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Abstract 
Protein pockets and cavities usually coincide with the active sites of biological processes, and their 
identification is significant since it constitutes an important step for structure-based drug design 
and protein-ligand docking applications. This research presents PoCavEDT, an automated purely 
geometric technique for the identification of binding pockets and occluded cavities in proteins 
based on the 3D Euclidean Distance Transform. Candidate protein pocket regions are identified 
between two Solvent-Excluded surfaces generated with the Euclidean Distance Transform using 
different probe spheres, which depend on the size of the binding ligand. The application of simple, 
yet effective geometrical heuristics ensures that the proposed method obtains very good ligand 
binding site prediction results. The method was applied to a representative set of protein-ligand 
complexes and their corresponding unbound protein structures to evaluate its ligand binding site 
prediction capabilities. Its performance was compared to the results achieved with several purely 
geometric pocket and cavity prediction methods, namely SURFNET, PASS, CAST, LIGSITE, 
LIGSITECS, PocketPicker and POCASA. Success rates PoCavEDT were comparable to those of 
POCASA and outperformed the other software. 

Introduction 
Proteins play a wide range of biological functions such as signal transmission, immune defence, 
structural support, transport, storage, biochemical reaction catalysis and motility processes, usually 
by interacting with other molecules (Berggård et al. 2007). Interaction with small molecules such 
as substrates, coenzymes and drugs, generally occurs in concave regions of the protein surface 
known as pockets or in voids enveloped by the protein surface called cavities. Therefore, the 
identification of protein pockets and cavities is of great interest for furthering our understanding 
of protein interfaces and interactions, and especially for applications such as protein-ligand 
docking (Krivák et al. 2015) or structure-based drug design (Y. Lee et al. 2018). 

Given its importance, several in silico methods have been developed over the years for the protein 
pocket and cavity detection task, which can be roughly divided into three broad categories: (1) 
evolutionary-based algorithms (Pupko et al. 2002) that rely on multiple sequence alignments to 
find pockets and cavities on the protein surface, (2) energy-based algorithms (Rodney et al. 2007; 
Soga et al. 2007) that detect pockets and cavities by computing the interaction potential between 
the protein and the ligand molecule, and (3) geometric algorithms (Brady et al. 2000; Weisel et al. 
2007) that detect pockets and cavities starting from the protein’s three-dimensional structure 
information as retrieved from a Protein Data Bank (Berman et al. 2000) (PDB) file. A few 
consensus methods that combine the results of two or more techniques to improve the success rate 
in predicting the location of binding pockets or cavities have also been introduced (Huang 2009; 
Zhang et al. 2011).  
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The geometric algorithms are the most commonly used search methods since they do not require 
any other non-geometric knowledge but the 3D structure of the protein. In the current literature 
there is no consensus about the definition or classification of protein pockets and/or cavities 
(Simões et al. 2017), and the two terms are often used interchangeably. For the sake of clarity, in 
this work, a pocket is defined as a concave protein surface feature accessible to the outer solvent; 
a cavity is defined as an inner void inside the protein surface that is not accessible to the outer 
solvent. 

Kuntz et al. pioneered the field by introducing a sphere-based method for the geometric docking 
of macromolecules with small ligands (Kuntz et al. 1982). A similar approach was later 
implemented in SURFNET (Laskowski 1995), where pockets/cavities and the ligand are filled 
with probe spheres of varying sizes, and the candidate sites are identified by evaluating the degree 
of overlap among spheres. Putative Active Sites with Spheres (PASS) (Brady et al. 2000) is another 
sphere-based method where the pockets and cavities are filled with layers of probe spheres of 
decreasing size. For each layer, only spheres with a certain degree of “buriedness” (low solvent 
exposure) are retained, and the filling procedure stops when no new spheres can be added. Potential 
binding sites are then identified as the centres of probe sphere clusters called Active Site Points. 

The CAST method (Jie et al. 1998) implements a pocket identification approach based on the 
theory of 3D α-shapes (Edelsbrunner et al. 1994, 1998). The method builds two α-shape envelopes 
for a given protein: the convex hull of the atomic centres as the outer envelope and the dual 
subcomplex of the union of the atom spheres (i.e. the α-shape that is entirely inside such union of 
spheres); protein pockets are identified in the space between these two envelopes. The LIGSITE 
method (Hendlich et al. 1997) is a grid-based algorithm (the protein is mapped onto an axis-aligned 
regular cubic grid) that searches for cavities along the x, y, and z axes and along the Cartesian cubic 
diagonals for a total of 7 directions (14 oriented directions). LIGSITECS (Huang et al. 2006) further 
improves accuracy over LIGSITE by capturing surface-solvent-surface events on Connolly’s 
protein surface (Connolly 1983), instead of capturing atom-solvent-atom events. Weisel et al. later 
introduced PocketPicker (Weisel et al. 2007) a method similar to LIGSITE that carries out scans 
along 30 directions equally distributed on a sphere. A “buriedness” index is computed for each 
grid point by counting the number of directions (out of 30) that come into contact with a protein 
atom: a pocket consists of connected grid points with a buriedness index greater than a certain 
threshold. 

