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Abstract 
There are many methods available for each phase of the RNA-Seq analysis and each of them uses different 
algorithms. It is therefore useful to identify a pipeline that combines the best tools in terms of time and results. 
For this purpose, we compared five different pipelines, obtained by combining the most used tools in RNA-Seq 
analysis. Using RNA-Seq data on samples of different Acute Myeloid Leukemia (AML) cell lines, we compared 
five pipelines from the alignment to the differential expression analysis (DEA). For each one we evaluated the 
peak of RAM and time and then compared the differentially expressed genes identified by each pipeline. It 
emerged that the pipeline with shorter times, lower consumption of RAM and more reliable results, is that which 
involves the use of HISAT2 for alignment, featureCounts for quantification and edgeR for differential analysis. 
Finally, we developed an automated pipeline that recurs by default to the cited pipeline, but it also allows to 
choose between different tools. In addition, the pipeline makes a final meta-analysis that includes a Gene 
Ontology and Pathway analysis. The results can be viewed in an interactive Shiny App and exported in a report 
(pdf, word or html formats). 

Introduction 

Large-scale expression analysis is an important tool for RNA analysis, but there are many different approaches 
and techniques for studying differential gene expression under different conditions. In particular, sequencing 
techniques are becoming the method of choice in the transcriptome analysis. Even within the RNA-Seq, however, 
it is possible to resort to many different approaches. There are numerous aligners as well as different software for 
quantification and it is becoming increasingly important to identify a unique pipeline for differential analysis that 
knows how to choose the best approaches to obtain precise results in a short time. 

Previously, standard pipelines have been defined for RNA-Seq analysis, such as the pipeline using TopHat2 for 
alignment and Cufflinks and cummeRbund for quantification and differential analysis (Trapnell et al., 2012), or 
its most recent evolution, which recurs to HISAT2 for alignment, StringTie for quantification and Ballgown for 
differential analysis (Pertea et al., 2016). There have also been works that have shown how using different 
pipelines and algorithms leads to different performances in terms of time, memory and results. In a recent work 
(Germain et al., 2016), for example, it has been highlighted how the quantification methods using a statistical 
approach are better in terms of estimation of absolute abundance, while the methods that use read count prove 
more reliable in comparisons between different samples. 
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It is therefore interesting not only to identify a pipeline that is more efficient than the others, but also to create an 
easy-to-use tool that allows applying this pipeline and any subsequent analysis on a sample set. 

Methods 

The data we analyzed came from RNA-Seq experiments performed on two different AML cell lines with NPM1 
mutation: OCI-AML3 (Quentmeier et al., 2005) and IMS-M2 (Chi et al., 2010). In both cases the treatment 
conditions were compared with the conditions without treatment. For each condition the experiment was done in 
triplicate. The kit used for the preparation of the sample was the truSeq RNA (Illumina, 2011), while the sequencer 
used for the sequencing was HiSeq 2500 by Illumina (Illumina, 2015), in rapid run and with a flow cell. 
Sequencing occurred in paired-end and using two lanes for sample. The two lanes corresponding to the same 
sample and to the same read have been merged into a single file before the alignment phase.  

An initial quality analysis was performed on FastQ files using FastQC software (Andrews, 2010) and a 
contaminant genome evaluation using FastQ-Screen (Andrews, 2011). We then removed the PhiX genome and 
the ribosomal genome by identifying sequences through alignment on samples with bwa. The five compared 
pipelines were the following: TopHat2 (Kim et al., 2013), Cufflinks (Trapnell et al., 2010), cummeRbund (Goff 
et al., 2012); HISAT2 (Kim et al., 2015), StringTie (Pertea et al., 2015), Ballgown (Fu et al., 2017); HISAT2, 
featureCounts (Liao et al., 2014), DESeq2 (Love et al., 2014); HISAT2, featureCounts, edgeR (Robinson et al., 
2010); kallisto (Bray et al., 2016), sleuth (Pimentel). 

Results  

For the five pipelines, we analyzed the time taken for the various processes and the peaks of memory used. The 
data below are for the analysis of the sample treated using 4 threads for each process. The times were then 
multiplied by the six samples to obtain estimates of the total hours for each pipeline. 

