140

three types of smoothers: thin plate regression splines, cyclic cubic smoothers, and random141

effects.142

Thin plate regression splines (TPRS; Wood, 2003), are a general purpose spline basis which143

can be use for problems in any number of dimensions, provided one can assume that the144

amount of smoothing in any of the covariates is the same (so called isotropy or rotational145

invariance). TPRS, like many splines, use a penalty matrix made up of terms based on the146
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the squared derivatives of basis functions across their range. Models that overfit the data will147

tend to have large derivatives, so this penalization reduces wiggliness. We will refer to the148

order of penalized derivative as m. Typically, TPRS are second-order (m = 2), meaning that149

the penalty is proportionate to the squared second derivative. However, TPRS may be of150

lower order (m = 1, penalizing squared first derivatives), or higher order (m > 2, penalizing151

squared higher order derivatives). We will see in section III how lower-order TPRS smoothers152

are useful in fitting HGAMs. Example basis functions and penalty matrix S for a m = 2153

TPRS with six basis functions for evenly spaced data are shown in figure 3.154

Cyclic cubic smoothers are another smoother that penalizes the squared second derivative155

of the smooth across the function. In these, though, start and end of the smoother are156

constrained to match in value and first derivative. These are useful for fitting models with157

cyclic components such as seasonal effects. We will use these smoothers to demonstrate how158

to fit HGAMs to cyclic data.159

Smoothing penalties vs. shrinkage penalties160

Penalties can have two effects on how well a model fits: they can penalize how wiggly a given161

term is (smoothing) and they can penalize the absolute size of the function (shrinkage). The162

penalty can only affect the components of the smoother that have derivatives (the range163

space), not the other parts (the null space). For 1-dimensional thin plate regression splines164

(when m = 2), this means that there is a linear term left in the model, even when the penalty165

is in full force (as λ → ∞), as shown in figure 3 (this is also why figure 2c resulted in a linear,166

rather than flat, fit to the data). The random effects smoother we discussed earlier is an167

example of a pure shrinkage penalty; it penalizes all deviations away from zero, no matter168

the pattern of those deviations. This will be useful later in section III, where we use random169

effect smoothers as one of the components of a HGAM.170

Interactions between smooth terms171

It is also possible to create interactions between covariates with different smoothers (or172

degrees of smoothness) assumed for each covariate, using tensor products. For instance, if173

one wanted estimate the interacting effects of temperature and time (in seconds) on some174

outcome, it would not make sense to use a two-dimensional TPRS smoother, as that would175

assume that a one degree change in temperature would equate to a one second change in time.176

Instead, a tensor product allows us to create a new set of basis functions that allow for each177

marginal function (here temperature and time) to have its own marginal smoothness penalty.178

A different basis can be used in each marginal smooth, as required for the data at hand.179

There are two approaches used in mgcv for generating tensor products. The first approach180

(Wood, 2006a) essentially creates an interaction of each pair of basis functions for each181

marginal term, and a penalty for each marginal term that penalizes the average average182

wiggliness in that term; in mgcv, these are created using the te() function. The second183

approach (Wood, Scheipl & Faraway, 2013) separates each penalty into penalized (range space)184

6
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Figure 3: a) Examples of the basis functions associated with a six basis function thin plate
spline (m=2), calculated for data, x, spread evenly between x = 0 and x = 1. Each line
represents a single basis function. b) The smoothing penalty matrix for the thin plate
smoother. Red entries indicate positive values and blue indicate negative values. For example,
functions F3 and F4 would have the greatest proportionate effect on the total penalty (as they
have the largest values on the diagonal), whereas function F5 and F6 would not contribute
to the wiggliness penalty at all (all the values in the 5th and 6th row and column of the
penalty matrix are zero). This means these functions are in the null space of this basis, and
are treated as completely smooth. c) An example of how the basis functions add up to create
a single smooth function. Thin coloured lines represent each basis function multiplied by a
coefficient, and the solid black line is the sum of those basis functions.
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and unpenalized components (null space; components that don’t have derivatives, such as185

intercept and linear terms in a one-dimensional cubic spline), then creates new basis functions186

and penalties for all pair-wise combinations of penalized and unpenalized components between187

all pairs of marginal bases; in mgcv, these are created using the t2() function. The advantage188

of the first method is that it requires fewer smoothing parameters, so is faster to estimate in189

most cases. The advantage of the second method is that the tensor products created this way190

only have a single penalty associated with each marginal basis (unlike the te() approach,191

where each penalty applies to all basis functions), so it can be fitted using standard mixed192

effect software such as lme4 (Bates et al., 2015).193

Comparison to hierarchical linear models194

Hierarchical generalized linear models (Gelman, 2006; HGLMs; also referred to as generalized195

linear mixed effect models, multilevel models etc; e.g., Bolker et al., 2009) are an extension of196

regression modelling that allows the inclusion of terms in the model that account for structure197

in the data — the structure is usually of the form of a nesting of the observations. For198

example, in an empirical study, individuals may be nested within sample sites, sites are nested199

within forests, and forests within provinces. The depth of the nesting is limited by the fitting200

procedure and number of parameters to estimate.201

HGLMs are a highly flexible way to think about grouping in data; the groupings used in202

models often refer to the spatial or temporal scale of the data (McMahon & Diez, 2007)203

though can be based on any useful grouping.204

We would like to be able to think about the groupings in our data in a similar way, even when205

the covariates in our model are related to the response in a smooth way. The next section206

investigates the extension of the smoothers we showed above to the case where observations207

are grouped and we model group-level smoothers.208

III: What are hierarchical GAMs?209

What do we mean by hierarchical smoothers?210

In this section, we will describe how to model inter-group variability using smooth curves and211

how to fit these models using mgcv. Model structure is key in this framework, so we start212

with three model choices:213

1. Should each group have its own smoother, or will a common smoother suffice?214

2. Do all of the group-specific smoothers have the same wiggliness, or should each group215

have its own smoothing parameter?216

3. Will the smoothers for each group have a similar shape to one another — a shared217

global smoother?218

These three choices result in five possible models (figure 4):219
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1. A single common smoother for all observations.220

2. A global smoother plus group-level smoothers that have the same wiggliness.221

3. A global smoother plus group-level smoothers with differing wiggliness.222

4. Group-specific smoothers without a global smoother, but with all smoothers having the223

same wiggliness.224

5. Group-specific smoothers with different wiggliness.225

It is important to note that “similar wiggliness” and “similar shape” are two distinct concepts;226

functions can have very similar wiggliness but very different shapes. wiggliness measures how227

quickly a function changes across its range, and it is easy to construct two functions that differ228

in shape but have the same wiggliness. For this paper, we consider two functions to have229

similar shape if the average squared distance between the functions is small (assuming the230

functions have been scaled to have a mean value of zero across their ranges). This definition is231

somewhat restricted; for instance, a cyclic function would not be considered to have the same232

shape as a phase-shifted version of the same function, nor would two normal distributions233

with the same mean but different standard deviations. The benefit of this definition of shape,234

however, is that it is straightforward to translate into penalties akin to those described in235

section II. Figure 4, model 4 illustrates the case where models have different shapes. Similarly,236

two curves could have very similar overall shape, but differ in their wiggliness. For instance,237

one function could be equal to another plus a high-frequency oscillation term. Figure 4, model238