More recently, Yu et al. introduced the Pocket-Cavity Search Application (POCASA), which 
implements a sphere-based grid algorithm called Roll (J. Yu et al. 2010). The protein is initially 
placed inside a regular 3D grid, and a large probe sphere is rolled on the outer atoms of the protein. 
The surface generated by the probe works as a second envelope of the protein: pockets are 
identified between the protein’s surface and the probe surface. Dias et al. introduced a similar 
method which uses two Gaussian surfaces instead (Dias et al. 2017).  

This paper presents a novel purely geometric algorithm for the detection of ligand binding protein 
pockets and cavities based on the Euclidean Distance Transform (EDT). The EDT can be used to 
compute the Solvent-Excluded surface for any given probe sphere radius value at high resolutions 
and in a timely manner (Daberdaku et al. 2016, 2018). The algorithm is adaptive to the specific 
candidate ligand: it computes two voxelised protein surfaces using two different probe sphere radii 
whose sizes depend on the shape of the candidate ligand. The pocket regions consist of the voxels 
located between the two surfaces, which exhibit a certain minimum depth value from the outer 
surface. The distance map values computed by the EDT algorithm during the second surface 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27314v2 | CC BY 4.0 Open Access | rec: 2 Jan 2019, publ: 2 Jan 2019



computation can be used to elegantly determine the depth of each candidate pocket and to rank 
them accordingly. Cavities on the other hand, are identified by scanning the inside of the protein 
for voids. The algorithm determines and outputs the best k candidate pockets and cavities, i.e. the 
ones that are more likely to bind to the given ligand. The proposed approach is experimentally 
compared to other purely geometric pocket and cavity search algorithms and is shown to 
outperform most of the previously developed methods. 

Methods 
Protein surface definitions 
Several definition of protein surface have been introduced, each one having different 
characteristics and various degrees of detail. The most commonly encountered surface definitions 
are: the van der Waals surface (vdW) (Bash et al. 1983), the Lee-Richards surface, also known as 
the Solvent-Accessible surface (SAS), (B. Lee et al. 1971) and the Connolly surface or Solvent-
Excluded surface (SES) (Connolly 1983) (see Fig. 1). 

We can imagine a protein as being represented by a set of possibly overlapping spheres, with each 
sphere representing a specific atom in the protein. The vdW of that protein is then defined as the 
topological boundary of this set of spheres. The SAS is traced by the centre of a probe sphere with 
radius equal to the radius of the solvent molecule as it rolls over the van der Waals surface. Thus, 
the outer space consists of the points at which the probe sphere can be placed without overlapping 
with the atoms of the molecule. The SES is defined as the union of the contact surface and the re-
entrant surface: the contact surface is the part of the vdW touched by the probe sphere while it 
rolls over it; the re-entrant surface is composed of the inward-facing surface portions of the probe 
when it touches two or more atoms.  

 
Figure 1: Surface definitions: van der Waals, Solvent-Accessible and Solvent-Excluded surfaces. 
The SES represents a continuous functional surface of the protein, i.e. the surface that is available 
to interact with. The SAS is displaced outward from the SES by a distance equal to the probe 
sphere radius. The SAS and SES nomenclatures will be maintained throughout the paper although 
probe spheres of various radii will be used (not necessarily of the size of the solvent molecule). 
Both surfaces used for the cavity detection procedure are SE surfaces obtained using two different 
probe sphere radii. 
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Surface calculation algorithm 
The SES computation starts with the acquisition of the 3D representation of a molecule from the 
related PDB file. The algorithm then calculates the tightest axis-aligned bounding-box enclosing 
the whole protein by determining the minimal and maximal coordinates of all atoms. The 
bounding-box is iscretised into a voxel grid, given the user-defined resolution parameter, i.e. the 
number of voxels per Å3. All the atomic coordinates are then translated, scaled and quantised into 
the new coordinate system defined by the voxel grid. The algorithm then computes the voxelised 
space-filling model of the molecule. Each atom in the molecule is represented by a ball having a 
radius equal to the atom’s radius increased by the probe sphere’s radius. The algorithm computes 
the voxelised representation of each atom and marks the corresponding voxels in the voxel grid as 
occupied using an adaptation of the Midpoint Circle Algorithm (Bresenham 1965) to efficiently 
determine the voxels needed to represent a ball in a discrete 3D grid. 

