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Abstract—Evolutionary algorithms often incorporate ecolog-
ical concepts to help maintain diverse populations and drive
continued innovation. However, while there is strong evidence
for the value of ecological dynamics, a lack of overarching
theoretical framework renders the precise mechanisms behind
these results unclear. These gaps in our understanding make it
challenging to predict which approaches will be most appropriate
for a given problem. Biologists have been developing ecological
theory for decades, but the resulting body of work has yet to be
translated into an evolutionary computation context. This paper
lays the groundwork for such a translation by applying ecological
theory to three different selection mechanisms in evolutionary
computation: fitness sharing, lexicase selection, and Eco-EA.
First, we use ecological ideas to establish a framework that
clarifies how these selection schemes are alike and how they
differ. We then build upon this framework by using metrics
from ecology to gather empirical data about the underlying
differences in the population dynamics that these approaches
produce. Specifically, we measure interaction networks and
phylogenetic diversity within the population to explore long-
term stable coexistence. Notably, we find that selection methods
affect phylogenetic diversity differently than phenotypic diversity.
These results can inform parameter selection, choice of selection
scheme, and the development of new selection schemes.

I. INTRODUCTION

EVOLUTION and ecology are fully entwined in nature [1].
As such, evolutionary theory and ecological theory need

to build upon each other to realize their full potential. Here,
we argue that ecological theory is similarly important in the
context of the theory of evolutionary algorithms. We can better
understand much of what happens in evolutionary algorithms
if we reformulate our analyses with ecological theory in mind.
In particular, concepts such as diversity maintenance, species
co-existence, niches, and spatial effects are suddenly at the
forefront of concerns in such a perspective. While the No-Free-
Lunch theorem states that there is no single best algorithm
for solving all possible optimization problems [2], progress is
possible because real-world problems have patterns that can
be exploited, which tend to cluster into groups with similar
properties. Algorithm can solve problems from across these
classes by simultaneously exploring qualitatively different
paths through the solution space. Such a technique effectively
produces multiple “species” of solutions that coexist in an
ecological community. Thus, by leveraging ecological theory,
we should be able to use first principles to design evolutionary
algorithms that take maximal advantage of this property and
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mitigate the practical ramifications of the No-Free-Lunch
theorem.

Evolutionary computation researchers have devoted substan-
tial attention to understanding how to promote coexistence
among lineages exploring different regions of a fitness land-
scape [3]–[6]. Promoting diversity in an evolving population
is important for EC because it reduces premature conver-
gence on suboptimal fitness peaks while still encouraging
both exploration and exploitation. However, some types of
diversity facilitate finding global optima better than other
types. For example, a high mutation rate generates more new
genotypes, but this increased exploration sacrifices exploitation
of promising prospective solutions; the population plows ahead
exploring rather than refining the solutions already found.

Even amongst more advanced diversity-promoting ap-
proaches, some produce forms of diversity that are spread
across the fitness landscape in ways that appear to be more or
less conducive to solving a given problem (see, for example,
the difference between the probe and behavioral methods
in [5], or the different evolutionary potential observed at
equivalent diversity levels in [7]). Although we have a high-
level idea of why many techniques promote diversity, the
mechanistic details by which these populations spread across
the fitness landscape are less well understood. For example,
fitness sharing [3] promotes diversity via negative density de-
pendence. Does this diversity represent qualitatively different
portions of the fitness landscape than, for example, lexicase
selection [8]? The answer to this question depends on subtle
differences in the evolutionary pressures that these different
selection schemes place on the evolving population.

Because techniques for promoting diversity rely on creating
fitness interactions between individuals in the population (be-
yond basic competition for space in the next generation), they
are, by definition, creating simple ecologies. Ecologists have
developed rigorous theory to predict how ecological communi-
ties change over time and are exploring their interactions with
evolutionary dynamics. A particularly popular area of study
concerns the conditions under which long-term stable coex-
istence between different species is possible [9]–[12]. Such
a theoretical framework can be applied to understand stable
coexistence in EC populations as well, ultimately allowing us
to determine dynamic properties of the system. Of particular
interest, such theory should facilitate the prediction of which
pathways can simultaneously be traversed along a given fitness
landscape. By understanding this interaction between diversity
maintenance strategies and the fitness landscape, we can
predict which algorithmic techniques will be the most effective
a priori. These insights should apply both to choosing an
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appropriate diversity maintenance technique and to setting
its parameters. Additionally, an improved mechanistic under-
standing of why existing algorithms work should facilitate
building more effective variations of those algorithms.

There are two main sets of tools from ecology that we
expect can be helpful for analyzing evolving EC communities:
mathematical theory and empirical techniques to evaluate that
theory. Ecologists use mathematical theory to make a priori
predictions about the fate of natural communities. However,
translating these predictions to work with EC systems requires
careful attention to implicit assumptions about nature that
may or may not carry over. For example, ecologists can
safely assume that organisms inhabit a finite three-dimensional
Euclidean space. A more substantial problem is that most
ecological theory assumes that evolution is too slow to be rel-
evant and attempting to introduce evolution can create messy
feedback loops (although eco-evolutionary dynamics research
is bridging this gap [13]). Another important limitation is
that equations in ecology generally calculate the average or
expected behavior of a system. Such results can be misleading
in highly contingent processes, such as evolution, where rare
mutations can redirect a population into a new region of the
fitness landscape. Nonetheless, ecological theory is a useful
starting point for predictions. As such, we will lay groundwork
here for using it to guide development of EC systems.

