A peer-reviewed version of this preprint was published in PeerJ on 7 June 2019.

<u>View the peer-reviewed version</u> (peerj.com/articles/6927), which is the preferred citable publication unless you specifically need to cite this preprint.

Ylitalo H, Oliver TA, Fernandez-Silva I, Wood JB, Toonen RJ. 2019. A behavioral and genetic study of multiple paternity in a polygamous marine invertebrate, *Octopus oliveri*. PeerJ 7:e6927 https://doi.org/10.7717/peerj.6927

Who's your daddy? A behavioral and genetic study of multiple paternity in a polygamous marine invertebrate, *Octopus oliveri*

Heather Ylitalo 1, Thomas A Oliver 2, Iria Fernandez-Silva 1, 3, James B Wood 1, Robert Toonen Corresp. 4

Corresponding Author: Robert Toonen Email address: rjtoonen@gmail.com

Octopus oliveri is a widespread and common rocky intertidal cephalopod that mates readily in the laboratory, but for which mating behavior has not been reported previously. Four sets of behavioral experiments were recorded wherein three males, in varying order, were introduced to each of the six females, for a total of 24 females and 12 males. Video analysis shows that successful mating occurred in each of the mount, reach and beak-tobeak positions. Mating was observed for all males, regardless of size relative to the female, or order of introduction. Females showed preference for the first male to which they were introduced in experimental pairings rather than any specific male trait, and mating time increased significantly with increasing female size. Five novel microsatellite markers were developed and used to test paternity in the eleven broods resulting from these experimental pairings. We find skewed paternity in each brood, with early male precedence and male size being the best predictors of parentage. Multiple paternity was observed in every experimental cross but was estimated to be comparatively low in the field, suggesting that sperm limitation may be common in this species. We see no evidence of direct sperm competition in Octopus oliveri, but larger males produce significantly more offspring, perhaps because they can include more spermatozoa in spermatophores. This study contributes to the growing research on cephalopod mating systems and indicates that octopus mating dynamics may be more variable and complex than thought previously.

¹ Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States

² National Oceanic and Atmospheric Administration, Honolulu, Hawaii, United States

³ Department of Genetics, Biochemistry and Immunology, University of Vigo, Vigo, Spain

⁴ Hawaii Institute of Marine Biology, University of Hawaii at Manoa

1 Who's your daddy? A behavioral and genetic study of multiple paternity in a polygamous 2 marine invertebrate, Octopus oliveri. 3 4 Heather Ylitalo¹, Thomas A Oliver², Iria Fernandez-Silva^{1,3}, James B. Wood¹, Robert J. Toonen¹ 5 6 7 ¹Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA. 8 ²National Oceanic and Atmospheric Association, Honolulu, Hawai'i, USA ³Department of Genetics, Biochemistry and Immunology, University of Vigo, Spain 9 10 Corresponding authors: Heather Ylitalo or Rob Toonen 11 12 E-mail: hylitalo@gmail.com 13 14 toonen@hawaii.edu Ph: (808) 236-7401 or fax: (808) 236-7443 15

Abstract

1	6
1	7
1	8

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Octopus oliveri is a widespread and common rocky intertidal cephalopod that mates readily in the laboratory, but for which mating behavior has not been reported previously. Four sets of behavioral experiments were recorded wherein three males, in varying order, were introduced to each of the six females, for a total of 24 females and 12 males. Video analysis shows that successful mating occurred in each of the mount, reach and beak-to-beak positions. Mating was observed for all males, regardless of size relative to the female, or order of introduction. Females showed preference for the first male to which they were introduced in experimental pairings rather than any specific male trait, and mating time increased significantly with increasing female size. Five novel microsatellite markers were developed and used to test paternity in the eleven broods resulting from these experimental pairings. We find skewed paternity in each brood, with early male precedence and male size being the best predictors of parentage. Multiple paternity was observed in every experimental cross but was estimated to be comparatively low in the field, suggesting that sperm limitation may be common in this species. We see no evidence of direct sperm competition in *Octopus oliveri*, but larger males produce significantly more offspring, perhaps because they can include more spermatozoa in spermatophores. This study contributes to the growing research on cephalopod mating systems and indicates that octopus mating dynamics may be more variable and complex than thought previously.