The SAS is extracted directly from the voxelised space-filling model. The algorithm extracts all 
boundary voxels from the space-filling model by implementing a fast and efficient 3D seed-filling 
algorithm, first introduced by (W.-W. Yu et al. 2010). The calculation of the SES is more complex 
as it includes the re-entrant surface portions. There is a strict geometrical relationship between the 
Solvent Accessible and Solvent Excluded surfaces that can be exploited for the computation of the 
latter: for each point in the SES, its nearest SAS point is at exactly one probe-sphere-radius 
distance. This means that the SES can be calculated starting from the SAS by employing a surface 
smoothing algorithm such as the Euclidean Distance Transform (EDT). 

The Euclidean Distance Transform 
A distance transform (also known as distance map or distance field), is a derived representation of 
a digital binary image. Distance maps are images where the value of each free voxel is the distance 
to the nearest occupied voxel. Let 𝐵𝐵 ∈ {0,1}𝑙𝑙×𝑤𝑤×ℎ be a binary voxel grid of length 𝑙𝑙, width 𝑤𝑤 and 
height ℎ. There are exactly 𝑙𝑙 × 𝑤𝑤 × ℎ voxels in 𝐵𝐵, each one identified by the ordered triple 𝑣𝑣 =
(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ 𝑉𝑉 = {1, … , 𝑙𝑙} × {1, … ,𝑤𝑤} × {1, … ,ℎ}. Also, let 𝐼𝐼𝐵𝐵:𝑉𝑉 → {0,1} be the image function of 
𝐵𝐵 defined as 𝐼𝐼𝐵𝐵(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑘𝑘 ∈ {0,1}, where 𝑏𝑏𝑖𝑖,𝑗𝑗,𝑘𝑘 is the value of voxel (𝑖𝑖, 𝑗𝑗,𝑘𝑘) in 𝐵𝐵. Let 𝑉𝑉𝑂𝑂 be 
the set of occupied voxels of 𝐵𝐵, i.e. 

𝑉𝑉𝑂𝑂 = {𝑣𝑣 = (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ 𝑉𝑉 ∨ 𝐼𝐼𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1}. 

Also, let 𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵:𝑉𝑉 → 𝑉𝑉𝑂𝑂, such that ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵(𝑣𝑣) is a nearest occupied voxel of 𝐵𝐵 to 𝑣𝑣, that is 

𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵(𝑣𝑣) ∈ 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚
𝑤𝑤∈𝑉𝑉𝑂𝑂

𝑑𝑑(𝑤𝑤, 𝑣𝑣) = {𝑤𝑤 ∈ 𝑉𝑉𝑂𝑂 ∨ ∀𝑦𝑦 ∈ 𝑉𝑉𝑂𝑂:𝑑𝑑(𝑤𝑤, 𝑣𝑣) ≤ 𝑑𝑑(𝑦𝑦, 𝑣𝑣)}, 

according to some distance metric 𝑑𝑑. 𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵(𝑣𝑣) is called the nearest boundary voxel (NBV) of 𝑣𝑣 
in 𝐵𝐵. Clearly, if 𝑣𝑣 ∈ 𝑉𝑉𝑂𝑂 then 𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵(𝑣𝑣) = 𝑣𝑣. 

Finally, the distance transform of 𝐵𝐵 is defined as a real-valued voxel grid 𝐷𝐷𝐷𝐷𝐵𝐵 ∈ 𝑅𝑅𝑙𝑙×𝑤𝑤×ℎ such 
that 

𝐼𝐼𝐷𝐷𝐷𝐷𝐵𝐵 = 𝑑𝑑�𝑣𝑣,𝑁𝑁𝐵𝐵𝑉𝑉𝐵𝐵(𝑣𝑣)�,∀𝑣𝑣 ∈ 𝑉𝑉, 

where 𝐼𝐼𝐷𝐷𝐷𝐷𝐵𝐵:𝑉𝑉 → 𝑅𝑅 is the image function of 𝐷𝐷𝐷𝐷𝐵𝐵. 