3 illustrates this.239

We will discuss the trade-offs between different models and guidelines about when each of240

these models is appropriate in section V. The remainder of this section will focus on how to241

specify each of these five models using mgcv.242

Coding hierarchical GAMs in R243

Each of the models in Figure 4 can be coded straightforwardly in mgcv. We will use two244

example datasets to demonstrate how to code these models (see the supplemental code to245

reproduce these examples):246

A. The CO2 dataset, available in R via the datasets package. This data is from an experi-247

mental study by Potvin, Lechowicz & Tardif (1990) of CO2 uptake in grasses under varying248

concentrations of CO2, measuring how concentration-uptake functions varied between plants249

from two locations (Mississippi and Quebec) and two temperature treatments (chilled and250

warm). Twelve plants were used and CO2 uptake measured at 7 CO2 concentrations for each251

plant (figure 5a). Here we will focus on how to use HGAMs to estimate inter-plant variation252

in functional responses. This data set has been modified from the default version available253

with R, to recode the Plant variable as an unordered factor Plant_uo1.254

1Note that mgcv requires that grouping or categorical variables be coded as factors in R; it will will raise
an error message if passed data coded as character. It is also important to know whether the factor is coded as
ordered or unordered (see ?factor for more details on this). This matters when fitting groupwise smoothers
using the by= argument (as is used for fitting models 3 and 5, shown below). If the factor is unordered, mgcv

will set up a model with one smoother for each grouping level. If the factor is ordered, mgcv will set any
basis functions for the first grouping level to zero. In model 3 the ungrouped smoother will then correspond

9
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Figure 4: Alternate types of functional variation f(x) that can be fitted with HGAMs. The
dashed line indicates the average function value for all groups, and each solid line indicates
the functional value at a given predictor value for an individual group level. The null model
(of no functional relationship between the covariate and outcome, top right), is not explicitly
assigned a model number.
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Figure 5: Example data sets used throughout section III. a) Grass CO2 uptake versus
CO2 concentration for 12 individual plants. Color and line linetype included to distinguish
individual plant trends. b) Simulated data set of bird migration, with point size corresponding
to weekly counts of 6 species along a latitudinal gradient (zeros excluded for clarity).

B. Data generated from a hypothetical study of bird movement along a migration corridor,255

sampled throughout the year (see supplemental code). This dataset consists of simulated256

sample records of numbers of observed locations of 100 tagged individuals each from six257

species of bird, at ten locations along a latitudinal gradient, with one observation taken every258

four weeks. Counts were simulated randomly for each species in each location and week by259

creating a species-specific migration curve that gave the probability of finding an individual260

of a given species in a given location, then simulated the distribution of individuals across261

sites using a multinomial distribution, and subsampling that using a binomial distribution to262

simulation observation error (i.e. not every bird present at a location would be detected). The263

data set (bird_move) consists of the variables count, latitude, week and species (figure264

5b). This example allows us to demonstrate how to fit these models with interactions and265

with non-normal (count) data. The true model used to generate this data was model 2: a266

single global function plus species-specific deviations around that global function.267

Throughout the examples we use Restricted Maximum Likelihood (REML) to estimate model268

coefficients and smoothing parameters. We strongly recommend using either REML or269

marginal likelihood (ML) rather than the default GCV criteria when fitting GAMs, for the270

reasons outlined in Wood (2011). In each case some data processing and manipulation has271

been done to obtain the graphics and results below. See supplemental code for details on272

to the first grouping level, rather than the average functional response, and the group-specific smoothers will
correspond to deviations from the first group. In model 5, using an ordered factor will result in the first group
not having a smoother associated with it at all.
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data processing steps.273

A single common smoother for all observations (Model 1)274

We start with the simplest model we can in our framework and include many details here to275

ensure that readers are comfortable with the terminology and R functions we are going to use276

later.277

For our CO2 data set, we will model loge(uptake) as a function of two smoothers: a thin plate278

regression spline of loge-concentration, and a random effect for plant to model plant-specific279

intercepts. Mathematically:280

loge(uptakei) = f(loge(conci)) + ζPlant_uo + εi

where ζPlant_uo is the random effect for plant and εi is a Gaussian error term. Here we assume281

that loge(uptakei) is normally distributed.282

In R we can write our model as:283

CO2_mod1 <- gam(log(uptake) ~ s(log(conc), k=5, bs="tp") +

s(Plant_uo, k=12, bs="re"),

data=CO2, method="REML", family="gaussian")

This is a common GAM structure, with a single smooth term for each variable. Specifying284

the model is similar to specifying a GLM in R via glm(), with the addition of s() terms285

to include one-dimensional or isotropic multidimensional smoothers. The first argument to286

s() are the terms to be smoothed, the type of smoother to be used for the term is specified287

by the bs argument, and the maximum number of basis functions is specified by k. There288

are different defaults in mgcv for k, depending on the type of smoother chosen; here we use289

a tprs smoother (bs="tp") for the concentration smoother, and set k=5 as there are only 7290

separate values of concentration measured, so the default k=10 (for tprs) would be too high;291

further, setting k=5 saves on computational time (see section V). The random effect smoother292

(bs="re") that we used for the Plant_uo factor has a default k equal to the number of levels293

in the grouping variable (here, 12). We specified k=12 just to make this connection apparent.294

Figure 6 illustrates mgcv’s default plotting out for CO2_mod1: the left panel shows the295

estimated smoother for concentration, and the right shows a quantile-quantile plot of the296

estimated random effects vs Gaussian quantiles, which can be used to check our model.297

Looking at the effects by term is useful, but we are often interested in fitted values or298

predictions from our models. Using the built in prediction functions with mgcv, we can299

estimate what the fitted function (and uncertainty around it) should look like for each level,300

as shown in Figure 7 (see supplemental code for more details on how to generate these301

predictions).302

Examining these plots, we see that while functional responses among plants are similar,303

some patterns are not captured by this model. For instance,for plant Qc2, the model clearly304
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Figure 6: mgcv plotting output for model 1 applied to the CO2 dataset. Left shows the
smoother of loge concentration and right plot shows a quantile-quantile plot of the random
effects against Gaussian quantiles, used to check the appropriateness of the normal random
effect assumption. Numbers in the vertical axis of the left figure and the title of the right
give the effective degrees of freedom of the smoothers.

underestimates CO2 uptake. A model including individual differences in functional responses305

may better explain variation.306

For our bird example, we model the count of birds as a function of location and time, including307

their interaction. For this we structure the model as:308

E(counti) = exp(f(weeki, latitudei))

where we assume that counti ∼ Poisson. For the smooth term, f , we employ a tensor product309

of latitude and week, using a thin plate regression spline (TPRS) for the marginal latitude310

effect, and a cyclic cubic regression spline for the marginal week effect to account for the311

cyclic nature of weekly effects (we expect week 1 and week 52 to have very similar values)2,312

both splines had basis complexity (k) of 10.313

bird_mod1 <- gam(count ~ te(week, latitude, bs=c("cc", "tp"), k=c(10, 10)),

data=bird_move, method="REML", family="poisson",

knots = list(week = c(0, 52)))

2The cyclic smoother requires that the start and end points of the cyclic variable are specified, via the
knots argument; the smoother will have the exact same value at the start and end. In the absence of a
specified start and end point, gam will assume the end points are the smallest and largest observed levels of
the covariate (see mgcv::smooth.construct.cc.smooth.spec for more details). Note that in bird_mod1 we
have specified week 0 and week 52 as the endpoints, as the first (week 1) and last weeks (week 52) of the year
should not have exactly the same expected value.
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Figure 7: Predicted uptake function (± 2 s.e.) for each plant, based on model 1 (a single
global function for uptake plus a individual-level random effect intercept). Model predictions
are for log-uptake, but are transformed here to show the fitted function on the original scale
of the data.
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15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27320v1 | CC BY 4.0 Open Access | rec: 5 Nov 2018, publ: 5 Nov 2018



sp4 sp5 sp6

sp1 sp2 sp3

0 5 10 0 5 10 0 5 10

0

5

10

15

20

0

5

10

15

20

Predicted count

O
b

s
e

rv
e

d
 c

o
u

n
t

Figure 9: Observed counts by species versus predicted counts from bird_mod1 (1-1 line added
as reference). If our model fitted well we would expect that all species should show similiar
patterns of dispersion around the 1-1 line (and as we are assuming the data is Poisson, the
variance around the mean should equal the mean). Instead we see that variance around the
predicted value is much higher for species 1 and 6.