36

35

Keywords: cephalopod, reproduction, microsatellite, mating behavior

38

37

39

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

INTRODUCTION

Multiple paternity, or the presence of numerous males fertilizing offspring in one brood, is common across many taxa, in both vertebrates and invertebrates (Toonen 2004; Daly-Engel et al. 2006; Cutuli et al. 2013). In mating systems where multiple paternity occurs, it is often common to have high rates of sperm competition. Sperm competition occurs when sperm from two or more males compete to fertilize the ova of a female (Birkhead and Møller 1998; Birkhead and Pizzari 2002). Within the Cephalopoda, sperm competition has been observed in a variety of squid and cuttlefish species in the form of mate guarding, sneaker males, sperm flushing and increased sperm allocation (Wada et al. 2010; Squires et al. 2015; Naud et al. 2016). In octopuses, sperm competition is believed to occur given the presence of multiple mating, two oviducts in which to store sperm, and long-term sperm storage capabilities (Birkhead and Møller 1998; Hanlon and Messenger 1998; Wigby and Chapman 2004). Yet, mate-guarding and sneaker behavior has only been described in one species (Huffard et al. 2010). Male sperm precedence is the nonrandom utilization of one males sperm over another (Birkhead and Møller 1998). This can occur through female cryptic choice within the oviduct of the female, overt female rejection of sperm packets, or through male displacement of previously placed sperm packets by rival males. In nature, some animals show first male sperm precedence (Tennessen and Zamudio 2003), where the first males to inseminate a female produce the most fertilized gametes, while others exhibit a "last in, first out" strategy (Birkhead and Møller 1998). Among octopus, evidence of sperm precedence has only been reported in the southern blueringed octopus, *Hapalochlaena maculosa* (Morse et al. 2015) and an unnamed species of pygmy octopus in which the mechanism of sperm competition remains unknown (Cigliano 1995). In

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

both studies, males spent more time mating with a female that had previously mated. Cigliano (1995) concluded that this pattern suggested that the second male was somehow removing or displacing sperm from a previous male. Based on these studies, there might be a trend among octopuses of the last male siring more offspring than the first male to mate with the female.

Three previous studies have been conducted using microsatellites to determine whether multiple paternity was present in octopus broods, one with Graneledone boreopacifica (Voight and Feldheim 2009), one with Octopus vulgaris (Quinteiro et al. 2011), and the last with Octopus minor (Bo et al. 2016). Each of these studies confirmed that multiple paternity was occurring in these species, however they did not observe mating prior to collecting the eggs, so it is unknown if mating behavior affected fertilization success. Cigliano (1995) found that the time between the male first inserting the hectocotylus into the female mantle and the first arch and pump between succeeding males increased, and hypothesized that the second male was somehow removing sperm from a previous male. We wanted to test whether successive males also showed any evidence of sperm competition with previous mates in O. oliveri. We also asked whether any conspicuous male trait, such as body size or aggression, predicted the observed mating success. For example, large body size can be a predictor in determining mating success not only in octopuses, but across many taxa (Andersson and Iwasa 1996; Birkhead and Møller 1998; Huffard et al. 2010). In addition, larger body size may be an indicator to females of genetic superiority in survivability and trigger female choice, so we also wanted to test whether size is a predictor of mating success.

This study describes the mating behavior of a minimally studied intertidal cephalopod, Octopus oliveri, and tests the following questions: Are all mating attempts successful? If not, do females differentially reject copulation attempts based on male size or mate order? Is multiple

paternity present in this species? If so, what are the ratios of paternity for each male, and can we detect evidence of sperm precedence in this species?