 

Figure 1. Histogram of the times and the RAM memory peaks reached during the RNA-Seq analysis for the five pipelines. 
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As well as comparing time and RAM memory performance, we then compared the pipelines through the results 
obtained after the differential analysis. The Venn diagram below shows the genes differentially expressed and 
with an absolute value of Fold Change greater than 1.5. 

 

Figure 2. Venn diagram of genes with p-value lower than 0.05 and absolute value of log2-Fold Change higher than 1.5 common to the 
five different methods of analysis used. 

By first evaluating the pipelines in terms of time consumption and memory usage peaks achieved, it was found 
that the most expensive step is in all cases the alignment, except in the Kallisto pipeline, where higher RAM peaks 
are reached in the differential analysis. Comparing the three different aligners to which we have recourse, it is 
clear that the slowest is TopHat2, which requires more than five hours for sample for alignment only. With 
HISAT2 it comes down to about 15 minutes for sample, followed by the longest conversion steps of the SAM file 
in BAM, sorting and indexing, which increase the time for a sample up to 40 minutes. Kallisto, on the other hand, 
takes about 20 minutes for sample for pseudo-alignment and quantification. As for the consumption of memory, 
the highest are with HISAT2, with 4.3Gb, then down to 3.3Gb with TopHat2 up to 1.4Gb with Kallisto, which, 
using an alignment on the transcriptome, requires consumption of memory lower than the alignments made on 
the genome. As for the quantification methods, instead, featureCounts with its read count requires slightly shorter 
times than the quantification with the statistical approach of Cufflinks and StringTie. The consumption of memory, 
however, never exceed a few hundred megabytes. The differential analysis in R, finally, required in all cases only 
a few minutes or a few seconds and did not have much influence in the overall time. 

In terms of memory usage, all pipelines are quite similar, with the highest peaks concentrating in the initial 
alignment phase. Interestingly, however, note that all the peaks are kept below 5Gb, so the analysis in all cases 
can be carried forward even on a normal PC. 
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Regarding the results of the differential expression compared between the five pipelines, looking only at the 
number of genes that are significantly expressed compared with the control, Kallisto provides the largest number, 
with over 2,000 genes, followed by DESeq2 with 898 genes. Looking at the results of Kallisto, however, it 
emerges that more than 80% of the identified genes are unique to the pseudo-alignment method and are not 
supported by the other methods. This suggests that they are therefore false positives. The pipeline that has instead 
identified the least number of genes differentially expressed is that of HISAT2-StringTie-Ballgown, with less than 
500 genes. Even in this case, however, half of the identified genes is unique to this method and therefore allows 
us to suppose that these are also false positives. Better results are obtained with DESeq2, which has about 500 
significant genes also confirmed by other methods, but another 200 are not in common. edgeR gives results similar 
to DESeq2, but, thanks to more stringent statistical methods, the number of significant genes is reduced to 500 
and almost all of them are in common with the other methods. It therefore seems that using the statistical approach 
of edgeR rather than DESeq2 allows to eliminate most of the false positives. Finally, even with the TopHat2-
Cufflinks-cummeRbund pipeline good results are obtained from the differential analysis, with about 500 genes, 
most of which in common with the other methods. 

In the light of these results, it emerges that, although Kallisto is the method that requires shorter times, the large 
number of potential false positives makes it unreliable compared to other pipelines. TopHat2 and HISAT2-
featureCounts-edgeR pipelines are the ones that give better results in differential analysis, as most of the genes 
they identify are in common with other methods. In terms of time, however, the edgeR pipeline is better than that 
of TopHat2 as it requires almost a tenth of the time. 

The HISAT2-featureCounts-edgeR pipeline is therefore the best of the five pipelines used because it takes a short 
time, the quantification method (the read count) is the simplest and fastest, and the differential analysis gives the 
best results, with a low number of potential false positives. 

 

Figure 3. Workflow of HISAT2-featureCounts-edgeR pipeline. 

