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Abstract 9 
Forming generalizations from previous experiences is a complex skill, which requires a delicate 10 
coordination between several basic cognitive abilities. In menacing situations, this ability is called 11 
“fear generalization”. It allows humans to predict harmful events and is necessary for survival. 12 
Impairments of this ability may lead to overgeneralizations – a phenomenon we know from anxiety 13 
disorders. By and large, fear generalization has been studied with one type of experimental 14 
paradigm. Stimuli forming a carefully controlled perceptual similarity gradient have been the basis 15 
to quantify behavioral and neuronal “fear generalization profiles”. This paradigm has provided 16 
fruitful insights into how learnt fear generalizes to perceptually similar events. Yet, a number of 17 
findings suggest that fear generalization is more adaptive than predicted by a mechanism which is 18 
solely based on perceptual similarity. In this opinion article, I aim to bring new perspectives onto 19 
fear generalization as a complex, adaptive process. I will investigate the following major 20 
hypotheses: (1) Fear generalization can be understood as the optimal result of a Bayesian inference 21 
problem. (2) In real-world conditions, fear generalization builds on conceptual knowledge rather 22 
than perceptual similarity alone. (3) Brain structures involved in fear generalization can be causally 23 
linked to modulate fear responses adaptively. To test these hypotheses, I propose use of tools 24 
including fMRI, EEG as well as intracranial electrical stimulation and LFP recordings in 25 
presurgical epilepsy patients. With the combination of these tools, the expected findings have the 26 
potential to revolutionize our understanding of fear generalization and anxiety disorders. 27 
 28 
  29 
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Introduction 30 
 31 
 One way of dealing with the ungraspable complexity of the environment consists of making 32 
generalizations1,2. Previously learnt regularities of the environment can be useful when applied to 33 
novel situations. For example, a novel nutriment can be categorized as inedible based on past 34 
experiences with truly harmful ones. This competence called fear generalization (FG) is a 35 
remarkably high-level cognitive ability that builds upon more basic skills such as object 36 
recognition and categorization, statistical learning, perceptual learning, memory, affective 37 
processing and conceptual learning. FG provides an important opportunity to study how basic 38 
cognitive abilities, which are typically studied in isolation, function collectively to generate 39 
adaptive behavior in a complex world. Notably, dissonance between these abilities manifests as 40 
maladaptive behavior and may result in mental health disorders3–8, such as specific phobia. These 41 
are characterized by an overgeneralization of previous harmful encounters, leading to the 42 
perception of truly safe situations as harmful. Therefore, understanding the neuronal and 43 
computational mechanisms of FG is crucial both for basic, as well as clinical neuroscience. 44 
 45 
The study of human FG has benefited enormously from well-established experimental paradigms 46 
dating back to Pavlov9–14. The rationale behind these paradigms consists of characterizing how 47 
learning generalizes to other events based on their perceptual similarity with a harmful item. 48 
During conditioning, humans learn the characteristics of truly harmful (CS+) and safe (CS–) 49 
events. The harmful quality of the CS+ is established by pairing it with an aversive outcome (UCS; 50 
e.g. mild electric shock on the hand) using well-established conditioning paradigms15, where 51 
learning can be objectively monitored. Empirically, FG is characterized by measuring fear-related 52 
responses to other stimuli organized to form a continuous similarity gradient (Fig. 1). Typically, 53 
responses decay with decreasing similarity to the CS+ resulting in graded fear tuning profiles1. 54 
The strength of this paradigm consists of parametric characterization of behavioral and neuronal 55 
fear tuning profiles based on their peak positions and widths16 (Fig. 1). Hence, it provides a 56 
powerful paradigm to investigate neuronal mechanisms responsible for enacting adaptive and 57 
selective fear responses. 58 
 59 

 60 
Figure 1 Faces form a circular similarity gradient (color: distance from the CS+, see color wheel). 61 
Example BOLD responses form a fear tuning profile, which can be parametrically characterized. 62 
 63 
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 64 
A Roadmap with Five Milestones to achieve Progress in Fear 65 
Generalization Research 66 
 67 
Accounts of FG greatly differ on how they attempt to conceptually explain graded fear tuning 68 