88

89

MATERIALS AND METHODS

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Octopus mating behavior

The male octopus has a modified third right arm called the hectocotylus, which he uses to transfer sperm packets (spermatophores) to the female (Anderson et al. 2013). A sperm mass is encapsulated along with an ejaculatory organ in each spermatophore. The tip of the hectocotylus is characterized by a ligula and calamus. The male passes a spermatophore down the groove of the hectocotylized arm to either of the two distal oviducts of the female. As the spermatophore is passed down through the penis and into the groove of the hectocotylus, osmotic pressure begins to force water through the outer tunic of the spermatophore. The male reaches into the mantle of the female with his hectocotylus and transfers the spermatophore to the distal oviduct where the ejaculatory process begins (Anderson et al. 2013). The sperm mass is released from the spermatophore and it travels up the oviduct and is stored in the spermathecae in either of the two oviducal glands, along with the sperm from previously mated males (Wells 1978; Mann 1984; Hanlon and Messenger 1998; Wodinsky 2008). Females can mate with multiple males before laying eggs and can store sperm for up to 10 months in some species (Mangold 1987). The eggs become fertilized as they travel through the oviducal gland and down the oviduct (Forsythe and Hanlon 1988). As with many other species, *Octopus oliveri* females lay several strands of eggs, each with multiple eggs, which they protect for approximately one month before hatching (Ylitalo et al., 2014)

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

Animal collection and husbandry

Octopus oliveri individuals were collected from Kaka'ako Waterfront Park, and Kewalo Basin Marina, Honolulu, Hawai'i in the fall of 2010 through the summer of 2013 (over 100 individuals collected, 70 different excursions). Two to three people would walk along the rock wall during the evening hours for one to three hours (between 7pm-12am) with a flashlight. When an octopus was found, it was collected by hand and transferred to a five-gallon bucket. The males and females were kept in separate buckets. Adult octopuses were weighed on a platform scale (wet weight) and transferred to tanks on Coconut Island, Kāne'ohe. Each octopus was housed in an individual tank (38cm x 21cm x 23.5cm) with a piece of coral or PVC pipe for shelter and a plastic well-ventilated lid. These tanks were then placed in a large outdoor tank at the Hawai'i Institute of Marine Biology (HIMB) with constant saltwater flow (30 gallons per minute) and ambient ocean temperature (mean temperature 25.5°C \pm 0.6). The octopuses were fed frozen shrimp and live crabs daily and the tanks were cleaned after each feeding. Water temperature records were obtained though NOAA Tides and Currents databases from the station located closest to the collection sites in Honolulu (Station ID 1612340) and at Coconut Island (Station ID 1612481). Females collected that laid eggs before experimental trials began were considered to be representative of natural populations. They were allowed to brood their eggs until natural senescence and their eggs were tested as non-experimental indicators of paternity in the wild.

128

129

130

131

127

Mating experiments

Six females and three males were chosen randomly from the available pool of collected octopuses. Each female was paired with each of the three males (one male at a time) for a total

of 18 individual mating trials per set of experiments, with three experimental sets in total. The males were chosen with maximum variation in size, one being the largest, one smallest, and one midsize. Each of the six females had a different order of mates (i.e., female 1 with male A, B, C, female 2 with male B, C, A etc.) allowing for every possible pairing combination.

All mating trials occurred at night, as this species is nocturnal (Ylitalo et al. 2014). Three 15-gallon (61 cm x 32 cm x 32 cm) tanks were set up with constant seawater flow (2 gallons per minute) and separated by black plastic to ensure that adjacent pairs did not influence the other octopuses. Sessions were recorded using a 6 LED USB PC Web Camera with the infrared filter removed. A camera was mounted 100 centimeters above each tank (measured from the floor of the tank). A 48-LED illuminator infrared light was placed in front of each tank to illuminate the video without disturbing the octopuses.

The female was always placed in the tank first and allowed to settle for approximately 10 minutes. Then, the male was introduced and the trial would begin. Three pairs were filmed simultaneously, each pair with its own camera, during each experimental night. Trials lasted at least two hours and would end when the mating pair separated. Also, if a female tried to escape from the tank three times, the trial was ended as it was predicted the female would have escaped the male in the field. In some cases, this would mean the trial would last less than two hours. Videos were analyzed after all trials were completed.

Spermatogenesis after mating has been explored in several cephalopods, often with sperm production occurring immediately following copulation (Van Heukelem 1976; Hanlon and Ament 1999). However, the rates of sperm production vary across individuals. Given this knowledge, the males were allowed to rest one day between sessions to allow for sperm regeneration.