Figure 8 shows the default plot (created by running plot(bird_mod1, pages=1, scheme=2,314

rug=FALSE)) for the week-by-latitude smoother. It shows birds starting at low latitudes in315

the winter then migrating to high latitudes from the 10th to 20th week, staying there for 15-20316

weeks, then migrating back. However, the plot also indicates a large amount of variability in317

the timing of migration. The source of this variability is apparent when we look at the timing318

of migration of each species (cf. figure 5b).319

All six species in figure 5b show relatively precise migration patterns, but they differ in the320

timing of when they leave their winter grounds and the amount of time they spend at their321

summer grounds. Averaging over all of this variation results in a relatively imprecise (diffuse)322

estimate of migration timing (figure 8), and viewing species-specific plots of observed versus323

predicted values (figure 9), it is apparent that the model fits some of the species better than324

others. This model could potentially be improved by adding inter-group variation in migration325

timing. The rest of this section will focus on how to model this type of variation.326
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A single common smoother plus group-level smoothers that have the same wig-327

gliness (Model 2)328

Model 2 is a close analogue to a GLMM with varying slopes: all groups have similar functional329

responses, but inter-group variation in responses is allowed. This approach works by allowing330

each grouping level to have its own functional response, but penalizing functions that are too331

far from the average.332

This can be coded in mgcv by explicitly specifying one term for the global smoother (as333

in model 1 above) then adding a second smooth term specifying the group-level smooth334

terms, using a penalty term that tends to draw these group-level smoothers to zero. For335

one-dimensional smoothers, mgcv provides an explicit basis type to do this, the factor-336

smoother interaction or "fs" basis (see ?mgcv::factor.smooth.interaction for details).337

This smoother creates a copy of each set of basis functions for each level of the grouping338

variable, but only estimates one smoothing parameter for all groups. To ensure that all parts339

of the smoother can be shrunk towards zero effect, each component of the penalty null space340

is given its own penalty3.341

We modify the previous CO2 model to incorporate group-level smoothers as follows:342

loge(uptakei) = f(loge(conci)) + fPlant_uoi
(loge(conci)) + εi

where fPlant_uoi
(loge(conci)) is the smoother for concentration for the given plant. In R we343

then have:344

CO2_mod2 <- gam(log(uptake) ~ s(log(conc), k=5, m=2) +

s(log(conc), Plant_uo, k=5, bs="fs", m=2),

data=CO2, method="REML")

Figure 10 shows the fitted smoothers for CO2_mod2. The plots of group-specific smoothers345

indicate that plants differ not only in average log-uptake (which would correspond to each346

plant having a straight line at different levels for the group-level smoother), but differ slightly347

in the shape of their functional responses. Figure 11 shows how the global and group-specific348

smoothers combine to predict uptake rates for individual plants. We see that, unlike in the349

single global smoother case above, none of the curves deviate from the data systematically.350

The factor-smoother interaction-based approach mentioned above does not work for higher-351

dimensional tensor product smoothers. Instead, the group-specific term can be specified with352

a tensor product of the continuous smoothers and a random effect for the grouping parame-353

ter4. e.g.: y ~ te(x1, x2, bs="tp", m=2) + t2(x1, x2, fac, bs=c("tp","tp","re"),354

m=2, full=TRUE). We illustrate this approach below on the bird migration data.355

3As part of the penalty construction, each group will also have its own intercept (part of the penalized null
space), so there is no need to add a separate term for group specific intercepts as we did in model 1.

4As mentioned in section II, these terms can be specified either with te() or t2() terms. Using t2 as
above (with full=TRUE) is essentially a multivariate equivalent of the factor-smoother interaction; it requires
more smooth terms than te(), but can be fit using other mixed effects software such as lme4, which is useful
when fitting models with a large number of group levels (see Section V on computational issues for details).
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Figure 10: Global function (left) and group-specific deviations from the global function (right)
for CO2_mod2
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Figure 11: Predicted uptake values (lines) versus observed uptake for each plant, based on
model 2.
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Figure 12: a) Predicted migration paths for each species based on bird_mod2, with lighter
colors corresponding to higher predicted counts. b) Observed counts versus predictions from
bird_mod2.

bird_mod2 <- gam(count ~ te(week, latitude, bs=c("cc", "tp"),

k=c(10, 10), m=c(2, 2)) +

t2(week, latitude, species, bs=c("cc", "tp", "re"),

k=c(10, 10, 6), m=c(2, 2, 2), full=TRUE),

data=bird_move, method="REML", family="poisson",

knots = list(week = c(0, 52)))

Model 2 is able to effectively capture the observed patterns of interspecific variation in356

migration behaviour (figure 12a). It shows a much tighter fit between observed and predicted357

values, as well as less evidence of over-dispersion in some species compared to model 1 (figure358

12b).359

A single common smoother plus group-level smoothers with differing wiggliness360

(Model 3)361

This model class is very similar to model 2, but we now allow each group-specific smoother to362

have its own smoothing parameter and hence its own level of wiggliness. This increases the363

computational cost of the model (as there are more smoothing parameters to estimate), and364

means that the only information shared between groups is through the global smoother. This365

is useful if different groups differ substantially in how wiggly they are.366

Fitting a separate smoother (with its own penalties) can be done in mgcv by using the by367
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argument in the s() and te() (and related) functions. Therefore, we can code the formula368

for this model as:369

y ~ s(x, bs="tp") + s(x, by=fac, m=1, bs="ts") + s(fac, bs="re")�.

Note three major differences here from how model 2 was specified:370

1. We explicitly include a random effect for the intercept (the bs="re" term), as group-371

specific intercepts are not incorporated into factor by variable smoothers (as would be372

the case with a factor smoother or a tensor product random effect).373

2. We explicitly use a basis with a fully penalized null space for the group-level smoother374

(bs="ts", which is a tprs modified so that the null space terms are also penalized;375

see ?mgcv::smooth.construct.ts.smooth.spec and Wood (2017a) for details). The376

by method does not automatically penalize the null space, so there is potential for377

collinearity between unpenalized components of the global and group-level smoothers.378

Using ts helps reduce this issue, as the only unpenalized null space terms will occur in379

the global smoother.380

3. We specify m=1 instead of m=2 for the groupwise smoothers, which means the marginal381

TPRS basis for this term will penalize the squared 1st derivative of the function, rather382

than the second derivative. This, also, reduces co-linearity between the global smoother383

and the group-specific terms which occasionally leads to high uncertainty around the384

global smoother (see section V for more details). TPRS with m=1 have a more restricted385

null space than m=2 smoothers, so should not be as collinear with the global smoother386

(Wieling et al., 2016; Baayen et al., 2018). We have observed that this is much more of387

an issue when fitting model 3 compared to model 2.388

We modify the CO2 model to follow this approach like so:389

CO2_mod3 <- gam(log(uptake) ~ s(log(conc), k=5, m=2, bs="tp") +

s(log(conc), by=Plant_uo, k=5, m=1, bs="ts") +

s(Plant_uo, bs="re", k=12),

data=CO2, method="REML")

Figure 13 shows a subsample of the group-specific smoothers from this model. It is apparent390

from this that some groups (e.g. Qc1) have very similar shapes to the global smoother391

(differing only in intercept), others do differ from the global trend, with higher uptake at392

low concentrations and lower uptake at higher concentrations (e.g. Mc1, Qn1), or the reverse393

pattern (e.g. Mn1).394

Using model 3 with higher-dimensional data is also straightforward; by terms work just as395

well in tensor-product smoothers as they do with isotropic smoothers. We can see this with396

our bird model:397

bird_mod3 <- gam(count ~ species +

te(week, latitude, bs=c("cc", "tp"),

k=c(10, 10), m=c(2, 2)) +

te(week, latitude, by=species, bs= c("cc", "ts"),

k=c(10, 10), m=c(1, 1)),
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Figure 13: Functional relationships for the CO2 data estimated for model 3. Top left: the
global smoother; Top middle: species-specific random effect intercepts. The remaining plots
are a selected subset of the plant-specific smoothers, indicating how the functional response
of that plant differs from the global smoother.