Empirical measurements complement ecological theory, al-
lowing biologists to assess predictions and refine theoretical
frameworks. Furthermore, empirical measurements allow us
to uncover general patterns even in situations where theory
is lacking [14]. To this end, ecologists have developed a
toolbox of techniques to evaluate the diversity of a community.
Some of these metrics, such as richness (number of unique
species) and Shannon diversity (entropy) are already used
in EC. Other valuable metrics have not yet been adopted
in EC. Phylogenetic diversity [15], for example, can assess
the extent to which an algorithm is maintaining independent
subpopulations that are exploring distinct regions of the fitness
landscape vs. organisms that only recently diverged from a
common ancestor [14]. This distinction can impact how useful
the population diversity is likely to be for adaptive evolution.
We can also use empirical ecological measurements to assess
hypothesized mechanisms for different diversity maintenance
techniques. For example, ecologists often build graphs repre-
senting the pairwise interactions between community mem-
bers; the topology of these graphs signals how the community
is likely to change over time [16]. We can do the same for
interacting communities in EC.

In the rest of this Introduction, we will provide additional
background on ecological theory and the selection schemes
that we will be examining. In the rest of this contribution,
we will examine four illustrative selection schemes in the
light of ecological theory. Our goal is to develop unifying
principles for understanding the ecological dynamics inherent
in an EC system and predicting its resulting adaptive potential.
We intend for this theoretical framework to provide powerful
insights about the dynamics in EC systems and lay the
groundwork for easier application of ecological ideas in the
future.

Box 1: Glossary

Biological fitness (WWW ): An individual’s expected number
of offspring.
Equalizing forces: Forces that increase the similarity of
fitnesses in a population.
Interaction network: A weighted directed graph describ-
ing interactions between members of a population.
Phylogenetic diversity: The amount of diversity in an-
cestry represented within a population.
Phylogeny: The graph of parent-child relationships in a
population.
R∗:R∗:R∗: The lowest quantity of a limiting resource for which
a given species’ population growth rate is positive. In an
EC context, can be thought of as the lowest quantity of a
limiting resource for which attempting to use that resource
increases fitness.
Stable coexistence: A scenario in which we expect a
group of species to coexist indefinitely.
Stabilizing forces: Forces that increase the fitness of rare
species.

A. Ecological theory
One way that ecological theory can inform EC is to identify

conditions under which different types of organisms can or
cannot stably coexist. The ability to predict coexistence
dynamics will inform us about types of lineages that can simul-
taneously explore the fitness landscape. As such, determining
coexistence criteria is a primary focus of this paper.

Early theory on coexistence in ecology focused on com-
petition for resources that are both limited in quantity and
limiting of the growth rate of species that rely on them.
The most important value for determining coexistence in
this context is a species’ R∗R∗R∗, the resource availability level
at which the species’ population growth rate is 0. If the
current resource availability is less than a species’ R∗, that
population will shrink, reducing the utilization of the resource
and (in the absence of other species) increasing its availability.
Conversely, if the current resource availability is greater than
the R∗ for a species, its population will grow. Assuming no
other ecological factors are affecting a species abundance, its
population size will stabilize with a resource abundance equal
to R∗.

In the simplest case of species competing for a single
resource, the species with the lowest R∗ should out-compete
the others [17]. That species’ population will continue to
increase, depleting the resource until it reaches the species’
R∗; meanwhile, the resource availability will dip below the
other species’ R∗, causing their populations to decrease until
they finally go extinct, having been out-competed. Adding
additional resource types introduces the potential for stable
coexistence among multiple species if each species is a better
competitor for a different resource and consumes more of
that resource [11] (summarized in [12]). Note that we use the
word “species” here to be consistent with ecology; the same
insights apply to other taxonomic units, such as phenotypes
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or genotypes. In most cases, these are more appropriate
taxonomic units in the context of EC.

This resource-mediated coexistence effect is an instance
of a broader rule: species can coexist if individuals of each
species compete with each other more than they compete with
individuals of other species [10]. This rule works because it
forces species to be self-limiting, creating negative frequency
dependent dynamics where each additional member of a
species reduces the competitive ability of other individuals
of the same species [18]. The magnitude of difference be-
tween interspecific (between species) and intraspecific (within
species) competition that is required to enable long-term stable
coexistence is determined by the difference in the fitness of
the two species. If one species is dramatically more fit, it can
drive the other species to extinction even with limited competi-
tion [10]. Ecologists draw a distinction between “stabilizing”
dynamics, which alter the ratio of interspecific competition and
intraspecific competition, and “equalizing” dynamics which
alter the difference in fitness between two species [18]. In
the absence of any stabilizing dynamics, equalizing dynamics
will lead to an unstable equilibrium; even if two species have
identical fitness, one should eventually drift to extinction.
Stabilizing dynamics, on the other hand, actively correct any
deviation from equilibrium. Note that in biology, “fitness” is
strictly a measurement of reproductive output. This definition
is in contrast to the externally-defined “fitness functions” used
in EC to determine competitive advantage.