Each female had trial history recorded to analyze whether mate order or mate size influenced the observed mating success. Mating success was described as the amount of time a male spent mating with a female and the number of times he was able to complete the arch and pump movements.

Sixty-two trials were completed and over 125 hours of video were analyzed twice by the same observer (H. Ylitalo) and once by another observer (J. Yamada) to ensure continuity between evaluations of behavior. Three central behaviors were recorded: mating, fighting (agonistic behavior) and resting. A trial was considered successful when any or all of these behaviors between the two octopuses were recorded. Within these general categories, more specific interactions were described as follows.

Mating was described as the period starting with the male approaching the female and feeling around her mantle and arms, attempting to insert the hectocotylus. When the hectocotylus was inserted, the male would begin arch and pump movements. During the "arch" movement, the male lifted the groove on the hectocotylized arm to the mantle, lining it up with the penis inside the mantle cavity, giving the male a hunched appearance. This was followed by the "pump", when the male inflated the mantle in a deep respiratory movement and exhaled explosively, sending the spermatophore down the ridge of the arm and into the oviducal gland of the female (Wells and Wells 1972; Wodinsky 2008). The number of times a male completed each arch and pump movement was recorded as well as the time between first inserting the hectocotylus to the first arch and pump.

Fighting (agonistic behavior) was described as the period when at least one octopus appeared to be trying to escape the other. Writhing arms (grappling), suckers pulling on skin (arm pulling), and biting were observed, however no inking was ever noted. During fighting, the

hectocotylus was clearly not inserted in the female, but physical contact was necessary for fighting to be recorded. In some instances, fighting would result in mating (generally in the mount position), while in others the octopuses would separate and try to escape or a resting period would begin.

Resting behavior was described as the period of time when neither octopus was touching the other, but could be moving around the tank, or lying still so long as they were not interacting. Individuals had to be apart from each other and the male could not have any arm inside the female for resting to be recorded.

In addition to these three main behaviors, any instances of female behavior that could be perceived as female choice were recorded. For instance, if a female was seen to approach the male to begin mating, if a female did not mate with one male but did mate with others, or if a female was seen to overtly remove a sperm packet during any trial, the act was recorded.

Genetic analyses of paternity

Arm tip muscle tissue was collected from 11 adult females and 9 adult males. Egg strings from each clutch were collected one or two days before hatching and fixed in separate vials of 90% ethanol. Thirty-four individual eggs were sampled from 9-12 randomly selected strands from each of the 11 broods of females. The number of eggs sampled was calculated using power analysis (see Supplement). Eggs were randomly sampled from the top, middle, or bottom section of the egg strand and their locations were recorded. The paralarvae were almost fully developed at this time to provide the most DNA possible. DNA extractions were performed using the HotSHOT protocol on each embryo and adult muscular tissue sample (Truett et al. 2000).

200 Microsatellite loci developed for Octopus vulgaris and Graneledone boreopacifica 201 (Greatorex et al. 2000; Voight and Feldheim 2009; Quinteiro et al. 2011) were tested for use in 202 Octopus oliveri, however they all failed to amplify a product. Therefore, species-specific 203 microsatellite primers were designed for *Octopus oliveri* (Fernandez-Silva et al. 2013). Initially, 204 48 putative loci (Supplement) were tested, but after screening, only the 5 best sets of primers 205 (Table 1) were optimized (Selkoe and Toonen 2006). The three-tailed primer method described 206 by Gaither et al. (2009) was then used in PCR amplification. 207 Two primer mixes were prepared for each individual to be genotyped. Primer mix A 208 consisted of 10µl each of 100mM primer Octoli 3R, Octoli 7R, Octoli 10R, Octoli 11R, 209 fluorescent yellow (NED), red (PET), green (VIC), and blue (6-fam) dye. In addition, there were 210 2.5ul of 100mM primer Octoli 3F-T1, Octoli 7F-T2, Octoli 10F-T4, and Octoli 11F-T3 211 (Table 1). The rest of the mixture comprised of 410µl of RNAse free water (H₂O). Primer mix 212 B used the same ratio of solutions as listed above for Primer mix A, however primers Octoli 17, 213 Octoli 18, Octoli 22, and Octoli 23 were used. Octoli 10, Octoli 11, and Octoli 18 were not 214 used in the final analysis due to multiple peaks (non-Mendelian) in amplification, but were kept 215 in the primer mixes to ensure no differences in amplification among samples would occur. Each 216 individual PCR reaction mix contained 3µl 2X Multiplex MasterMix (from a QIAGEN 217 Multiplex PCR kit), 0.6µl 10X Primer mix as outlined above, 1.4µl RNAse free water, and 1µl 218 template DNA (1:10 dilution of extraction) for a final reaction volume of 6µl. 219 PCR amplification was completed on a Bio-Rad iCyler as follows: 95°C for 15 minutes 220 (1 cycle), followed by 35 cycles of 95°C for 30 seconds, 60°C or 62°C (see Table 1) for 90 221 seconds, 72°C for 60 seconds, followed by a final extension of 72°C for 30 minutes. Amplified 222 PCR products were visualized on an Applied Biosystems 3730X Genetic Analyzer at the