When the chosen distance metric is the Euclidean Distance, we talk about Euclidean Distance 
Transform, however the squared Euclidean distance is usually used in order to avoid time-
consuming square root calculations.  
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SES computation with EDT 

Let 𝑆𝑆𝑆𝑆𝑆𝑆 be the voxelised representation of the Solvent Accessible surface of a given protein, and 
let 𝐸𝐸𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 be the Euclidean Distance transform of 𝑆𝑆𝑆𝑆𝑆𝑆. Because the SAS is displaced outward 
from the SES by a distance equal to the probe-sphere radius, the voxelised representation of the 
latter can be obtained from 𝐸𝐸𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆 by extracting all voxels with a distance value equal to one 
probe-sphere-radius (see Fig. 2). The SES computation algorithm is described in detail in 
(Daberdaku et al. 2016, 2018). 

 
Figure 2: 2D representation of the SES calculation by EDT starting from the SAS. In Figs. 2b and 
2c the transition of the gradient from blue to red corresponds to increasing distance values. 

Pocket and cavity detection 
The pocket detection procedure for a given protein is carried out by computing two SE surfaces 
using two different probe-sphere-radii. To compute the inner surface, the smaller radius is either 
set to the radius of the water molecule, i.e. 1.4Å, or to the radius of the smallest atom in the ligand 
molecule if it is larger than 1.4Å. This way, the inner surface determines the protein’s surface that 
is available to interact with the ligand while remaining impenetrable to the latter. The outer SE 
surface is computed using a larger probe-sphere-radius which also depends on the candidate 
ligand. Given a candidate ligand, Principal Component Analysis is performed on its atom centres 
in order to determine its length, width and height (where the length is the largest principal 
component, and the height is the smallest), and the probe-sphere-radius of the outer SE surface is 
heuristically set to either 4.0Å, or to half the height of the ligand if this quantity is greater than 
4.0Å. Pocket regions are then identified between the outer and inner SE surfaces using the fast 3D 
seed-filling algorithm mentioned earlier: Fig. 3 schematically describes the procedure and Fig. 4 
describes the ligand-binding pocket identification for PDB entry 1APU. 

On the other hand, cavity detection is very straightforward and can be carried out immediately 
after the inner SES calculation using the same efficient 3D seed-filling algorithm. Please note that 
only internal cavities that can fit the probe sphere are detected during this phase: inter-atomic voids 
that cannot fit the probe sphere are eliminated during the SAS computation step.  
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To avoid considering pocket regions that are too shallow to effectively be able to host the ligand 
molecule, a minimum depth threshold was set in order for a voxel to belong to a candidate pocket 
region. An empty voxel between the inner and outer SE surfaces should be at a distance of at least 
one third of the ligand's height from the outer SES in order for it to be considered as belonging to 
a pocket region. This threshold was also chosen heuristically in order to guarantee a minimum 
degree of penetration of the ligand inside the outer SES. 

 
Figure 3: 2D representation of the pocket identification procedure. Figs. 3a and 3b represent, 
respectively, the inner and outer SES computation: pockets are identified between these two SE 
surfaces (Fig. 3c). 

 
Figure 4: Ligand-binding pocket identification for PDB entry 1APU. 

Ranking candidate pockets and cavities 
In general, several candidate pockets (and cavities) are detected for a given target protein. 
Therefore, one must identify the candidates with the highest likelihood of being the actual ligand 
binding site. Candidate pockets can be ranked by their volume, following the intuition that pockets 
with larger volume are more likely to bind the ligand. This ranking scheme however would assign 
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the same score to pockets with the same volume but with varying depths. Large but shallow 
candidate pockets are less likely to host the ligand compared to the ones that go deep inside the 
protein, although they might have similar volume. For this reason, for each candidate pocket the 
proposed method computes the weighted volume score, i.e., the sum of the corresponding distance 
map values (squared distance values from the nearest voxel of the outer SAS which are available 
from the EDT computation step) of all the voxels belonging to the current pocket. The EDT 
algorithm used to compute the two surfaces also provides a very elegant means to sort candidate 
pockets. Candidate cavities, on the other hand, are sorted solely by their volume (sum of their 
voxels). 