data=bird_move, method="REML", family="poisson",

knots = list(week = c(0, 52)))

As above, here we used a TPRS shrinkage smoother (bs="ts") for the latitude marginal effect398

to penalize the null space and avoid issues of collinearity between the global and groupwise399

smoother.400

The fitted model for bird_mod3 is visually indistinguishable from bird_mod2 (figure 12) so401

we do not illustrate it here.402

Models without global smoothers (models 4 and 5)403

We can modify the above models to exclude the global term (which is generally faster; see404

section V). When we do not model the global term, we are allowing each factor to be different,405

though there may be some similarities in the shape of the functions.406

Model 4:407

Model 4 (shared smoothers) is simply model 2 without the global smoother: y~s(x, fac,408

bs="fs") or y~te(x1, x2, fac, bs=c("tp", "tp", "re"). This model assumes all groups409

have the same smoothness, but that the individual shapes of the smooth terms are not related.410

Here we just show how to code these models; plotting them works in the same way as for411

models 1-3 above, the plots for these datasets are very similar to the plots for model 2. This412
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will not always be the case; if in a given study there are very few data points in each grouping413

level (relative to the strength of the functional relationship of interest), estimates from model414

4 will typically be much more variable than from model 2, as there is no way for the model to415

share information on function shape between grouping levels without the global smoother.416

See section V on computational issues for more on how to choose between different models.417

CO2_mod4 <- gam(log(uptake) ~ s(log(conc), Plant_uo, k=5, bs="fs", m=2),

data=CO2, method="REML")

bird_mod4 <- gam(count ~ t2(week, latitude, species, bs=c("cc", "tp", "re"),

k=c(10, 10, 6), m=c(2, 2, 2)),

data=bird_move, method="REML", family="poisson",

knots = list(week = c(0, 52)))

Model 5:418

Model 5 is simply model 3 without the first term: y~fac+s(x, by=fac) or y~fac+te(x1,x2,419

by=fac) (as above, plots are very similar to model 3).420

CO2_mod5 <- gam(log(uptake) ~ s(log(conc), by=Plant_uo, k=5, bs="tp", m=2) +

s(Plant_uo, bs="re", k=12),

data= CO2, method="REML")

bird_mod5 <- gam(count ~ species +

te(week, latitude, by=species, bs= c("cc", "ts"),

k=c(10, 10), m=c(2, 2)),

data=bird_move, method="REML", family="poisson",

knots = list(week = c(0, 52)))

Comparing different HGAM specifications421

These models can be compared using standard model comparison tools. Model 2 and model 3422

will generally be nested in model 1 (depending on how each model is specified) so comparisons423

using generalized likelihood ratio tests (GLRTs) may be used to test if groupwise smoothers are424

necessary. However, we do not currently recommend this method. There is not sufficient theory425

on how accurate parametric p-values are for comparing these models; there is uncertainty426

about what degrees of freedom to assign to models with varying smoothness, and slightly427

different model specifications may not result in nested models. (See Wood (2017a) Section428

6.12.4 and ?mgcv::anova.gam for more discussion on using GLRTs to compare GAMs.)429

Comparing models based on AIC is a more robust approach to comparing the different model430

structures. There is well-developed theory of how to include effects of penalization and431

smoothing parameter uncertainty when estimating the model complexity penalty for AIC432

(Wood, Pya & Säfken, 2016). We demonstrate this approach in Table ??. Using AIC, there is433
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Table 1: AIC table comparing model fits for example datasets

Model df AIC deltaAIC

A. CO2 models
CO2_mod1 17 -119 101
CO2_mod2 39 -199 22
CO2_mod3 42 -216 4
CO2_mod4 53 -219 1
CO2_mod5 56 -220 0

B. bird_move models
bird_mod1 51 3374 1819
bird_mod2 141 1560 6
bird_mod3 208 1680 125
bird_mod4 130 1555 0
bird_mod5 197 1635 81

strong support for including among-group functional variability for both the CO2 dataset434

and the bird_move dataset (compare models 1 versus models 2-5). For the CO2 dataset435

(Table ??A), there is relatively strong evidence that there is more inter-group variability in436

smoothness than model 2 allows, and weaker evidence that model 4 or 5 (separate smoothers437

for all plants) show the best fit. For the bird_move dataset (Table ??B), model 2 (global438

smoother plus group-level smoothers with a shared penalty) fits the data best (which is good439

as we simulated the data from a model with this structure!)440

It is important to recognize that AIC, like any function of the data, is a random variable and441

should be expected to have some sampling error (Forster & Sober, 2011). In cases when the442

goal is to select the model that has the best predictive ability, we recommend holding some443

fraction of the data out prior to the analysis and comparing how well different models fit that444

data or using k-fold cross validation as a more accurate guide to how well a given model may445

predict out of sample. We also strongly recommend not selecting models based purely on446

AIC. Instead, model selection should be based on expert subject knowledge about the system,447

computational time, and most importantly, the inferential goals of the study. For instance,448

while table ??A indicates that models 4 and 5 (which do not have a global function) fit the449

CO2 data slightly better than models with a global function; however, it is the shape of the450

mean function that we are actually interested in here, as models 4 and 5 cannot be used to451

predict the concentration-uptake relationship for other plants. The same consideration holds452

when choosing between model 2 and 3: while model 3 fits the CO2 data better than model 2453

(as measured by AIC), model 2 can be used to simulate functional variation for unobserved454

group levels, whereas this is not possible within the framework of model 3. The next section455

works through two examples to show how to choose between different models, and section V456

discusses these and other model fitting issues in more depth.457
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IV: Examples458

We now demonstrate two worked examples on one data set to highlight how to use HGAMs459

in practice, and to illustrate how to fit, test, and visualize each model. We will demonstrate460

how to use these models to fit community data, to show when using a global trend may or461

may not be justified, and to illustrate how to use these models to fit seasonal time series.462

For these examples, data are from a long-term study in seasonal dynamics of zooplankton,463

collected by the Richard Lathrop. The data were collected from a chain of lakes in Wisconsin464

(Mendota, Monona, Kegnonsa, and Waubesa) approximately bi-weekly from 1976 to 1994.465

They consist of samples of the zooplankton communities, taken from the deepest point of466

each lake via vertical tow. The data are provided by the Wisconsin Department of Natural467

Resources and their collection and processing are fully described in Lathrop (2000).468

Zooplankton in temperate lakes often undergo seasonal cycles, where the abundance of each469

species fluctuates up and down across the course of the year, with each species typically470

showing a distinct pattern of seasonal cycles. The inferential aims of these examples are to (i)471

estimate variability in seasonality among species in the community in a single lake (Mendota),472

and (ii) estimate among-lake variability for the most abundant taxon in the sample (Daphnia473

mendotae) across the four lakes. To enable evaluation of out-of-sample performance, we split474

the data into testing and training sets. As there are multiple years of data, we used data from475

the even years to fit (train) models, and the odd years to test the fit.476

Each record consists of counts of a given zooplankton taxon taken from a subsample from a477

single vertical net tow, which was then scaled to account for the relative volume of subsample478

versus the whole net sample and the area of the net tow and rounded to 1000 give estimated479

population density per m2 for each taxon at each point in time in each sampled lake. As this480

meant that data were not counts, and observed densities spanned four orders of magnitude,481

we modelled density using a Gamma distribution with a log-link. For any net tow sample482

where a given taxon was not observed, we set that taxon’s density to 1000 (the minimum483

possible sample size)5.484

First, we demonstrate how to model community-level variability in seasonality, by regressing485

scaled density on day of year, with species-specific curves. As we are not interested here in486

average seasonal dynamics, we will focus on models 4 and 5 (if we wanted to estimate the487

seasonal dynamics for rarer species, adding a global smooth term might be useful, so we488

could could borrow information from the more common species). As the data are seasonal,489

we use cyclic smoothers as the basis for seasonal dynamics. Therefore we need to specify490

start and end points for our cycles using the knots argument to gam, as well as specify that491

this is smoother type to the factor-smooth interaction term using the xt argument (the xt492

argument is how any extra information that a smoother might need is supplied; see ?mgcv::s493

for more information). Note that we also include a random effect smoother for both taxon494