profiles. According to different perceptual models, graded responses are a mere reflection of 69 
perceptual similarity to the behaviorally relevant stimulus17,18. However, for FG to be an adaptive 70 
process in a complex world, it must be flexible and be regulated independently from perceptual 71 
factors. Several findings suggest that this is indeed the case; (1) Fear tuning profiles do not always 72 
peak on the objectively most harmful stimulus19. Such peak-shift are well-documented20,21 and 73 
indicate that FG is prone to subjective biases. (2) Patients with anxiety disorders typically show 74 
wider fear-tuning than healthy controls3,4,6–8,22,23, even though they have been presented with the 75 
same perceptual stimulus material. (3) It has been shown that participants readily generalize to 76 
semantically related objects that are part of the same category but which do not necessarily bear 77 
close physical resemblance (e.g. a hammer and a saw)24. Despite these observations, there are up 78 
to date no theoretical frameworks to understand how flexibility and adaptivity emerge during FG. 79 
In this work, I aim to go beyond the current conception of FG as a sole result of physical similarity 80 
and I will deliver insights on how we can conceptualize FG as a process that can be adaptively 81 
tailored to ensure survival in a complex world. To realize this conceptual shift, I propose the 82 
following milestones to be incorporated in a research agenda: 83 
 84 
Milestone (1): Descriptive to Normative Transition 85 
 86 
Two factors presumably contribute to fear tuning profiles. (1) Previous work provided evidence 87 
that uncertainty about the occurrence of harmful events is an important factor for FG16. However, 88 
the precise role of uncertainty in tailoring FG strategies in an adaptive manner is still largely 89 
unknown. (2) There is evidence that prior belief about the harmfulness of different stimuli along 90 
the generalization gradient plays an important role that might lead to biases in fear tuning 91 
profiles19. The term “bias“ implicitly suggests an error in detection performance. However, this 92 
behavior can be compatible with an agent behaving optimally while integrating different sources 93 
of knowledge with the aim of disambiguating the source of harmful event in uncertain conditions. 94 
Normative models can characterize optimality of behavior. I propose therefore use of a modern 95 
theoretical framework of predictive coding25–27, where Bayesian inference28–30 takes a central role, 96 
as a powerful tool to advance our understanding of FG as an optimal, adaptive phenomenon. 97 
 98 
Milestone (2):  Role of categorization during fear generalization  99 
 100 
Categorization constitutes a fundamental mechanism for organizing and transferring knowledge31. 101 
It can therefore support FG24. Yet, our knowledge on its contribution to FG is scarce32. The role 102 
of categorical knowledge can be investigated in two forms.  103 
(1) Categorical knowledge can be used to transfer knowledge in abstract ways between events 104 
independently from perceptual similarity31,33. Hence, the emergence of categorical knowledge 105 
predicts a qualitative change in fear tuning34. This transition can be investigated in humans with 106 
representational similarity analysis35 of multivariate activity patterns recorded in EEG and fMRI. 107 
This can inform us where, when and how abstract aversive representations form during FG.  108 
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(2) Categorical knowledge can also lead to ambiguity, especially when a given item 109 
simultaneously belongs to multiple categories. Understanding how ambiguity is resolved has 110 
clinical relevance36–38. Using the correct category for FG among many competing ones can only 111 
be achieved by collecting statistical regularities about the occurrence of harmful events. It is 112 
important to understand whether this ambiguity is resolved faster in healthy humans in comparison 113 
to groups suffering from anxiety disorders. 114 
 115 
Milestone (3): Establishing causation between neural activity and fear generalization 116 
 117 
Understanding neuronal underpinnings of FG requires ultimately establishing causality between 118 
neuronal activity and fear tuning profiles. This is especially true for FG paradigms, as many brain 119 
regions while they exhibit fear-tuned profiles, may not necessarily be of great importance for FG. 120 
Since most of the research about neuronal mechanisms of FG is of correlational nature, studies 121 
establishing causality can provide crucial insights. In particular, parametrically organized 122 
stimulus gradients offer the possibility to quantify effects of causal interventions by biasing FG 123 
profiles. Knowing which brain structures shape FG is not only of high interest for the progress of 124 
field but also of utmost importance for research into the etiology of anxiety disorders and the 125 