If we consider more heterogeneous environments, there is
another mechanism for species coexistence: spatial segrega-
tion. Such segregation can arise due to a variety of factors. The
simplest of these factors is the presence of physical barriers
that inhibit movement between regions. In biology, physical
barriers play an important role in facilitating diversification
[19], [20], and these benefits carry over to EC in the context
of island models [21]. Spatial segregation can also be brought
about by environmental conditions. For example, one region
might require tolerance to extreme heat, while another might
require tolerance to acidic soil. In this case, species would only
compete when both could inhabit the same regions. The result-
ing traversal (over evolutionary time) of multiple environments
has a profound effect on the traversal of the fitness landscape
[22]. An even weaker form of spatial segregation occurs when
species are capable of surviving in range of environments but
are best optimized to a specific region [23].

What do these coexistence dynamics mean for EC? First,
when choosing parameters, we should consider the circum-
stances under which they promote coexistence. When two
independent lineages are traversing the fitness landscape, what
genotypic or phenotypic differences are required for them
to both stably persist? Second, when designing selection
schemes, we should determine how many lineages we want
to co-exist and how frequently we want lineages to turn over.
If it is costly to stochastically lose established lineages, we
should consider including stabilizing dynamics in addition to
or in place of equalizing dynamics. Finally, we should give
careful thought to the metaphors that we use to compare EC to
biological populations; determining whether a given selection
scheme is more akin to competition for resources, spatially

Fig. 1: Conceptual illustration of phylogenetic diversity met-
rics. The letters around the outside represent the full set
of extant taxa and the circle in the middle indicates their
most recent common ancestor. Branching points indicate the
locations of intermediate taxa (note that in biology these have
to be inferred but in EC we have perfect information). The
three panels indicate the three different facets of phylogenetic
diversity: richness, divergence, and regularity. Reproduced
from [24].

segregated habitats, or something else all-together will make it
much easier to draw parallels and gain a deeper understanding.
If we can show that a system in EC is isomorphic to a system
in biology, we can rapidly import the vast wealth of insights
from biological research into how that system behaves.

B. Empirical ecological techniques

Empirical ecologists seek to find general patterns in com-
plex, messy data. While data from EC may be less noisy
than field data, the interconnections within any ecological
community are still complex. Ecologists have developed many
tools for extracting meaning from this complexity, which
may be equally helpful in trying to understand the fine-scale
dynamics of EC systems. Here we focus on two approaches:
phylogenetic analysis and interaction networks.

1) Phylogenetic analysis: Phylogenetic analysis refers to a
suite of metrics that are used to quantify the topology of a pop-
ulations’ phylogeny (ancestry tree) [15]. In biology, these trees
generally need to be inferred from extant species, but in EC we
can record the actual tree as it forms. Many of these methods
measure the amount of evolutionary history discernible in a
population. For example, evolving sub-populations that have
stably coexisted for a long time will reflect deeper evolutionary
history than a single population that is all descended from a
recent common ancestor. Even if the latter population contains
many unique phenotypes, they will all be relatively close to
each other on the fitness landscape. As such, the population
is likely exploring only one basin of attraction within the
fitness landscape at a time, limiting the rate of adaptation.
Phylogenetic diversity provides more direct evidence about
the efficacy of diversity maintenance techniques than the
more commonly used measures of genotypic and phenotypic
diversity.

Techniques for analyzing the topology of phylogenies can
be split into three categories [24] (see Figure 1 for an
illustration of each):

1) Richness: the total quantity of evolutionary history rep-
resented
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2) Divergence: how spread out the population is in phylo-
genetic space

3) Regularity: how evenly the population is divided across
evolutionary space

Here, we focus on richness and divergence, as our goal is
to analyze selection schemes, which regularity does not offer
clear insight into. A number of metrics quantify phylogenetic
richness and phylogenetic divergence (summarized in [15]
and [24]). Here, we measure phylogenetic richness with the
original phylogenetic diversity metric (simply referred to as
“phylogenetic diversity”) [19], as the count of nodes in the
minimal spanning tree connecting each extant genotype to the
most recent common ancestor of all extant genotypes. We
measure divergence as the mean pairwise distance between
genotypes in the population [25].

Note that in most cases biologists implicitly assume that
trees are rooted at the most recent common ancestor of all tax-
onomic units being compared. This assumption is unavoidable
in the context of biology, because phylogeny reconstruction
techniques cannot make inferences about anything preceding
the most recent common ancestor. In EC, we have the full
history. However, including it would not add additional infor-
mation; phylogenetic diversity would increase by a constant
for each member of the population and mean pairwise distance
would not change. Note that in this paper we calculate these
metrics on a per-genotype basis, but they can also be calculated
per-individual or per-phenotype.

2) Interaction networks: Since ecological communities are
collections of interacting organisms, drawing a graph rep-
resenting the network of pairwise interactions is a useful
technique for understanding them [16]. The topology of this
graph illustrates the selective pressures that organisms place
on each other (see Figure 2). Ecologists often generate these
networks from knowledge of the species involved such as
the fact that two species use the same limited resource and
thus must compete with each other. Of course, in EC we can
directly measure the fitness of each member of the population
with and without each other member present to identify
interactions.