223 University of Hawai'i at Manoa, and genotyped using Geneious version 6.7.1 (Biomatters, 224 (Kearse et al. 2012) following guidelines from Selkoe and Toonen (2006). 225 226 Behavioral data analyses 227 Differences between the amount of time spent mating, fighting or resting between the 228 first, second or third male to mate with the female were tested using the non-parametric 229 Friedman rank test (FR_x). Only females that mated with each of the three males in their set were 230 included in this analysis. 231 To analyze the effect of mate size on mating, fighting, and resting duration, the non-232 parametric Kruskal-Wallis [KW(x)] test was used. For this analysis, all trials were included 233 except those of the females that did not mate in any of their three trials. Male size relative to 234 female was calculated by dividing female weight by male weight (grams). Males that were 235 within 15% of female weight were considered equal in size, those more than 15% below female 236 weight were classified as small, and those at least 15% above were classified as large males. 237 Similarly, male size relative to average male size (n = 12 males) in the sampled population and 238 female size relative to average female size (n = 24 females) in the sampled population were 239 calculated. 240 Finally, female mating choice among males was tested using the Chi-square test (χ^2) on 241 the subsample of trials in which females successfully mated with all three paired males and were 242 observed exhibiting behavior resembling female choice. All statistical tests were run in R. 243 244 Parentage and multiple paternity analyses using genetic data 245 The maternal genotypes from each of the 11 broods were compared with the embryo

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

genotypes manually to ensure that at least one maternal allele was found for each embryo at each locus, confirming Mendelian inheritance (after Selkoe and Toonen 2006). Then, after excluding the maternal alleles one can make a conservative estimate of the number of sires contributing to a brood by using the single-locus minimum (SLM) method of counting the number of nonmaternal alleles at each locus in the progeny, dividing the largest number by two (assuming all males are heterozygotes), and rounding up (Toonen 2004; (Jones 2005). The program GERUD v. 2.0 was then used to evaluate the frequency of multiple paternity within broads based on population allele frequencies to find the most likely umber of paternal genotypes (Jones 2005; Croshaw et al. 2009). GERUD was also used to calculate the expected exclusion probability for each locus and for the combined loci (see Supplementary Material material). Two of the experimental broods required the locus Octoli 17 to be excluded from the analyses, because inclusion consistently caused the GERUD software to crash. Parentage was assessed using the maximum likelihood ratio program in CERVUS v. 3.0 (Marshall et al. 1998; Slate et al. 2000; Jones et al. 2010). The likelihood ratio is the probability that the candidate parent is the true parent compared with the probability of an alternate unrelated candidate parent. The program uses this ratio to determine the most likely father given a known maternal genotype, a set of candidate paternal genotypes, and the brood genotypes. CERVUS incorporates genotyping error, unsampled candidate parents, and missing genotypes into the program analysis. Both strict (95%) and relaxed (80%) confidence in paternal assignment was used, but did not alter the interpretation of the data, so only the 95% assignment