development of clinical applications.  126 
 127 
Milestone (4): Space and time of neuronal dynamics 128 
 129 
Neuronal activity unfolds both in time and space. In the past, investigations of FG has benefited 130 
enormously from fMRI4,6,16,18,22, but much less so from EEG (but see 39). Consequently, our 131 
understanding of fast temporal dynamics of FG during a single trial is scarce. For a thorough 132 
characterization of rapid neuronal mechanisms of FG, methods such as EEG and iEEG must be 133 
used. Representational similarity analysis35,40 (RSA) of multivariate activity patterns is an 134 
appropriate method to investigate FG both with EEG41 and fMRI42. This is because FG relies 135 
ultimately on a subjective metric that evaluates the relatedness of different stimuli to CS+. Hence, 136 
similarity of activity patterns between conditions can capture subjective strategies used during FG. 137 
In combination with EEG, RSA is a powerful method42 to investigate temporal dynamics of FG. 138 
 139 
Milestone (5): Clinical relevance 140 
Ultimately research in FG must elucidate why anxiety disorders are associated with wide fear 141 
tuning profiles. Therefore, it is important that experiments to be systematically conducted also in 142 
groups with anxiety disorders. Milestones 1 and 2 on the roadmap can potentially provide key 143 
insights on anxiety disorders: Milestone (1) brings a normative approach that will give a 144 
computational account of wider fear tuning profiles observed in anxiety disorders. Milestone (2) 145 
probes patients for a compromised strategy of updating their internal hypothesis about the source 146 
of threat.  147 
 148 
Three Empirical Directions 149 
 150 
I propose here 3 experimental approaches to proceed on the above roadmap. 151 
 152 
Direction(1): Fear Generalization as Harm Prediction: A Bayesian Integration Framework 153 
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This experiment addresses milestones 1 (“Normative Framework”) and 5 (“Clinical Relevance”) 154 
of the roadmap. The goal of this package is to cast FG as cognitive ability used to predict future 155 
harm. To do so, I propose conceiving FG as a Bayesian inference problem for recovering the cause 156 
of threat in an uncertain environment. Here, fear tuning reflects the degree of belief about the 157 
potential harm of different stimuli. In order to reduce uncertainty about the source of threat, 158 
humans integrate different sources of available knowledge:  159 
(1) Learnt threat likelihood and  160 
(2) prior beliefs.  161 
Likelihood reflects the probability of different stimuli to predict objectively harmful outcomes; 162 
therefore, it reflects the conditioning regime imposed by the experimenter. Prior beliefs reflect 163 
one’s previous opinion (i.e. before conditioning) on different stimuli to be harmful. The integration 164 
of these sources results in the observed fear tuning, which reflects the posterior, the integrated 165 
high-level FG. 166 
 167 
1.1 A new Bayesian framework for fear generalization 168 
 169 
As a first step, I propose to manipulate explicitly uncertainty levels associated with the prediction 170 
of harmful events. This framework predicts that humans will rely more heavily on their prior 171 
beliefs when the sensory evidence for the prediction of harmful events is less reliable. This requires 172 
controlling uncertainty and using stimulus material where humans can use prior knowledge. 173 
 174 
Controlling uncertainty: To introduce uncertainty as an experimental factor one needs to control 175 
UCS administration with a probability distribution along the generalization gradient during the 176 
conditioning phase. Depending on the width of the probability distribution (min: only one item 177 
along the gradient predicts harmful outcome; max: all items equally predict harmful outcome), 178 
participants will be provided with more or less reliable sensory information about the source of 179 
threat. This allows us to parametrically control uncertainty associated with the delivery of harmful 180 
outcomes and provides an elegant extension of the classical conditioning paradigms. 181 
 182 
Introducing prior knowledge: Prior beliefs consist of the accumulated experience reflecting 183 
regularities acquired across longer time-scales in real life. Therefore, to bring prior knowledge into 184 
the game we must use stimuli that have ecological validity. Faces are an excellent choice for this 185 
objective, as they are a rich source of information in social situations. Even though prior beliefs 186 
are not directly accessible, we can observe their influence by using social priors that people 187 
commonly associate with faces. I propose using gender43, emotional expression19, pupil size44, 188 
ethnicity45 and gaze direction46. Independent evidence from fear learning literature indicates how 189 