Fig. 2: Example interaction network with three nodes. Red
arrows denote harmful interactions and blue arrows denote
beneficial interactions. Line width and color darkness indicate
magnitude of effect. In this example, A reduces B’s fitness a
lot, B reduces A’s fitness a little, and B reduces C’s fitness a
lot. A increases C’s fitness a lot. A plausible mechanism for
this positive interaction is that, by harming B, A reduces B’s
harmful effect on C.

C. Selection schemes

For the purposes of this paper, we have chosen a subset of
selection schemes from the vast range of diversity maintenance
techniques: fitness sharing [3], lexicase selection [8], and Eco-
EA [26]. We compare these to each other, and to standard
tournament selection, as a control. Specifically, we have se-
lected a set of approaches that clearly map onto ecology. In
the future, we plan to expand this framework to include a
wider variety of diversity maintenance techniques. All of the
selection schemes summarized below have their population
size and mutation parameters held constant. Here we identify
parameters unique to each system.

1) Tournament selection: As tournament selection is one
of the most popular selection techniques and does not create
an ecology, we use it as a control. In its simplest form,
tournament selection has one distinct parameter, T , the number
of individuals to randomly pick from the population (with
replacement) for each tournament. The fittest individual in
the tournament is then chosen to reproduce. An independent
tournament is run to fill each position in the population.

2) Fitness sharing: Fitness sharing was an early use of
ecology to promote diversity in EC [3]. In fitness sharing,
the fitness of every member of the population is reduced
in proportion to the density of similar individuals (i.e. they
“share” their fitness). Specifically, the extent to which each
organism needs to share its fitness is calculated by summing
the sharing equation, sh(d), over the population:

sh(d) =

{
1− ( d

σshare
)α d < σshare

0 d ≥ σshare
(1)

In this equation, d is the distance (defined in terms of
genotype or phenotype) between the individual that is having
its fitness calculated and the other member of the population
that it is being compared to. α is a parameter that tunes
the relationship between the similarity of individuals and
how much they compete with each other. σshare (the sharing
threshold) specifies how similar individuals need to be to
compete with each other at all. For each individual, Sh(d)
is summed across the population and that individual’s fitness
is divided by the sum.

3) Lexicase selection: In lexicase selection, solutions are
evaluated on a large number of criteria [8]. Traditionally, these
criteria are test cases, but other types of fitness functions are
also effective [27]. To choose an individual to reproduce, the
selection criteria are applied to the population in a random
order. Only the individuals that perform best on each criterion
move on to be evaluated on the next, until only one individual
remains. In case of a perfect tie, the winner is selected
randomly from the remaining options.

Lexicase selection is highly effective at solving challenging
problems in genetic programming [28], [29] while maintain-
ing diverse populations [30]. Prior work on the population
dynamics of lexicase selection has noted the surprising preva-
lence of “hyperselection events,” occasions in which a single
individual is selected as a parent for the vast majority of
the next generation [31]. Given lexicase selection’s success at
maintaining diversity, the fact that such events occurred at all
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was unexpected. Further research, however, has suggested that
these events are not important to lexicase selection’s success at
solving challenging problems and maintaining diversity [32].
Additional case studies of phylogenetic trees generated by
lexicase selection suggest that lexicase selection promotes the
existence of sub-populations that are focused on a specific
selection criterion [33].

4) Eco-EA: Eco-EA is an approach to solving complex
problems by associating limited resources with simpler chal-
lenges that can be used as stepping stones [26], [34], [35].
These challenges can be sub-problems of the larger problem,
individual test cases, or other related tasks that may be
used as components of a global solution. Resources remain
plentiful until a solution to the corresponding sub-problem is
discovered. When a population first solves a sub-problem, the
large amount of resource dramatically boosts the fitness of
individuals that use it. As the number of individuals using
the resource increases, it become less valuable. As long as
there is a cost to attempting to use each resource, negative
frequency dependence fosters small, but stable sub-populations
capable of solving each sub-problem. For problems without
such tradeoffs, an explicit cost can be introduced [27]. These
sub-population are available to be co-opted into solutions for
harder challenges, including the global problem.

II. ECOLOGY IN EC SYSTEMS

In this section, we discuss how each of our chosen EC
selection schemes can be intuitively mapped onto ecology.
We believe that these metaphors will facilitate a two-way flow
of ideas between fields. With the aid of these metaphors, we
consider how to calculate two ecologically-important factors:
an individual’s expected number of offspring (i.e. biological
fitness, W ) and the conditions under which stable coexistence
is possible. The former is critical for calculating interaction
networks within ecological communities (see Section 3.1) and
the latter provides insight into not only the amount of diversity
that a selection scheme promotes, but how the population is
situated across the fitness landscape.

A. Tournament selection

Individuals in tournament selection have no interaction
beyond competition for space in the next population. Since
this competition affects all individuals equally, tournament
selection approximates a condition where there is no eco-
logical interaction. Nature lacks comparable situations, as
ecology is nearly ubiquitous outside of carefully controlled
experimental environments (although evolutionary theorists
do often make this simplifying assumption). The absence of
ecology in tournament selection means that stable coexistence
is impossible in the long term.