Results and discussion 

The presented methodology was implemented in a program named PoCavEDT, and its ligand 
binding site prediction capabilities were compared with other purely geometric pocket and cavity 
identification software. The employed evaluation method is the same that was used in several 
previous studies (Brady et al. 2000; Huang et al. 2006; Weisel et al. 2007; J. Yu et al. 2010). Each 
predicted pocket and/or cavity is represented with a single point in the 3D space: a prediction is 
regarded as successful if any atom of the ligand is located within a 4.0Å distance from the point 
representing the candidate pocket or cavity; otherwise, the prediction is regarded as a failure. Each 
candidate cavity 𝑋𝑋 (which can be seen as the set of voxels it is made of, scaled and translated back 
from the voxel grid coordinate system to the molecule's original one) is represented by its centre 
of mass 𝑐𝑐𝑋𝑋, formally given by: 𝑐𝑐𝑋𝑋 = 1

|𝑋𝑋|
∑ 𝑣𝑣𝑣𝑣∈𝑋𝑋 . Each candidate pocket 𝑃𝑃, on the other hand, can 

be represented by its weighted centre of mass 𝑤𝑤𝑃𝑃, computed by weighting each voxel in 𝑃𝑃 with its 
corresponding distance map value from the outer SES computation: 𝑤𝑤𝑃𝑃 =
∑ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣) × 𝑣𝑣𝑣𝑣∈𝑃𝑃 ∑ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚(𝑣𝑣)𝑣𝑣∈𝑃𝑃⁄ . 

Candidate pockets and cavities are ranked separately at first since different scores are used for 
their comparison. Then, the top-3 pockets and top-3 cavities are selected from the corresponding 
ranked lists and are inserted in a new list which is then re-ranked using the inverse distance from 
their representative points to the protein’s centroid as a score, so that the closest to the centre of 
the protein is considered the most likely to bind the ligand. A resolution of 125 voxels per Å3 was 
used throughout all experiments. 

The ligand binding site prediction capability of PoCavEDT was evaluated on a test set of 48 
protein-ligand complexes and the respective unbound protein structures (Brady et al. 2000). This 
is the most widely used dataset for comparing pocket detection methods. The comparison of pocket 
and cavity predictions in bound and unbound structures is of special interest for geometric search 
algorithms in order to evaluate the degree of conformational changes the proteins undergo upon 
binding with their ligands. The prediction results were divided into two categories for quality 
assessment: “Top1-hits” indicating correct predictions and “Top3-hits” indicating predictions 
where the respective ligand is found within the top-3 scoring candidate pockets and cavities. The 
success rates of pocket predictions are summarized in Table 1. Table 2 shows the best results 
obtained by PoCavEDT on each protein in the testing set, indicating the rank of the predicted 
binding site and the distance between the representative pocket/cavity point and the nearest ligand 
atom. 
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Table 1: Binding site prediction success rate for 48 bound and unbound protein-ligand 
complexes. 

Method 
Top1-hits Top3-hits 

Unbound 
(%) Bound (%) Unbound (%) Bound (%) 

PoCavEDT 75 79 92 96 

(fixed parameters)* 69 71 88 94 

POCASA 75 77 88 94 

PocketPicker 69 72 85 85 

LIGSITECS 60 69 77 87 

LIGSITE 58 69 75 87 

CAST 58 67 75 83 

PASS 60 63 71 81 

SURFNET 52 54 75 78 

* Results obtained with PoCavEDT by using the following fixed parameters for all predictions: probe- sphere-
radius for inner SES = 1.4Å, probe-sphere-radius for outer SES = 4.0Å, minimum pocket depth threshold = 2.67Å 

Table 2: Binding site prediction results for 48 bound and unbound protein-ligand complexes. 
Only the best hit is shown. Dashes indicate that the actual binding site was not found within the 
top-3 candidate pockets and/or cavities. 

Bound Unbound 

PDB ID Rank Distance (in Å) PDB ID Rank Distance (in 
Å) 