these features modulate fear learning (e.g. males perceived more dangerous than females43). 190 
Therefore, the perspective proposed here will bring together these disparate observations about 191 
social priors in an encompassing theoretical framework. These features can be (1) manipulated 192 
parametrically, and (2) used as facial elements without interfering with the identity of a face that 193 
was previously learnt to predict UCS. By parametrically introducing prior biases along the 194 
generalization gradient, it will be possible to test the predictions of the Bayesian framework at 195 
different uncertainty levels. The availability of good software support to generate faces makes this 196 
a feasible goal. 197 
 198 
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Predictions: The optimal Bayesian integration makes two clear predictions on empirical fear 199 
tuning profiles depending on how threat-likelihood and prior knowledge are aligned with each 200 
other, and the uncertainty levels in the threat likelihood.  201 
 202 

(i) With increasing uncertainty in threat-likelihood, FG will rely more strongly on prior 203 
beliefs. Hence, stronger deviations away from the objectively most harmful stimulus 204 
(i.e. where the likelihood peaks) with increasing uncertainty are expected (Fig. 2).  205 

 206 
(ii) At a given uncertainty-level, fear tuning must become increasingly sharper with 207 

increasing alignment of prior beliefs and threat-likelihood (i.e. smaller separation 208 
between the peaks of likelihood and prior). This is because the evidence from threat-209 
likelihood and prior beliefs will add up to produce highly selective fear tuning. 210 
Learning with fear-relevant stimuli47 can be taken as an illustration of this effect. When 211 
objects that are also dangerous in real life are used as stimuli stronger and more 212 
persistent learning can be established. The predictions will be statistically tested based 213 
on the parameters (e.g peak position, tuning width) describing the empirical fear tuning 214 
profiles. 215 

 216 
(iii)  217 

 218 
Figure 2 Optimal Bayesian integration for FG predicts larger deviations in fear tuning with 219 
increasing uncertainty levels in the likelihood. 220 
 221 
Experiment: During the conditioning phase, faces along the generalization gradient will be 222 
probabilistically paired with UCSs based on a Gaussian distribution (i.e. likelihood). While the 223 
width parameter of this Gaussian controls uncertainty, its peak position determines which face 224 
predicts best UCS, hence the alignment between prior and likelihood. Following learning, during 225 
the test phase, same faces will be presented, but additionally they will exhibit facial features of 226 
social priors. The predictions of the Bayesian framework can be tested using fear-tuning profiles 227 
derived from autonomic nervous system activity in the form of skin-conductance responses and 228 
complemented with explicit ratings of UCS likelihood. 229 
 230 
1.2 Computational characterization of neuronal fear tuning profiles  231 
 232 
Previous work16 showed that fear tuning in prefrontal cortex is significantly wider than in insula, 233 
which is characterized by a sharp fear tuning. The Bayesian framework allows us to understand 234 
these descriptive observations in computational terms. Wide prefrontal fear tuning is compatible 235 
with a fear representation that results from the integration of different sources of information. On 236 
the other hand, sharp insular fear tuning can reflect stimulus-UCS contingencies before the 237 
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integration of prior knowledge. Hence, it is compatible with a representation based on threat-238 
likelihood.  239 
 240 
This experiment and the encompassing theoretical framework has the potential to advance our 241 
understanding of how the brain forms aversive representations and whether these can be 242 
understood in terms of optimal aversive representations. 243 
 244 
1.3. Clinical study 245 
 246 
The Bayesian framework can also provide a basis to advance our understanding of anxiety 247 
disorders. For example, this view can be used to investigate a widespread anxiety disorder. Patients 248 
with specific phobias (ICD10 - F40.2) exhibit intense fear responses that are triggered by very 249 
specific situations47,48 and exhibit overgeneralization behavior during FG7,49. This offers an 250 
optimal scenario to study predictions of the Bayesian framework. This type of behavior can be 251 
obtained by an inability to form optimal threat representations, or alternatively by the presence of 252 
over-precise prior beliefs. By comparing the width of the threat-likelihood and the recovered priors 253 
with healthy individuals, we will be able to identify which of these effects cause intense fear 254 
responses in phobia patients. 255 