Calculating the biological fitness, W , of an individual in
tournament selection requires determining the proportion of
the population with a lower fitness score than that individual’s,
pless. Based on this number, we can calculate the probability
of the focal individual winning a tournament. We must also
account for ties based on pequal, the proportion of the entire
population with a fitness score equal to that of the focal

individual (including that individual itself, since we select
tournament members with replacement). Thus, the fitness of
an individual is the number of tournaments it is expected to
compete in (T ) times the probability of that individual winning
a tournament:

W = T ×
T∑
i=1

(
pi−1

equal

i
× pT−i

less

)
(2)

Note that the summation steps through all possible i, the
number of individuals in the tournament with fitness equal to
that of the focal individual (at minimum 1, the focal individual
itself, and at maximum the entire tournament). Thus, we
enumerate all possible combinations of individuals with less
or equal fitness. Note that any tournament won by the focal
individual must not contain individuals with a higher fitness.

B. Fitness sharing

Fitness sharing operates on the basic ecological assumption
that individuals compete more against others that they are more
similar to. The most intuitive ecological scenario to compare
fitness sharing to is one where a population consumes a single,
continuously-varying resource. In cases where the distance
function is calculated over a discrete number of dimensions
(e.g. Euclidean distance between two vectors of equal length),
the resource can be thought of as varying over the same
number of dimensions. An analogous situation in ecology
is that of Darwin’s finches [36]. Many of these finches eat
seeds, which vary along dimensions such as size and shape.
Each species of finch has a beak that is best adapted to
eat seeds near a target size and shape. Over evolutionary
time, the finch species have partitioned the space of possible
beak morphologies into stable niches specialized on different
seed types. In the context of fitness sharing, we expect the
population to partition the space of possible phenotypes into
stable niches. The theory of limiting similarity suggests that
these niches should be somewhat separated from each other in
genotypic/phenotypic space [9]. Fitness sharing results suggest
that these niches are often associated with peaks in the fitness
landscape [3].

Deb and Goldberg have already established the criteria for
stable coexistence in fitness sharing [37], which we find to
be mathematically identical to Chesson’s predictions under
modern coexistence theory [10], [38]. For the algebra demon-
strating this equivalence, see supplemental information. This
coexistence criterion can be summarized by the following
equation:

ρ ≤ k1
k2

≤ 1

ρ
(3)

where k1 and k2 are the fitness function scores of the
genotypes being evaluated and ρ is the niche count between
these two genotypes, as calculated by Equation 1. We chose
these symbols to be consistent with Chesson’s [10]. Note that
in Chesson’s framework, ρ generalizes to be the amount of
niche overlap between the two individuals. The intensity of
stabilizing dynamics (i.e. negative frequency dependence) can
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Fig. 3: Depiction of a Lexicase decision tree. A, B, and C
are test-cases, and the internal nodes represent the order in
which they are picked. Each possible path through the tree
leads to a different leaf node (“island”). The individuals on
that “island” are the ones that have the potential to be selected
for reproduction.

be calculated as 1 − ρ. The smaller ρ is, the greater the
difference in fitness values it is capable of stabilizing.

The biological fitness, W , of individuals in fitness sharing
can be calculated by modifying fitness scores based on Equa-
tion 1 and then applying Equation 2 based on the adjusted
scores.

C. Lexicase selection

In ecological terms, lexicase selection creates a vast number
of niches nested within each other. While it is tempting to use a
resource metaphor to understand the competition within these
niches, the concept of resources does not clearly map onto
lexicase selection. Whereas using a resource harms all other
individuals that use that resource, improving on a selection
criterion in lexicase selection only harms a (usually small)
subset of the population. Instead, we argue that population
structure is a more apt metaphor.

Imagine N ! islands of equal size, where N is the number of
selection criteria. Each island corresponds to a single potential
ordering of selection criteria and can only be inhabited by the
individuals that are best at that ordering (see Figure 3). This
arrangement is analogous to situations in nature where niches
are defined exclusively by an organism’s ability to survive a set
of harsh abiotic conditions. Being better able to survive these
conditions increases the number of offspring an individual can
have. Over time, genotypes that are better at surviving in a
given set of conditions competitively exclude those that are
worse at surviving there. This competitive exclusion happens
more rapidly in lexicase selection than it usually would in
biology, but the principle is the same.

While multiple genotypes can theoretically inhabit the same
island if they are phenotypically identical, this coexistence will
be unstable due to the lack of stabilizing dynamics to increase

Fig. 4: The probability of long-term survival under lexicase
selection across different population sizes (S) and lengths of
evolutionary time (G).

the populations of rare genotypes on an island. Eventually, all
but one should stochastically go extinct. Furthermore, much
as an island in nature can experience a random catastrophic
event, (e.g., a volcanic eruption), the stochastic nature of
lexicase selection means that in every generation there is a
chance that an island will get unlucky and not be selected.
The probability of such an event progressively increases as the
proportion of the population living on each island ( population size

N ! )
decreases. When the total population size is less than the
number of islands, genotypes must inhabit multiple islands to
survive. Thus, stable coexistence in lexicase selection depends
on whether a genotype’s range (i.e. the proportion of islands
it can occupy) is large enough to survive in the long term.