1A6W 2 1.13 1A6U 3 0.85 
1ACJ 1 1.36 1QIF 1 2.16 
1APU 1 1.78 3APP 1 0.89 
1BID 1 1.95 3TMS 1 2.41 
1BLH 2 1.04 1DJB 1 0.87 
1BYB 1 1.07 1BYA 1 2.54 
1CDO 1 1.16 8ADH 1 1.63 
1DWD 1 0.85 1HXF 1 0.91 
1FBP 3 0.97 2FBP 2 0.73 
1GCA 1 1.00 1GCG 1 1.25 
1HEW 1 0.83 1HEL 1 0.75 
1HFC 1 0.81 1CGE 1 0.72 
1HYT 1 0.99 1NPC 1 0.50 
1IDA 1 1.59 1HSI 1 1.96 
1IGJ 3 0.79 1A4J 3 1.08 
1IMB 1 1.54 1IME 1 1.43 
1INC 1 1.09 1ESA 1 0.62 
1IVD 2 1.23 1NNA 3 1.39 
1MRG 1 0.26 1AHC 2 0.45 
1MTW 1 0.57 2TGA - - 
1OKM 1 0.52 4CA2 1 1.01 
1PDZ 1 1.82 1PDY 1 1.41 
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1PHD 1 1.28 1PHC 1 1.28 
1PSO 1 0.96 1PSN 1 1.18 
1QPE 2 1.24 3LCK 2 1.19 
1RBP 1 0.43 1BRQ 1 0.98 
1RNE 1 1.47 1BBS 1 1.28 
1ROB 1 1.05 8RAT 1 0.40 
1SNC 1 0.33 1STN 1 2.74 
1SRF 1 1.05 1PTS 1 0.82 
1STP 1 1.27 1SWB 1 1.21 
1ULB 2 1.14 1ULA - - 
2CTC 1 0.54 2CTB 1 0.73 
2H4N 1 1.11 2CBA 1 0.42 
2IFB 1 2.27 1IFB 1 2.08 
2PK4 1 1.53 1KRN 1 1.26 
2SIM 2 0.52 2SIL 2 0.39 
2TMN 1 1.44 1L3F 1 0.70 
2YPI 1 1.02 1YPI 1 2.65 
3GCH 1 0.85 1CHG - - 
3MTH - - 6INS 2 2.99 
3PTB 1 1.16 3PTN 1 0.99 
4DFR 1 2.95 5DFR 1 2.39 
4PHV 1 1.26 3PHV - - 
5CNA - - 2CTV 1 0.79 
5P2P 1 2.06 3P2P 1 1.56 
6RSA 1 0.84 7RAT 1 0.40 
7CPA 1 0.97 5CPA 1 0.50 

The proposed pocket and cavity search algorithm depends on four parameters: the probe-sphere-
radii of the inner and outer SE surfaces, the minimum pocket depth parameter and the resolution. 
A relatively high resolution parameter was chosen for all experiments (125 voxels per Å3) in order 
to ensure that the pocket and cavity search procedures did not depend on the orientation of the 
protein in the voxel grid. The implemented EDT algorithm allows the efficient computation of 
voxelised protein surfaces at very high resolutions. None of the pocket and cavity detection steps 
in the proposed algorithm depend on the particular orientation of the protein inside the voxel grid, 
excluding the effects of the discretisation error which are minimized by using a high resolution 
parameter. Several combinations of the remaining three parameters were tested, and the best results 
were obtained by using a probe-sphere-radius of 1.4Å for the inner SES, a probe-sphere-radius of 
4.0Å for outer SES and minimum pocket depth threshold of 2.67Å, as shown in Table 1. It is worth 
noticing that, in general, the adaptive parameter strategy based on the ligand size yields better 
prediction results. 

This strategy however fails to correctly predict the ligand binding site in a few instances, as for 
3MTH (Methylparaben Insulin) whose ligand binding pocket is rather wide and shallow. The 
algorithm automatically determines the following set of parameters: inner SES probe-sphere-
radius = 1.7Å, outer SES probe-sphere-radius = 4.0Å, minimum pocket depth = 1.80Å. By 
doubling the probe-sphere-radius for the outer SES (8.0Å) and using a minimum pocket depth of 
3.0Å, the algorithm identifies the correct ligand binding pocket of 3MTH at rank 1. This indicates 
that with a more complex parameter selection strategy, it might be possible to further enhance the 
automatic ligand binding site prediction capabilities of the proposed method. 
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Conclusion 
The purely geometric pocket detection method PoCavEDT was developed and successfully 
applied to the ligand binding site prediction task in proteins. The search routine of PoCavEDT is 
capable of identifying the active site within a protein structure with a high success rate on a 
representative test set. The adaptive parameter selection strategy based on the ligand size yields 
better prediction results than any tested set of fixed parameters. A more complex parameter 
selection scheme could further improve the prediction capabilities of the proposed method. 

The proposed method outputs the voxelised representation of protein pockets and cavities that are 
potential ligand binding sites. Voxelised representations are well-suited to represent multiple 
physicochemical and geometrical properties of molecular surfaces, as each voxel can describe 
multiple properties of a portion of the 3D space. Descriptor-based approaches could also benefit 
from the voxelised representation of pockets and cavities enriched with local physicochemical 
properties in order to implement fast and accurate pocket and cavity ranking, comparison and 
classification. These topics will be explored as future research. 
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