5A more appropriate model for this data would be to assume that density is left censored, where 1000
is treated as a threshold which the data may lie below, but it is not possible to measure lower than this.
However, mgcv does not currently have a left-censored family. The brms package, for Bayesian model fitting,
can fit a left-censored Gamma distribution, so it would be possible to fit this model using that software. We
discuss using HGAMs in brms in section V.
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and taxon:year_f, where year_f is just year transformed into a factor variable, to deal495

with the fact that average zooplankton densities can show large year-to-year variation. The496

argument drop.unused.levels=FALSE is also included so the gam function does not drop the497

year factor levels corresponding to those in the held-out test data set.498

Model 4:499

zoo_comm_mod4 <- gam(density_adj ~ s(day, taxon,

bs="fs",

k=10,

xt=list(bs="cc"))+

s(taxon, year_f, bs="re"),

data=zoo_train,

knots = list(day =c(0, 365)),

family = Gamma(link ="log"),

method = "REML",

drop.unused.levels = FALSE)

Model 5:500

# Note that s(taxon, bs="re") has to be explicitly included here, as the

# day by taxon smoother does not include an intercept

zoo_comm_mod5 <- gam(density_adj ~ s(day, by=taxon,

k=10, bs="cc") +

s(taxon, bs="re") +

s(taxon, year_f, bs="re"),

data=zoo_train,

knots = list(day =c(0, 365)),

family = Gamma(link ="log"),

method = "REML",

drop.unused.levels = FALSE)

At this stage of the analysis (prior to model-to-model comparisons), it is useful to determine if501

any of the fitted models adequately describe patterns in the data (i.e. goodness of fit testing).502

The mgcv package provides tools to facilitate this process, using the gam.check function.503

This function creates a set of standard diagnostic plots: a QQ plot, a plot of response versus504

fitted values, a histogram of residuals, and a plot of residuals versus fitted values. It also505

conducts a test for each smooth term to determine if the number of degrees of freedom (k)506

for each smooth is adequate (see ?mgcv::check.k for details on how that test works). The507

code for model 4 and 5 for the community zooplankton model is shown here:508

For the sake of brevity, and as fitted versus response plots are generally less useful for509

non-normally distributed data, we have plotted QQ plots and fitted-versus residual plots for510
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model 5 (the results for model 4 are virtually indistinguishable to the naked eye). These plots511

(Figure 14) indicate that the Gamma distribution seems to fit the observed data well except at512

low values, where the deviance residuals are larger than predicted by the theoretical quantiles513

(Figure 14 left). There also does not seem to be a pattern in the residual versus fitted values514

(Figure 14 right), except for a line of residuals at the lowest values, which correspond to all515

of those observations where a given taxon was absent from the sample. The k.check test516

shows that the default maximum degrees of freedom for the smoothers used in model 5 are517

sufficient for all species, as the p-value for the observed k-index (which measures pattern in518

the residuals) is not significant:519

## k� edf k-index p-value520

## s(day):taxonC. sphaericus 8 4.78 0.89 0.43521

## s(day):taxonCalanoid copepods 8 6.66 0.89 0.47522

## s(day):taxonCyclopoid copepods 8 5.31 0.89 0.45523

## s(day):taxonD. mendotae 8 6.95 0.89 0.48524

## s(day):taxonD. thomasi 8 6.57 0.89 0.46525

## s(day):taxonK. cochlearis 8 5.92 0.89 0.49526

## s(day):taxonL. siciloides 8 0.52 0.89 0.48527

## s(day):taxonM. edax 8 4.69 0.89 0.46528

## s(taxon) 8 6.26 NA NA529

## s(taxon,year_f) 152 51.73 NA NA530

In this table, each row corresponds to a single smooth term, k� corresponds to the number531

of basis functions used for that smoother in the fitted model (smaller than the specified k532

in the model itself, as some basis functions are automatically dropped to ensure the model533

is identifiable). The column edf is the estimated Effective Degrees of Freedom for that534

smoother, the k-index is a measure of the remaining pattern in the residuals, and the p-value535

is calculated based on the distribution of the k-index after randomizing the order of the536

residuals. Note that there is no p-value for the random effects smoothers s(taxon) and537

s(taxon,year_f) as the k value for this term is already set at its maximum.538

Differences between models 4 (shared smoothness between taxa) and 5 (different smoothness539

for each taxa) seem to be driven by the low seasonality of L. siciloides relative to the other540

species, and how this is captured by the more flexible model 5 (Figure 15). Still, both models541

show very similar fits to the training data. Model 4 is slightly better at predicting out of542

sample fits for all taxa except M. edax (Table ??). Even though L. siciloides showed weak543

seasonal dynamics, Model 4 and 5 still did a better job of predicting the density of this species544

out of sample compared to a simple model with only a species-specific intercept (Table ??).545

Next, we look at how to fit inter-lake variability in dynamics for just Daphnia mendotae. Here,546

we will compare models 1, 2, and 3 to determine if a single global function is appropriate547

for all four lakes, or if we can more effectively model variation between lakes with a shared548

smoother and lake-specific smoothers.549
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Figure 14: Diagnostic plots for model 5. Top row: QQ plots plus the 1-1 line. Bottom row:
deviance residuals versus fitted values (on the link scale).

Table 2: Out-of-sample predictive ability for model 4 and 5 applied to the zooplankton
community dataset. RMSE values represent the square root of the average squared difference
between model predictions and observations for test data. Intercept only results are for a null
model with only year and year-by taxon random effect intercepts included.

Total RMSE of held out data
(10 000 individuals·m−2)

taxon Intercept only Model 4 Model 5

C. sphaericus 20.9 20 20.1
Calanoid copepods 12.1 10.9 10.9
Cyclopoid copepods 109 104 105
D. mendotae 3.03 2.79 2.82
D. thomasi 29.5 30.8 31.8

K. cochlearis 94.8 95.7 95.6
L. siciloides 6.12 5.5 5.86
M. edax 2.27 1.95 1.94
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Figure 15: Species-specific seasonal dynamics for the eight zooplankon species tracked in Lake
Mendota. Black points indicate individual plankton observations (after log-transformation
and centering and scaling). Lines indicate predicted average values for model 4 (black) and
model 5 (red). Ribbons indicate ± 2 standard errors around the mean.
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Model 1:550

zoo_daph_mod1 <- gam(density_adj ~ s(day, bs="cc", k=10)+

s(lake, bs="re") +

s(lake, year_f,bs="re"),

data=daphnia_train,

knots=list(day =c(0, 365)),

family=Gamma(link ="log"),

method="REML",

drop.unused.levels = FALSE)

Model 2:551

zoo_daph_mod2 <-

gam(density_adj ~ s(day, bs="cc", k=10) +

s(day, lake, k=10, bs="fs", xt=list(bs="cc")) +

s(lake, year_f,bs="re"),

data=daphnia_train,

knots=list(day=c(0, 365)),

family=Gamma(link ="log"),

drop.unused.levels = FALSE,

method="REML")

Model 3:552

zoo_daph_mod3 <- gam(density_adj~s(day, bs="cc", k=10) +

s(day, by=lake, k=10, bs="cc")+

s(lake, bs="re") +

s(lake, year_f,bs="re"),

data=daphnia_train,

knots=list(day =c(0, 365)),

family=Gamma(link ="log"),

method="REML",

drop.unused.levels = FALSE)

We will exclude the gam.check diagnostic plots and results, as they do not indicate any issues553

with model fit. The AIC values indicate that both model 2 (1093.71) and 3 (1085.7) are better554

fits than model 1 (1097.62), but models 3 fits somewhat better than model 2. There does not555

seem to be a large amount of inter-lake variability (the effective degrees of freedom per lake556

are low in models 2 & 3). Plots for all three models (Figure 16) show that Mendota, Monona,557

and Kegonsa lakes are very close to the average and to one another for both models, but558

Waubesa shows evidence of a more pronounced spring bloom and lower winter abundances.559
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Figure 16: Raw data (points) and fitted models (lines) for D. mendota data. Green: model
1 (no inter-lake variation in dynamics); orange: model 2 (interlake variation with similar
smoothness); purple: model 3 (varying smoothness among lakes). Shaded bands are drawn at
± 2 standard errors around each model.
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Table 3: Out-of-sample predictive ability for model 1-3 applied to the D. mendotae dataset.
RMSE values represent the average squared difference between model predictions and obser-
vations for held-out data (zero predictive ability would correspond to a RMSE of one).