Any offspring not assigned paternity at 95% confidence were then rerun through GERUD to find potential paternal genotypes from the wild, under the assumption that wild males who

was used here (as recommended by Marshall et al. 1998).

mated with females before collection sired the unassigned offspring. GERUD also calculates how many offspring are assigned to each wild type male. To corroborate the number of eggs assigned to paternal genotypes generated by GERUD, CERVUS was run again using only unassigned eggs (at a 95% confidence level). Finally, the program f_{mm} was used to assess the frequency of multiple mating in the natural population of *Octopus oliveri* using the genotypes of broods of non-experimental females (Neff 2002). This program considers the number of loci, the number of alleles and their frequencies, and reproductive skew. These results were used to corroborate multiple paternity through the SLM and GERUD methods and to extrapolate rates of multiple paternity in wild populations.

Differences in the ratio of offspring sired by experimental males were tested using chisquared test (χ^2), whereas ANOVA and Pearson's product-moment correlations were used to test
for differences in: mating time, male order, male size, number of arch and pumps, and frequency
of removed sperm packets, on the number of eggs sired by each experimental male. The best
model of predictors was calculated using marginal likelihood ratio tests and AIC (Akaike
Information Criterion) model selection tables (see Supplementary Material).

RESULTS

Mating behavior in Octopus oliveri

Of 62 behavioral observations during attempted crosses between 36 individuals (24 females and 12 males), 46 trials included mating. This number was reduced from the expected total (24 experimental females introduced to each of 3 males = 72 attempted crosses) because a few females died, escaped, or laid eggs before completing all three experimental mating trials.

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

As with most octopuses, the mating behavior observed both between individuals and among multiple mating bouts within individuals was varied (Wells and Wells 1972; Huffard 2007). However, some general patterns emerge. The average time it took for the male to approach the female and begin mating was 18 minutes (standard error $[\sigma] = 17$ minutes), with the shortest amount of time being 8 seconds and the longest 1 hour and 7 minutes. No obvious courtship was seen in either behavior or body patterns for either male or female octopuses in these trials. The male would touch the female all over her mantle and arms while searching for the oviduct with his hectocotylus for approximately 30 seconds to one minute. Most mating occurred in either the arm reach or mount position (sensu Wells 1978), however in 12 trials, beak-to-beak mating (Rodaniche 1984) was observed (Fig. 1). After a brief period where the hectocotylus was inserted, the male would begin conspicuous arch and pump movements (sensu Wells and Wells 1972). The most a male was able to arch and pump in one mating trial was 74 times, the least was 5 times, with an average of 25 times during a single mating session ($\sigma = 18$ arch and pumps). The average time between each arch and pump was 2 minutes and 12 seconds $(\sigma = 1 \text{ minute } 26 \text{ seconds})$. Despite the lack of obvious courtship leading up to copulation, during mating itself, the male was generally a dark brown-red color and the female was a pale white, although this was not always seen. Mating would end when either partner would detach from the other (generally the

Mating would end when either partner would detach from the other (generally the female), either to begin fighting or resting. The longest uninterrupted mating duration was 1 hour and 33 minutes, but in general, each trial was characterized by many short bouts of repeated mating, the shortest being approximately 1 minute in duration. The average time spent mating (all short bouts added together) per trial was 1 hour ($\sigma = 45$ minutes). In the 16 trials where no mating occurred, variable times and combinations of both fighting and resting were observed.

The data from these final 16 trials was used in the size analysis but not in mating precedence analyses, where only females who mated in all three trials were used.

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

314

315

Male precedence effect

We saw no evidence of a male precedence effect in our behavioral observations of mating. Fifteen of the 24 experimental females successfully mated with all three experimental males in these trials. From the perspective of the female (see Supplementary Material), there were no significant differences in the rate or duration of mating, fighting, or resting as successive males were presented (mating $FR_X = 0.43$, p = 0.82, fighting $FR_X = 1$, p = 0.61, resting $FR_X = 1$, p = 0.81, n = 15). Nor was there a difference in the number of arch and pumps seen during successive mating trials (FR_X = 0.32, p = 0.81, n = 15). Likewise, there was no significant difference in the time it took for males to begin the first arch and pump between successive mating trials (FR_X = 1.56, p = 0.46, n = 9). The same is true of the individual behavioral patterns of the males (see Supplementary Material), in which no significant difference was found in response to successive females to which each was introduced (mating: $FR_X = 0.4$, p = 0.81, fighting: $FR_X = 0.93$, p = 0.61, resting: $FR_X = 0.4$, p = 0.61, number of arch and pumps: $FR_X = 0.4$ 0.43, p = 0.85, time from start of mating to first arch and pump: $FR_X = 2$, p = 0.37, n = 9). Effect of size on mating behavior