The proportion of islands a genotype can occupy is equiva-
lent to its probability of selection. Just as species in nature face
greater risk of stochastic extinction if their range (the area they
inhabit) is too small, so too do genotypes in lexicase selection.
Details for calculating this quantity are described in equation
4 of [39]. To convert the probability of selecting an individual
under lexicase selection to biological fitness, we simply need
to multiply it by the number of selection events that will occur:

W = S × P (4)

where S is population size (the number of selection events
per generation) and P is the proportion of islands occupied.
What does this condition mean for stable coexistence in
lexicase selection? The chances of a genotype with fitness
W surviving for G generations in a population of size S are
given by the equation:

P (survival) = (1− (1−W )S)G (5)

Plotting this function for various parameter values, we see
that there is generally a cut-off where the probability of
survival rises abruptly from approximately 0 to approximately
1 (see Figure 4). The value at which the transition occurs is
effectively the minimal percentage of islands that a genotype
must occupy in order to be expected to survive in the long
term. This value is closely related to the concept of a minimum
viable population in biology, and is useful to consider when
making decisions about how large of a population size to use.
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D. Eco-EA

Eco-EA is analogous to a traditional resource competition
scenario in ecology. All individuals occupy the same region
of space and compete with each other by targeting the same
resources. We can calculate the threshold amount of a resource
in the environment needed by each individual to benefit from
using it:

R∗ =
cost

Cf ∗ score
(6)

where cost is the cost of performing the corresponding
task, Cf is the fraction of the available resource consumed,
and score is how well the individual performed the task
(normalized to 1). In terms of resource competition theory, this
value is effectively that individual’s R∗ for that resource.1 Note
that a higher score reduces R∗, meaning that the individual
can benefit from the task even if less of the resource is
available, making it a better competitor for that resource. Thus,
as in natural ecosystems, the individual with the lowest R∗ can
out-compete individuals with a higher R∗.

If a group of individuals use completely different re-
source types from each other, there will be a high degree
of stabilization, meaning they should coexist under a wide
range of fitness differences. The more complex coexistence
scenario occurs when two individuals compete for the same
resources. Ecologists distinguish resources that can be used
interchangeably with each other (“substitutable resources”)
from resources that cannot be used interchangeably (“essential
resources”). Resources in Eco-EA are substitutable, because
an equivalent fitness gain could be achieved using either one
(up to a point); one just requires more resource to do so. In
this scenario, two individuals can stably coexist as long as
they have lower R∗s for opposite resources, and each one
consumes more of the resource it has a lower R∗ for. Because
both R∗ and the amount of resource consumed are determined
by the individual’s score on the task associated with the
resource, the latter criterion will always be met. Thus, as long
as neither individual has the lowest R∗ for every resource,
coexistence should be possible. In EC terms, this requirement
boils down to each individual being Pareto dominant. As
before, coexistence also requires that the individuals have
somewhat similar fitnesses. The amount of stabilization (and
thus the maximum fitness difference) can be calculated based
on the resource consumption of each species [12].

Biological fitness, W , can be determined in the same way as
in fitness sharing: first, calculate the adjusted fitnesses based
on resource use, then use Equation 2.

E. Summary

As we would expect, selection schemes that successfully
maintain diversity allow for long-term stable coexistence. For
fitness sharing and Eco-EA, the criteria are described by

1This definition is subtly different from the traditional definition of R∗,
which states that R∗ is the lowest value of resource for which a species’ per
capita population growth is not negative [11]. We frame R∗ in terms of benefit
rather than population growth because population growth in EC is generally
restricted by competition for space in the population.

Chesson’s coexistence theory [10], [12]; to stably coexist,
each species/genotype/phenotype must limit itself more than
it limits others (as formalized in Equation 3). In lexicase
selection, biological fitness (i.e. the proportion of “islands”
the species dominates) must be above a cutoff (described in
Figure 4).

Although Eco-EA and fitness sharing have the same co-
existence criteria, they have an important difference from
each other: in Eco-EA, competition occurs along multiple,
potentially orthogonal dimensions, whereas in fitness sharing
competition is mediated through a single function that sum-
marizes all aspects of an individual. This difference should
result in fewer, more intense pairwise competitive interaction
in Eco-EA than in fitness sharing (although still not as few, or
as intense, as those in lexicase selection). We predict that the
more focused interactions in Eco-EA and lexicase selection
will promote forms of evolutionary divergence that are more
useful for adaptive evolution. The requirement in Eco-EA that
coexisting individuals must be non-dominated suggests that
individuals in Eco-EA should fall roughly along a pareto front,
similarly to individuals in lexicase selection. An important
distinction between these two selection schemes, however, is
that lexicase selection’s rigid population structure produces
strong pressure for specialists, whereas generalists can be
successful in Eco-EA.

III. EMPIRICAL METHODS

To confirm and extend the intuition we developed in the pre-
vious section, we now empirically investigate these selection
mechanisms in the context of actual evolving populations.