Total RMSE of held out data
(10 000 individuals·m−2)

Lake Intercept only Model 1 Model 2 Model 3

Kegonsa 2.1 2.1 2.1 2
Mendota 3 2.7 2.7 2.7
Menona 3 3 2.9 2.9
Waubesa 7 7.2 7.2 7.1

Model 3 is able to predict as well as model 1 or 2 (Table ??), indicating that allowing for560

inter-lake variation in seasonal dynamics improved model prediction. None of the models did561

well in terms of predicting Lake Kegonsa or Lake Waubesa dynamics out of sample compared562

to a simple model with only a lake-specific intercept and no intra-annual variability (Table563

??).564

V: Computational and statistical issues when fitting565

HGAMs566

Which of the five model formulations should you choose for a given data set? There are two567

major trade-offs to consider. The first is the bias-variance trade-off: more complex models568

can account for more fluctuations in the data, but also tend to give more variable predictions,569

and can overfit. The second trade-off is model complexity versus computational cost: more570

complex models can include more potential sources of variation and give more information571

about a given data set, but will generally take more time and computational resources to fit572

and debug. We discuss both of these trade-offs in this section. We also discuss how to extend573

the HGAM framework to fit more complex models.574

Bias-variance trade-offs575

The bias-variance trade-off is a fundamental concept in statistics. When trying to estimate576

any relationship (in the case of GAMs, a smooth relationship between predictors and data)577

bias measures how far, on average, an estimate is from the true value. The variance of an578

estimator corresponds to how much that estimator would fluctuate if applied to multiple579

different samples of the same size taken from the same population. These two properties tend580

to be traded off when fitting models. For instance, rather than estimating a population mean581
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from data, we could simply use a predetermined fixed value regardless of the observed data6.582

This estimate would have no variance (as it is always the same regardless of what the data583

look like) but would have high bias unless the true population mean happened to equal zero.584

Penalization is useful because using a penalty term slightly increases model bias, but can585

substantially decrease variance (Efron & Morris, 1977).586

In GAMs, the bias-variance trade-off is managed by the terms of the penalty matrix, and587

equivalently random effect variances in HGLMs. Larger penalties correspond to lower variance,588

as the estimated function is unable to wiggle a great deal, but also correspond to higher589

bias unless the true function is close to the null space for a given smoother (e.g., a straight590

line for thin plate splines with 2nd derivative penalties, or zero for a random effect). The591

computational machinery used by mgcv to fit smooth terms is designed to find penalty terms592

that best trade-off bias for variance to find a smoother that can effectively predict new data.593

The bias-variance trade-off comes into play with HGAMs when choosing whether to fit594

separate penalties for each group level or assign a common penalty for all group levels (i.e.,595

deciding between models 2 & 3 or models 4 & 5). If the functional relationships we are trying596

to estimate for different group levels actually vary in how wiggly they are, setting the penalty597

for all group-level smoothers equal (models 2 & 4) will either lead to overly variable estimates598

for the least variable group levels, over-smoothed (biased) estimates for the most wiggly terms,599

or a mixture of these two, depending on the fitting criteria.600

We developed a simple numerical experiment to determine whether mgcv’s fitting criteria601

tend to set estimated smoothness penalties high or low in the presence of among-group602

variability in smoothness when fitting model 2 or 4 HGAMs. We simulated data from five603

different groups, with all groups having the same levels of the covariate x, ranging from 0 to604

2π. For each group, the true function relating x to the response, y, was a sine wave, but the605

frequency varied from 0.25 (equal to half a cycle across the range of x) to 4 (corresponding to606

4 full cycles across the range). We added normally distributed error to all y-values, with a607

standard deviation of 0.2. We then fit both model 4 (where all curves were assumed to be608

equally smooth) and model 5 (with varying smoothness) to the entire data set, using REML609

criteria to estimate penalties. For this example (Fig. 17a), requiring equal smoothness for all610

group levels resulted in mgcv underestimating the penalty for the lowest frequency (most611

smooth) terms, but accurately estimating the true smoothness of the highest frequency terms612

as measured by the squared second derivative of the smooth fit versus that of the true function613

(Fig. 17b). This implies that assuming equal smoothness will result in underestimating614

the true smoothness of low-variability terms, and thus lead to more variable estimates of615

these terms. If this is a potential issue, we recommend fitting both models 4 and 5 and616

using standard model evaluation criteria (e.g., AIC) to determine if there is evidence for617

among-group variability in smoothness. For instance, the AIC for model 4 fit to this data is618

-178, whereas it is -211 for model 5, implying a substantial improvement in fit by allowing619

smoothness to vary. However, it may be the case that there are too few data points per group620

to estimate separate smoothness levels, in which case model 2 or model 4 may still be the621

better option even in the face of varying smoothness.622

6While this example may seem contrived, this is exactly what happens when we assume a given regression
coefficient is equal to zero (and thus exclude it from a model).
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The ideal case would be to assume that among-group penalties follow their own distribution623

(estimated from the data), to allow variation in smoothness while still getting the benefit624

of pooling information on smoothness between groups. This is currently not implemented625

in mgcv. It is possible to set up this type of varying penalty model in flexible Bayesian626

modelling software such as Stan (see below for a discussion of how to fit HGAMs using these627

tools), but how to fit this type of model has not been well studied.628

It may seem there is also a bias-variance trade-off between choosing to use a single global629

smoother (model 1) or a global smoother plus group-level terms (models 2 and 3). In model 1,630

all the data is used to estimate a single smooth term, and thus should have lower variance than631

models 2 and 3, but higher bias for any given group in the presence of inter-group functional632

variability. However, in practice, this trade-off will be handled via penalization; if there are633

no average differences between functional responses, mgcv will penalize the group-specific634

functions toward zero, and thus toward the global model. The choice between using model 1635

versus models 2 and 3 should generally be driven by computational costs. Model 1 is typically636

much faster to fit than models 2 and 3, even in the absence of among-group differences. If637

there is no need to estimate inter-group variability, model 1 will typically be more efficient.638

A similar issue exists when choosing between models 2 and 3 and models 4 and 5. If all group639

levels have very different functional shapes, the global term will get penalized toward zero640

in models 2 and 3, so they will reduce to models 4 and 5. The choice to include a global641

term should be made based on scientific considerations (is the global term of interest?) and642

computational considerations.643

Complexity-computation trade-offs644

The more flexible a model is, the larger an effective parameter space any fitting software has645

to search. It can be surprisingly easy to use massive computational resources trying to fit646

models to even small datasets. While we typically want to select models based on their fit647

and our inferential goals, computing resources can often act as an effective upper bound on648

model complexity. For a given data set, assuming a fixed family and link function, the time649

taken to estimate an HGAM will depend (roughly) on four factors: (i) the number of basis650

functions to be estimated, (ii) the number of smoothing parameters to be estimated, (iii)651

whether the model needs to estimate both a global smoother and groupwise smoothers, and652