331

332

333

334

335

336

While male size did not appear to affect the course of mating trials, mating time and the number of arch and pumps significantly increased with female size relative to other females in the experiment. On average, larger females (see Supplementary Material) spent significantly more time mating (KW(x) = 6.7, p = 0.03, n = 52) and had significantly more arch

and fighting (KW(x) = 1.08, p = 0.58, n = 52) were not significantly impacted by female size.

There was no significant trend (see Supplementary Material) between relative male size and the likelihood of mating (KW(x) = 0.31, p = 0.85, n = 52), resting (KW(x) = 1.22, p = 0.54, n = 52) or fighting (KW(x) = 0.06, p = 0.97, n = 52) with a given female. Likewise, male size (either

and pumps (KW(x) = 8.38, p = 0.01, n = 52), whereas resting (KW(x) = 3.36, p = 0.18, n = 52)

342 absolute or relative to the female) did not appear to affect the number of times a male would arch

and pump (KW(x) = 3.21, p = 0.2, n = 52). Male size relative to other males (see Supplementary

Material), also had no significant effect on mating (KW(x) = 1.92, p = 0.38), fighting (KW(x) =

345 2.32, p = 0.31), resting (KW(x) = 0.44, p = 0.8), number of arch and pumps (KW(x) = 0.37, p = 0.31)

346 0.83, n = 52).

347

348

343

337

Do females exhibit mate choice?

349 Females were significantly more likely to initiate mating with males introduced 350 earlier in the trials. There were 9 experimental females with at least one trial in which no mating occurred. Neither male order (χ^2 , p = 0.79, n = 18), male size relative to the female (χ^2 , p351 = 0.53, n = 23), male size relative to other males (χ^2 , p = 0.98, n = 23), nor female size relative to 352 other females (χ^2 , p = 0.39, n = 23) were significant in predicting a failure to mate. However, in 353 13 of the 46 trials where mating occurred, the female was the one to approach the male to begin 354 mating $(\chi^2, p = 0.003, n = 46)$, by either moving herself under the male or grabbing the male to 355 356 pull him on top of her. This behavior was exhibited by 9 of the 24 trial females. Significantly 357 different from expectations, eight of these instances occurred with the first male introduced to the female, 5 with the second male, and zero with the third (χ^2 , p < 0.01, n = 27). The size of the 358 359 male relative to the female did not appear to be a factor in whether the female would display this

behavior; it occurred 6 times when the male was larger, 5 times when the male was smaller and twice when the male was approximately equal in size to the female (χ^2 , p = 0.34, n = 27). Neither did the size of the female appear to be a factor in this behavior; 2 small, 3 medium, and 4 large females approached the male to initiate mating (χ^2 , p = 0.62, n = 27). Six of the nine females that exhibited this behavior laid eggs soon after the trials were concluded.

Thirteen of the 24 experimental females, in 19 different mating trials, were observed removing an intact sperm packet. While we observed females removing sperm packets, however, none of the male traits we tested showed significant correlations to this behavior. Removal happened either by the female exhaling forcefully and expelling the spermatophore (32 instances total), or the female moving her arms close to the mantle opening and "pulling" out the sperm packet (2 observations). There did not appear to be any pattern among mate order or size to this observed behavior. In 8 instances, females removed sperm packets from the first male, 7 instances from the second male and 4 from the third (χ^2 , p = 0.61, n = 24), male regardless of size (χ^2 , p = 0.81, n = 24).