In this pipeline we use HISAT2, an alignment software that uses indexing schemes based on the Burrows-Wheeler 
transform and on the Ferragina-Manzini index (FM) using two types of alignment indexing: an FM index on the 
whole genome to anchor the various alignments and numerous local FM indexes for a rapid extension of these 
alignments. Starting from the pre-processed FastQ files and a Fasta file of the reference genome, BAM files are 
obtained for each sample. Then on the aligned BAM files are performed the quantification with featureCounts, 
which uses the method of read count. In addition to the BAM files, featureCounts requires an annotation file 
(GTF file) of the reference genome. The matrixes produced as output of featureCounts become the input for 
edgeR. Before the differential analysis, the genes were filtered to keep those that have at least one count per 
million in at least two samples. After filtering, the data were normalized through the TMM method (Trimmed 
Mean of M values) (Robinson et al., 2010). The model used is a Generalized Linear Model (GLM), which 
represents an extension of the simplest linear model. Each gene is fitted through a negative binomial distribution. 
Differential Expression Analysis is performed by a likelihood ratio test. It consists in comparing the logarithm of 
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the calculated likelihood for two different models, one of which is the one obtained under the null hypothesis. 
The value obtained is compared with the corresponding probability distribution and thus the p-value is obtained, 
which is then corrected by the FDR method. Outputs consist of a matrix with differential expression results, a 
PCA, a volcano plot, a top genes heatmap, and a sample distance heatmap. 

Once we identified the most efficient pipeline, we made it the default choice in the automated pipeline we 
developed (https://github.com/giuliospinozzi/creo_pipelines). The application can be used by command line or 
by using a graphical interface and allows to choose between different methods of alignment, quantification and 
differential expression analysis. In particular, it makes quality control, pre-processing, alignment, transcript 
quantification and differential expression analysis on BAM files. Given the input files and the working directory, 
the pipeline is completely automated. First, quality control on FastQ files is performed with FastQC e FastQ-
Screen. FastQC makes quality control and creates one report for sample. FastQ-Screen estimates approximately 
the percentage of reads that can be mapped on genomes other than human, like ribosomal genome, PhiX genome 
and mouse genome. This allows to evaluate the presence of contaminating genomes. Pre-processing follows 
quality control: the reads are aligned on PhiX genome and ribosomal genome to eliminate contaminations. 
Alignment can be performed with TopHat2 or HISAT2; in the first case quantification is performed with Cufflinks 
and DEA with cummeRbund, in the second case quantification is performed with featureCounts and DEA with 
DESeq2 or edgeR. A second intermediate quality control analysis is also performed on the aligned BAM files 
with some of the RSeQC scripts and in particular: inner_distance, junction_annotation, junction_saturation, 
bam_stat, read_distribution.  

It is possible to perform an optional meta-analysis on the results. It consists in Gene Ontology enrichment analysis 
and KEGG Pathway enrichment analysis on the differentially expressed genes (with absolute Fold Change value 
higher than 1.5 and adjusted p-value lower than 0.05). The meta-analysis part has been developed exclusively for 
the human genome at the moment, although the rest of the pipeline can also work for different genomes. One of 
the future goals is to expand the genomes available also for meta-analysis. 

Finally, the results obtained and saved in the appropriate folders can be viewed in an interactive Shiny App (Chang 
et al., 2018), from which you can also download a report with all the results. The advantage of show the results 
in this form is that, once the Shiny App is launched, it is intuitive and easy to use even for those who are not 
familiar with computer science. The Shiny App shows the results of the RNA-Seq analysis divided into a series 
of tabs for each phase: the summary tab contains two tables that show the initial setting parameters and details 
about pre-processing on the FastQ files; the FastQ quality tab contains the FastQC and FastQ-Screen outputs; the 
BAM quality tab contains the RSeQC outputs obtained from the quality analysis on the aligned files; the 
differential expression analysis tab contains a result table and a series of plots and in particular a PCA, a volcano 
plot, a heatmap of the 35 genes with greater variance, a heatmap showing the distances between the samples; the 
Meta-analysis tab is divided into two sub-tab, one for GO analysis and the other for Pathway analysis, both 
containing a result table, a series of dot-plots and interactive network plots.  
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Figure 4. Screenshot of Shiny App that shows analysis results. 

The aim of this project, in addition to expanding the choice options available within the pipeline, is to make the 
pipeline available to the entire institute through a centralized platform and take advantage of its ease of use (both 
for the GUI specifically created for analysis and for the Shiny App). 
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