(iv) the algorithm and fitting criteria used to estimate parameters.653

The most straightforward factor that will affect the amount of computational resources is the654

number of parameters in the model. Adding group-level smoothers (moving from model 1 to655

2-5) means that there will be more regression parameters to estimate. For a dataset with ng656

different groups and n data, fitting a model with just a global smoother, y~s(x,k=k) will657

require k coefficients, and takes O(nk2) operations to evaluate. Fitting the same data using a658

group-level smoother (model 4, y~s(x,fac,bs="fs",k=k)) will require O(nk2g2) operations659

to evaluate. In effect, adding a group-level smoother will increase computational cost by an660

order of the number of groups squared. The effect of this is visible in the examples we fit in661

section III. Table ?? compares the relative time it takes to compute model 1 versus the other662
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Figure 17: a) Illustration of bias that can arise from assuming equal smoothness for all group
levels (model 4, red line) versus allowing for intergroup variation in smoothness (model 5, red
line) when the true function (black line) shows substantial variation in smoothness between
groups. b) Estimated wiggliness (as measured by the integral of the squared 2nd derivative)
of the true function for each group level versus that for the functions estimated by model 4
(red) and model 5 (blue), indicating substantial undersmoothing for low-variability curves by
model 4.
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Table 4: Relative computational time and model complexity for different HGAM formulations
of the two example data sets from section III. All times are scaled relative to the length of
time model 1 takes to fit to that data set. The number of coefficients measures the total
number of model parameters (including intercepts). The number of smoothers is the total
number of unique penalty values estimated by the model.

# of terms

model relative time coefficients penalties

A. CO2 data
1 1 17 2
2 8 65 3
3 16 65 14
4 6 61 3
5 18 61 13

B. bird movement data
1 1 90 2
2 180 540 5
3 390 624 14
4 140 541 3
5 71 535 12

models.663

One way to deal with this issue would be to reduce the number of basis functions used when664

fitting group-level smoothers when the number of groups is large, limiting the flexibility of665

the model. It can also make sense to use more computationally-efficient basis functions when666

fitting large data sets, such as P-splines (Wood, 2017b) or cubic splines. Thin plate splines667

entail greater computational costs (Wood, 2017a).668

Including a global smoother (models 2 and 3 compared to models 4 and 5) will not generally669

substantially affect the number of coefficients that need to be estimate (Table ??). Adding a670

global term will add at most k extra terms. It can be substantially less than that, as mgcv671

drops basis functions from co-linear smoothers to ensure that the model matrix is full rank.672

Adding additional smoothing parameters (moving from model 2 to 3, or moving from model673

4 to 5) is more costly than increasing the number of coefficients to estimate, as estimating674

smoothing parameters is computationally intensive (Wood, 2011). This means that models 2675

and 4 will generally be substantially faster than 3 and 5 when the number of groups is large,676

as models 3 and 5 fit a separate set of penalties for each group level. The effect of this is677

visible in comparing the time it takes to fit model 2 to model 3 (which has a smoother for678

each group) or models 4 and 5 for the example data (Table ??). Note that this will not hold679

in all cases. For instance, model 5 takes less time to fit the bird movement data than model 4680

does (Table ??B).681
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Alternative formulations: bam(), gamm(), and gamm4()682

When fitting models with large numbers of groups, it is often possible to speed up computation683

substantially by using one of the alternative fitting routines available through mgcv.684

The first option is the funcion bam(), this requires the least changes to existing code written685

using the gam() function. bam() is designed to improve performance when fitting large data686

sets via two mechanisms. First, it saves on memory needed to compute a given model by687

using a random subset of the data to calculate the basis functions. It then blocks the data and688

updates model fit within each block (Wood, Goude & Shaw, 2015). While this is primarily689

designed to reduce memory usage, it can also substantially reduce computation time. Second,690

when using bam()’s default fREML (“Fast REML”) method, you can use the discrete=TRUE691

option: this first bins continuous covariates into a smaller number of discrete values before692

estimating the model, substantially reducing the amount of computation needed (Wood et al.693

(2017); see ?mgcv::bam for more details). Setting up models 1-5 in bam() uses the same code694

as we have previously covered; the only difference is that you use the bam() instead of gam()695

function, and have the additional option of discretizing your covariates.696

bam() has a larger computational overhead than gam(), so for small numbers of groups, it can697

be slower than gam() (Figure 18). As the number of groups increases, computational time698

for bam() increases more slowly than for gam(); in our simulation tests, when the number of699

groups is greater than 16, bam() can be upward of an order of magnitude faster (Figure 18).700

Note that bam() can be somewhat less computationally stable when estimating these models701

(i.e., less likely to converge).702

The second option is to fit models using one of two dedicated mixed effect model estimation703

packages, nlme and lme4. The mgcv package includes the function gamm(), which uses the704

nlme package to estimate the GAM, automatically handling the transformation of smooth705

terms into random effects (and back into basis function representations for plotting and other706

statistical analyses). The gamm4() function, in the separate gamm4 package, uses lme4 in707

a similar way. Using gamm() or gamm4() to fit models rather than gam() can substantially708

speed up computation when the number of groups is large, as both nlme and lme4 take709

advantage of the sparse structure of the random effects, where most basis functions will be710

zero for most groups (i.e., any group-specific basis function will only take a non-zero value for711

observations in that group level). As with bam(), gamm() and gamm4() are generally slower712

than gam() for fitting HGAMs when the number of group levels is small (in our simulations,713

<8 group levels), however they do show substantial speed improvements even with a moderate714

number of groups, and were as fast as or faster to calculate than bam() for all numbers of715

grouping levels we tested (Figure 18)7.716

7It is also possible to speed up both gam() and bam() by using multiple processors in parallel, whereas
this is not currently possible for gamm() and gamm4(). For large numbers of grouping levels, this should speed
up computation as well, at the cost of using more memory. However, computation time will likely not decline
linearly with the number of cores used, since not all model fitting sets are parallelizable, and performance of
cores can vary. As parallel processing can be complicated and dependent on the type of computer you are
using to configure, we do not go into how to use these methods here. The help file ?mgcv::mgcv.parallel

explains how to use parallel computations for gam() and bam() in detail.
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Figure 18: Elapsed time to estimate the same model using each of the four approaches. Each
data set was generated with 20 observations per group using a unimodal global function and
random group-specific functions consisting of an intercept, a quadratic term, and logistic trend
for each group. Observation error was normally distributed. Models were fit using model
2: y s(x, k=10, bs="cp") + s(x,fac, k=10, bs="fs", xt=list(bs="cp"), m=1). All
models were run on a single core.
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Both gamm() and gamm4() require a few changes to model code. First, there are a few717

limitations on how you are able to specify models 1-5 in both frameworks. Factor-smoother718

interaction (bs="fs") basis setup works in both gamm() and gamm4(). However, as the719

nlme package does not support crossed random effects, it is not possible to have two factor-720

smoother interaction terms for the same grouping variable in gamm() models (e.g., y~s(x1,721

grp, bs="fs")+s(x2, grp, bs="fs"). These type of crossed random effects are allowed in722

gamm4. The use of te() and ti() terms are not possible in gamm4, due to issues with how723

random effects are specified in the lme4 package, making it impossible to code models where724

multiple penalties apply to a single basis function. Instead, for multidimensional group-level725

smoothers, the alternate function t2() needs to be used to generate these terms, as it creates726

tensor products with only a single penalty for each basis function (see ?mgcv::t2 for details727

on these smoothers, and Wood, Scheipl & Faraway (2013) for the theoretical basis behind728

this type of tensor product). For instance, model 2 for the bird movement data we discussed729