 256 
Direction (2): Role of Categorization during Fear Generalization 257 
 258 
This work package addresses milestones 2 (“Categorical Knowledge”), 4 (“Neurodynamics”) and 259 
5 (“Clinical Relevance”) of the road map. The first part is concerned with the emergence of 260 
categorical knowledge during FG and the associated changes in neuronal representations and 261 
dynamics34. In the last part, I propose using hierarchically organized categories of commonly-262 
known objects50 to induce ambiguity and investigate FG strategies in anxiety patients and healthy 263 
controls36–38. 264 
 265 
2.1 Two-stage model of fear generalization 266 
FG has been mainly investigated with stimuli organized along a similarity gradient. FG based on 267 
perceptual similarity could simply constitute one specific form. This type of similarity-based 268 
generalization can be seen as the predecessor of category-based generalization, which instead 269 
requires an abstraction from superficial perceptual aspects. However, as long as the organism has 270 
not yet experienced enough aversive events, it will not be possible to extract features that can 271 
abstractly describe these events. At this initial stage, grouping different stimuli based on their 272 
perceptual similarity could be the best available strategy. However, gradual learning leads to the 273 
emergence of harmful and safe categories. I predict that this “Aha!” moment will be marked by a 274 
transition from fuzzy generalization profiles across perceptually similar stimuli to a binary yes-275 
or-no type generalization profile reflecting their category membership. 276 
 277 
To capture this transition, it is necessary to establish a novel experimental paradigm where the 278 
CS+ and CS– will characterize two probabilistic category structures31,51,52 defined across two facial 279 
features (e.g. gender and age). Across interleaved conditioning and test phases, participants can be 280 
given the possibility to extract the underlying category structure53. Importantly, it is crucial to pit 281 
the category membership of faces against perceptual similarities to investigate their independent 282 
contributions over the course of the learning. To this end, all stimuli will be characterized both (1) 283 
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by their similarity to previous harmful faces, and (2) by their category membership. By modeling 284 
fear-related responses (i.e. SCR, explicit ratings) with these two predictors I will quantify the 285 
contribution of perceptual and categorical factors. I predict that with the emergence of categorical 286 
knowledge the contribution of perceptual factors will diminish. This will therefore establish an 287 
important link between two cognitive abilities that were so far studied separately. 288 
 289 
2.2 fMRI on category learning during fear generalization 290 
Bringing this paradigm to fMRI, it will be possible identify neuronal mechanisms responsible for 291 
the emergence of categorical knowledge during FG. This will allow to address the extent to which 292 
perceptual and categorical FG shares common neuronal mechanisms. As category-based FG 293 
relies on the use of more abstract knowledge, it is possible that it depends on different neuronal 294 
mechanisms than perceptual FG. This echoes an important dichotomy in the categorization 295 
research regarding abstract vs. similarity based categorical learning54. RSA40 is powerful and 296 
sensitive method that can contribute to the elucidation of neuronal mechanisms. As it evaluates 297 
between-condition similarity of multi-voxel activity patterns, it predicts different similarity 298 
geometries depending on whether FG proceeds with categorical24,55 or perceptual factors. It is 299 
therefore the appropriate tool for the identification of neuronal mechanisms of FG when multiple 300 
factors are available. 301 
 302 
2.3 EEG on category learning during fear generalization fear generalization 303 
Temporal dynamics of neuronal activity during FG within a single trial are largely unknown. Using 304 
the same experimental paradigm in an EEG setting, one can investigate fast neuronal dynamics 305 
(e.g. time-frequency analysis) of FG and characterize temporal unfolding of perceptual and 306 
categorical factors. Recently, it has been shown that RSA can be applied on EEG source space41, 307 
and provides one sound way to test the contributions of perceptual and categorical factors during 308 
FG. Therefore, bringing this paradigm to EEG-lab can provide synergistic insights to fMRI. In 309 
particular, use of RSA it will be possible to merge insights gathered from EEG and fMRI 310 
modalities42.  311 
 312 
2.4 Overgeneralization across hierarchically organized categories 313 
Overgeneralization in individuals with anxiety disorders has been observed in FG paradigms using 314 