A. Interaction networks

In Section II, we predicted the competitive pressures that
different selection schemes exert on populations. Here, we as-
sess these predictions by drawing interaction networks for real
populations. For simplicity, we use a population containing
10 individuals with 5 integer traits selected from a geometric
distribution. Each trait represents a niche that these individuals
are competing to occupy, with higher numbers corresponding
to higher competitive ability. For lexicase selection, each trait
is a selection criterion and the individual with the highest
value there wins. In Eco-EA, we added a resource associated
with each trait and an individual’s value for that trait defines
its ability to use that resource. In fitness sharing, distance is
measured as euclidean distance between sets of traits. The
fitness landscape is otherwise flat. We compare the same
population across all selection schemes. To calculate the effect
that a given individual, A has on another individual, B, we
first calculate the fitness of B in the presence of the whole
population. Then we remove A from the population and
recalculate the fitness of B. The difference between these two
fitnesses is the effect of A on B. Note that these fitness values
are biological fitness, i.e. the expected number of offspring,
rather than the fitness produced by the fitness function. For
fitness sharing and Eco-EA, we assume a tournament size of
2 when making this calculation.
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B. Phylogenetic analysis of evolved populations

What is the long-term effect of these different interaction
network topologies? We arrive at a first-order approximation
by analyzing the phylogenies of populations evolved under
each selection scheme. Across selection schemes, the behavior
of a population depends on the part of the fitness landscape that
it is currently exploring. If the entire population is climbing a
steep hill, all forms of diversity should be low, due to frequent
selective sweeps. To assess the effect of such differences in
fitness landscapes, we compare phylogenetic diversity across
three different genetic programming problems believed to
have qualitatively different fitness landscapes. The first task,
chosen to be quickly-solvable, is calculating the square of
a number. In contrast, the second task is a math problem
known to be challenging: calculating numbers in the Collatz
sequence [28]. The third task is the Dow chemical challenge, a
real-world symbolic regression problem [40]. Using a simple
linear genetic programming representation (described in [41]),
we evolve linear genetic programs for 1000 generations. We
use 11 test cases for the squares problem and 100 test cases
each for the Collatz problem and Dow chemical challenge.
Phenotypes are the vectors of inverse error for each test case
(so higher scores are better). Fitness is calculated as the sum
of these vectors. For lexicase selection and Eco-EA, each test
case corresponds to a selection criterion or resource.

We evolved 30 populations for each selection scheme and
each problem. Because of the profound effect of the sharing
threshold parameter on the behavior of fitness sharing, we
also performed 30 runs each of fitness sharing with five
different sharing thresholds. Statistics across selection schemes
were calculated using the sharing threshold with the highest
phylogentic diversity. For each run, we calculated a variety of
metrics, including phenotypic diversity (measured as Shannon
entropy), genotypic diversity, phylogenetic diversity [19], and
mean pairwise distance of genotypes in the phylogeny [25].
Across all runs, we used a genome length of 200 and a
population size of 500. We applied mutations to every new
individual by randomly changing the code at up to three sites
in the genome (the specific number was selected from a uni-
form distribution). To simplify calculation of the phylogenetic
metrics, we seeded each population with a single individual
that served as the common ancestor to all others. For Eco-
EA, we used a resource inflow rate of 100, a cost of 1, and a
consumption fraction for 0.0025.

C. Statistical methods

That statistical significance of all comparisons of metrics
across conditions was assessed using a Kruskal-Wallis test.
Differences between specific conditions were assessed with a
post-hoc pairwise Wilcoxon rank-sum test accompanied by a
Bonferroni correction for multiple comparisons.

D. Code availability

Data for the interaction network analysis was gener-
ated using a simulation written with Python 3.6.3. Graphs
were visualized using the networkx package [42]. The

(a) Representative example networks.

(b) Summary over 100 randomly generated populations.

Fig. 5: Interaction networks for the same community under
four different selection schemes: tournament selection, fitness
sharing, Eco-EA, and lexicase selection. a) Shows the net-
works for a single population. Red edges indicate harmful
interactions, blue edges indicate beneficial interactions. Edge
width denotes interaction strength. An interactive version of
this paper is available [45]. b) Shows boxplots summarizing
the number of beneficial and harmful interactions observed
under each selection scheme across 100 randomly generated
populations.

code for empirical analysis of evolved populations was
written in C++ using the Empirical library, available at
https://github.com/devosoft/Empirical. Statistical analysis was
performed using the R statistical computing language version
3.4.3 [43] and graphs were made with the ggplot2 pack-
age [44]. All code for generating and analyzing the data
presented in this paper is open source and available [45].

IV. RESULTS AND DISCUSSION

A. Interaction networks

Different selection schemes create strikingly different inter-
action networks (see Figure 5). Notably, lexicase selection’s
rigid population structure leads to far fewer interactions of both
types2 than under other schemes (pairwise Wilcoxon rank-sum

2With one exception: we observed no beneficial interactions in lexicase or
tournament selection, so these groups were not different from each other.
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Fig. 6: Phenotypic and phylogenetic diversity over time for
each problem. Shaded area is the bootstrapped 95% confidence
interval around the mean.

test, p < .0001), and ones that are predominantly negative.
Eco-EA creates far more interactions, because individuals can
use different resources to different extents. Importantly, there
are many beneficial interactions; if A competes with B and
B competes with C, A can help C by suppressing B. These
interactions imply a stabilizing dynamic between A and C,
because they indicate that A is competing with C less than
with itself. Additionally, the Eco-EA community has many
weak interactions, which can promote stabilizing dynamics
community-wide [46]. Lastly, in fitness sharing, most indi-
viduals harm each other approximately the same amount. The
sharing threshold subtly affects interaction strength.