in section III would need to be coded as:730

bird_mod4_gamm4 <-731

gamm4(count ~ t2(week, latitude, species, bs=c("cc", "tp", "re"),732

k=c(10, 10, 6), m=2),733

data=bird_move, family="poisson")734

These packages also do not support the same range of families for the dependent variable;735

gamm() only supports non-Gaussian families by using a fitting method called penalized quasi-736

likelihood (PQL) that is slower and not as numerically stable as the methods used in gam(),737

bam(), and gamm4(). Non-Gaussian families are well supported by lme4 (and thus gamm4),738

but can only fit them using marginal likelihood (ML) rather than REML, so may tend to739

over-smooth relative to gam() using REML estimation. Further, neither gamm() nor gamm4()740

supports several of the extended families available through mgcv, such as zero-inflated,741

negative binomial, or ordered categorical and multinomial distributions.742

Estimation issues when fitting both global and groupwise smoothers743

When fitting models with separate global and groupwise smoothers (models 2 and 3), one issue744

to be aware of is concurvity between the global smoother and groupwise terms. Concurvity745

measures how well one smooth term can be approximated by some combination of the other746

smooth terms in the model (see ?mgcv::concurvity for details). For models 2 and 3, the747

global term is entirely concurved with the groupwise smoothers. This is because, in the748

absence of the global smooth term, it would be possible to recreate that average effect by749

shifting all the groupwise smoothers so they were centered around the global mean. In750

practical terms, this has the consequence of increasing uncertainty around the global mean751

relative to a model with only a global smoother. In some cases, it can result in the estimated752

global smoother being close to flat, even in simulated examples with a known strong global753

effect. This concurvity issue may also increase the time it takes to fit these models (for754

example, compare the time it takes to fit models 3 and 5 in Table ??). These models can still755

be estimated because of penalty terms; all of the methods we have discussed for fitting model756

2 (factor-smoother terms or random effect tensor products) automatically create a penalty for757
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the null space of the group-level terms, so that only the global term has its own unpenalized758

null space. Both the REML and ML criteria work to balance penalties between nested smooth759

terms (this is why nested random effects can be fitted). We have observed that mgcv still760

occasionally finds solutions with simulated data where the global term is over-smoothed.761

To avoid this issue, we recommend both careful choice of basis and setting model degrees of762

freedom so that groupwise terms are either slightly less flexible than the global term or have763

a smaller null space. In the examples in section III, we used smoothers with an unpenalized764

null space (standard thin plate splines) for the global smoother and ones with no null space765

for the groupwise terms8. When using thin plate splines, it may also help to use splines with766

a lower order of derivative penalized in the groupwise smoothers than the global smoothers,767

as lower-order “tp” splines have fewer basis functions in the null space. For example, we768

used m=2 (penalizing squared second derivatives) for the global smoother, and m=1 (penalizing769

squared first derivatives) for groupwise smoothers in models 2 and 3. Another option is to770

use a lower number of basis functions (k) for groupwise relative to global terms. This will771

reduce the maximum flexibility possible in the groupwise terms. We do caution that these are772

just rules of thumb. In cases where an accurately estimated global smoother is essential, we773

recommend either fitting model 1 or using specialized functional regression software such as the774

refund package (Scheipl, Staicu & Greven, 2014), which enforces constraints on the groupwise775

smoothers so that they always sum to zero at any given point (avoiding the collinearity issue).776

Also, see below for more information on functional regression.777

A brief foray into the land of Bayes778

As mentioned in section II, the penalty matrix can also be treated as the inverse of a prior779

covariance matrix for model parameters β. Intuitively, the basis functions and penalty780

we use form a prior (in the informal sense) on how we’d like our model term to behave.781

REML gives an empirical Bayes estimate of the smooth model (Laird & Ware, 1982), where782

terms in the null space of the smoother have improper, flat priors (i.e., any value for these783

terms are considered equally likely), any terms in the range space are treated as having a784

multivariate normal distribution, and the penalty terms are treated as having an improper785

flat prior (see Wood (2017a) Section 5.8 for more details on this connection). The posterior786

Bayesian covariance matrix for model parameters can be extracted from any fitted gam()787

or bam() model with vcov(model). This can in turn be used to generate samples from the788

posterior distribution of the model, as the Bayesian covariance matrix already incorporates789

the uncertainty from having to estimate the covariance matrix into it (the standard confidence790

intervals used in mgcv are in fact Bayesian posterior credible intervals, which happen to791

have good frequentist properties; Wood, 2006b; Marra & Wood, 2012). Viewing our GAM as792

Bayesian is a somewhat unavoidable consequence of the equivalence of random effects and793

splines — if we think that there is some true smoother that we wish to estimate, we must take794

8For model 2 both the factor-smoother, and tensor products of random effect (“re”) and other smooth
terms do not have a penalized nullspace by construction (they are full rank), as noted above. For model
3 groupwise terms, we used basis types that had a penalty added to the nullspace, so called “shrinkage”
methods: bs="ts", "cs", or "ps" have this property.
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a Bayesian view of our random effects (splines) as we do not think that the true smoother795

changes each time we collect data (Wood, 2017a, Section 5.8).796

This also means that HGAMs can be included as components in a more complex fully Bayesian797

model. The mgcv package includes a function jagam() that can take a specified model798

formula and automatically convert it into code for the JAGS (or BUGS) Bayesian statistical799

packages, which can be adapted by the user to their own needs.800

Similarly, the brms package (Bürkner, 2017), which can fit complex statistical models using801

the Bayesian software Stan (Carpenter et al., 2017) allows for the inclusion of mgcv-style802

smooth terms as part of the model specification. The brms package does not currently support803

te() tensor products or factor-smoother interaction terms, but does support t2()-style tensor804

products, which means all of the models fitted in this paper can be fit by brms.805

Beyond HGAMs: functional regression806

The HGAMs we have discussed are actually a type of functional regression, which is an807

extension of standard regression models to cases where the outcome variable yi and/or the808

predictor variables xi for a given outcome are functions, rather than single variables (Ramsay809

& Silverman, 2005). HGAMs as we have described them are a form of function-on-scalar810

regression (Ramsay & Silverman, 2005; Reiss, Huang & Mennes, 2010), where we are trying811

to estimate a smooth function that varies between grouping levels.812

We have deliberately focused our paper on these simpler classes of functional regression813

model, and chosen to use the term HGAM rather than functional regression, as we believe814

that this more clearly connects these models to modelling approaches already familiar to815

ecologists. Further, we consider the unit of analysis to still be individual observations, as816

compared to functional regression where the the unit of analysis is whole functions. For817

instance, we are interested in applications such as species distribution modelling, where the818

presence of a given species may be predicted from a sum of several species-specific functions819

of different environmental variables. However, there is an extensive literature dedicated to the820

estimation of more complex functional regression models for any interested reader (see Ramsay821

& Silverman (2005) for a good introduction, and Scheipl, Gertheiss & Greven (2016) for more822

recent work in this field). The refund package (Reiss, Huang & Mennes, 2010; Scheipl, Staicu823

& Greven, 2014; Scheipl, Gertheiss & Greven, 2016) uses the statistical machinery of mgcv824

to fit these models, and should be usable by anyone familiar with mgcv modelling syntax.825

Functional regression is also a major area of study in Bayesian statistics (e.g., Kaufman, Sain826

& others (2010)).827

Conclusion828

HGAMs are a powerful tool to model intergroup variability, and we have attempted to829

illustrate some of the range and possibilities that these models are capable of, how to fit them,830

and some issues that may arise during model fitting and testing. Specifying these models and831
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techniques for fitting them are active areas statistical research, so this paper should be viewed832

as a jumping-off point for these models, rather than an end-point; we refer the reader to the833

rich literature on GAMs (e.g. Wood, 2017a) and functional regression (Ramsay & Silverman,834

2005; Kaufman, Sain & others, 2010; Scheipl, Staicu & Greven, 2014) for more on these ideas.835
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