perceptual gradients3,6,8,23. There is evidence that this finding can be accounted, at least in part, by 315 
perceptual confusion22. Moreover, perceptual performance is influence by learning56,57. It is 316 
therefore crucial to test the finding of overgeneralization in situations that do not require fine 317 
perceptual discrimination. 318 
 319 
In hierarchically organized taxonomies, a single item simultaneously belongs to multiple 320 
categories (e.g. sub-ordinate, basic-level). Therefore, during a FG experiment with such stimuli, it 321 
should be impossible to unambiguously assign a CS+ to a given hierarchical level. Hence, with 322 
such stimuli one can measure overgeneralization independent of perceptual factors. In this 323 
experiment we will test FG performance of patients with specific phobias. Overgeneralization, if 324 
true, predicts that patients will consistently tune in on higher levels in the hierarchy in comparison 325 
to healthy individuals for the prediction of harmful events. 326 
 327 
Direction (3): Establishing Causality between FG and Neuronal fear tuning 328 
 329 
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This experiment addresses the milestones (3) (“Establishing causation”) and (4) 330 
(“Neurodynamics”) of the roadmap. To achive this, I propose physiological experiments to be 331 
conducted on presurgical epilepsy patients with implanted deep electrodes as they offer the unique 332 
possibility to directly investigate activity of neuronal populations during complex cognitive 333 
tasks58,59. These recordings will provide a detailed picture of population dynamics during FG in 334 
the form of local-field potentials at precisely known neuronal sites. Most importantly, through 335 
stimulation of neuronal activity with subthreshold electrical currents60,61, it is possible to establish 336 
causality between neuronal activity and FG by directly observing changes in fear tuning profiles. 337 
 338 
Importantly, FG paradigms relying on perceptual similarity are extremely well-suited for 339 
introducing biases in fear tuning profiles during learning with subthreshold electrical stimulation. 340 
Furthermore, it is possible to investigate the dynamic emergence of fear tuning by pairing the CS+ 341 
face with UCS at unpredictable moments (Fig. 3A). This results in the emergence of fear tuning 342 
that dynamically grows along the course of the experiment (Fig. 3A, shock symbols).  343 
 344 
3.1 Dynamic emergence of fear generalization profiles in affective brain structures 345 
Fear tuning in human brain has been almost exclusively shown with fMRI4,16,18,19. Given the 346 
sluggish nature of BOLD responses, our knowledge on neuronal signatures responsible for 347 
encoding fear responses is largely unknown. Local field potentials capture population dynamics at 348 
high temporal resolution, and thus provide a great source of information. The parametric nature of 349 
the FG experiment makes it possible to identify fear tuning across different frequency channels. 350 
This will provide important insights for understanding neuronal mechanisms of FG. 351 
 352 

 353 
Figure 3 Emergence of FG across time and faces in Insula. (color: BOLD amplitude, shock 354 
symbols: UCS delivery with CS+ presentation). FG is shown only for trials where no UCS is 355 
administrated. B. Causal intervention with electric stimulation biases fea 356 
 357 
3.2 Establishing causality 358 
 Understanding how neuronal activity causally contributes to the regulation of behavioral fear 359 
tuning profiles is crucial for an understanding of neuronal mechanisms implicated in anxiety 360 
disorders62. Causal intervention through electrical stimulation is a powerful method that can be 361 
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used to investigate neuronal sites that can potentially bias fear tuning profiles61. The parametric 362 
nature of fear tuning profiles provides an objective and quantitative method to investigate these 363 
biases at the behavioral level.  364 
 365 
To achieve this objective, I will aim to introduce biases on fear tuning profiles via subthreshold 366 
electrical stimulation. I will use the loudness of white noise auditory bursts as UCSs with 367 
presurgical patients. Therefore along the generalization gradient faces will be paired with 368 
increasing loudness levels. The CS+ face will be paired with the loudest UCS. I will aim to 369 
increment the aversive quality of faces closely neighboring the CS+ face with electrical stimulation 370 
in a reversible manner across two different runs (Fig. 3B). For stimulation, we will use electrode 371 
contacts that are functionally related to FG, which will be characterized previously. Using this 372 
methodology I will investigate the causal contribution of different neuronal sites to the production 373 
of fear tuning profiles. 374 
 375 
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