B. Phylogenetic analysis

As hypothesized, phylogenetic diversity is low for all selec-
tion schemes on the square problem (see Figure 6). This result
is presumably due to fitness differences so large that stabilizing
effects are insufficient to overcome them. In the context of
such a steep evolutionary gradient, such behavior is expected
and often desirable. Due to negative frequency dependence,
phenotypic diversity remains high for fitness sharing and Eco-
EA, even after most populations solved the problem (generally
between 200 and 500 generations in). For lexicase selection,
on the other hand, it initially increases and then drops rapidly
as the populations converge on the solution.

Results from the Collatz problem support our hypothesis
that selection schemes with more restrictions on which indi-
viduals compete promote phylogenetic diversity (see Figure
6). Lexicase selection and Eco-EA did not have significantly
different final phylogenetic diversity (Wilcoxon rank-sum test,
p=0.31), but all other pairs of selection schemes did (Wilcoxon
rank-sum tests, p < .05). Results for mean pairwise distance

Fig. 7: Phenotypic and phylogenetic diversities in fitness shar-
ing across various values of sharing threshold (σshare) in the
context of the Collatz problem. Shaded areas are bootstrapped
95% confidence intervals around the mean.

were similar, suggesting that lexicase selection and Eco-
EA (and to a lesser extent fitness sharing) do promote the
coexistence of divergent branches.

Interestingly, phenotypic diversity does not correlate espe-
cially closely with phylogenetic diversity (see Figure 6). In
particular, Eco-EA has relatively low phenotypic diversity,
despite its high phylogenetic diversity. Conversely, fitness
sharing has relatively high phenotypic diversity despite its
mid-range phylogenetic diversity. This result suggests that
whereas lexicase selection and fitness sharing allow similar
phenotypes to coexist, Eco-EA forces them to converge. A
potential explanation for this difference is that Eco-EA rewards
generalists substantially more than lexicase selection.

This discrepancy is even more pronounced in the context
of selecting a sharing threshold for fitness sharing (see Figure
7). Phenotypic diversity is maximized at σshare = 1 (Wilcoxon
rank-sum tests, p < .005), whereas mean pairwise distance and
phylogenetic diversity are highest at σshare = 10 (Wilcoxon
rank-sum tests, p < .005). This result emphasizes the fact
that phylogenetic diversity is meaningfully different from
phenotypic and genotypic diversity in ways that can affect
choice of parameter values.

Results from the Dow problem (see Figure 6) illustrate
the strong effect that the topology of the fitness landscape
has on which techniques are most effective at maintaining
phylogenetic diversity. In contrast to its high efficacy on the
Collatz problem, Eco-EA maintains no more phylogenetic
diversity than fitness sharing and tournament selection on
the Dow chemical problem (Wilcoxon rank-sum tests, p =
1 for all). Lexicase selection, on the other hand, maintains
phylogenetic diversity on both of these problems (Wilcoxon
rank-sum tests, p < .005). Understanding what properties of
the fitness landscape account for this difference is an important
area of future research.

V. CONCLUSIONS

In this paper, we have taken a high-level tour of tools that
ecology can contribute to EC. Using metaphors and math-
ematical theory from ecology, we have identified important
differences across four selection schemes. Importantly, we
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have shown mathematical equivalence between rules govern-
ing coexistence in ecology and in EC. This framework should
allow us to directly translate insights between these fields.

Building on this conceptual understanding, we empirically
measured the interactions that describe the communities cre-
ated by different selection schemes. The topology of these
interaction networks supports our theoretical predictions, and
provides insight into the mechanisms by which these tech-
niques maintain diversity. A more systematic study of inter-
action networks under various selection schemes will further
improve our understanding. We gained further insight by
exploring the long-term effects of these selection schemes
with phylogenetic metrics. Notably, we demonstrated that
phylogenetic analysis metrics describe aspects of the under-
lying dynamics of diversification that are distinct from those
described by genotypic and phenotypic diversity. This result
holds across different parameter choices for the same selection
scheme, and across different selection schemes. Analyzing
the phylogenies of populations evolving on a wider range
of fitness landscapes has the potential to help predict which
parameters and selection schemes are most appropriate for
which problems.

From our analysis thus far, we can conclude that lexicase
selection and Eco-EA rely on distinct underlying mechanisms
to promote the evolution and maintenance of solutions that
are evolutionarily divergent. Lexicase selection creates a small
number of intense competitive interactions, whereas Eco-EA
creates a larger number of weaker interactions that can be
either competitive or facilitative. As a result, lexicase selection
generates many specialist phenotypes, while Eco-EA supports
fewer, more generalist phenotypes. Both of these selection
schemes produce populations representing a wider diversity of
evolutionary history than those produced by fitness sharing.

Ecological techniques have the power to revolutionize our
understanding of diversity in EC, and our work here has barely
started. In the future, we plan to delve deeper into these
approaches, to import more ideas and statistical techniques
from ecology, and to apply them to an even wider range of
selection schemes.
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