Genetic analyses of paternity of broods

Multiple paternity was confirmed in all experimental broods, and all but one of the non-experimental broods when analyzed manually with the conservative single-locus minimum (SLM) method. Likewise, when analyzed with GERUD, at least 2 sires were determined for both experimental and non-experimental females, indicating multiple paternity in all broods tested (see Supplementary Material). Despite the universal finding of multiply mated females in this experiment, f_{mm} calculated an expected frequency of multiple mating in the population at only 37% (fmm unequal skew = 37% [2%-90%], fmm equal skew = 37% [1%-93%]).

Analysis of the parentage of broods in CERVUS showed a trend of first mating precedence in experimental egg fertilizations (see Supplementary Material); females used significantly more sperm from the first male to mate (χ^2 95% CI; p < 0.01, n = 8, χ^2 80% CI; p = 0.01, n = 8). Likewise, the number of offspring sired by first males differed significantly (p < 0.01) from the number sired by last males to mate (Fig. 2), but there was no pattern of male dominance within egg strands. Multiple males were found to have sired offspring within each strand tested, and distribution of paternity among strands appeared to be random.

When the eggs unassigned to a known male were rerun in GERUD and CERVUS, the category of "other" was split up into much smaller subsets (see Supplementary Material). The number of fathers that accounted for the unassigned eggs ranged from 2 to 6, suggesting that these females had mated prior to being brought into the lab for experimental trials. Rerunning the parentage analysis with these males considered shows a significant difference (p < 0.01) in the proportion of eggs sired by the wild males and first experimental males versus the second and third experimental males (Fig. 3).

The marginal likelihood ratio tests help to visualize patterns (Fig. 4) in male-female behavior and the proportion of eggs sired based on: male mating order, male body mass, number of arch and pumps during each trial, time spent mating during a trial, the number of instances where a female was seen removing a sperm packet in a trial, and the male size relative to the female (smaller, equal, or larger). Running an ANOVA and plotting each of the variables alone against the percentage of eggs sired showed a positive correlation in the size of the male in grams (p < 0.001), the number of arch and pumps in a trial (p < 0.05), and the removal of sperm packets during a trial (p < 0.05) with paternity. In contrast, mate order (p < 0.001) and mating time (p < 0.01) show significant negative correlations with the percentage of eggs sired by that

male, whereas there was no relationship detected in the relative size of males to females.

Analyzing the data in this way may causing overfitting of the model, especially given the small sample size and large number of parameters, so we also used AIC to determine which variables were the most useful predictors. Using AIC, only the male order and body mass were included as predictive variables in the best model (Table 2 and Supplementary Material).

DISCUSSION

Mating behavior of Octopus oliveri

In general, the mating behavior of *Octopus oliveri* appears typical of other published reports in the genus (Mangold 1987; Forsythe and Hanlon 1988). The only deviation of note is the beak-to-beak mating, which although observed was still relatively uncommon (~25%). Rodaniche (1991) was the first to describe beak-to-beak mating in the larger Pacific striped octopus; in his observations, however, beak-to-beak was the only mating position exhibited by that species. In *Octopus oliveri*, the mount, reach, and beak-to-beak mating positions were all observed for the first time in a single species, and parentage confirms that all positions can result in successful fertilization for this species.

Beak-to-beak mating is considered a dangerous position for the male, because sexual cannibalism has been observed in a number of octopus species (Hanlon and Forsythe 2008). Cannibalism did occur among non-experimental *Octopus oliveri* when housed in a large communal tank but it was unclear if it was sexual cannibalism, competitive, or for other reasons. No cannibalism was observed in any of the experimental mating trials but that does not rule out the possibility that it may occur in the wild, and the fact that cannibalism occurs in communal tanks suggests that males might be wary of mating in a position that would make them

vulnerable to consumption. This risk may account for the relative rarity of beak-to-beak mating. Still, our results indicate such mating happens successfully, because of the nine females who had trials where beak-to-beak mating occurred, five subsequently laid eggs.

Larger females tended to incite longer mating durations with higher numbers of arch and pumps by males. Size in octopuses is generally dependent on environmental factors such as food quality and temperature and it can therefore be difficult to determine what size determines sexual maturity in a female (Semmens et al. 2004). However, in some octopuses size can be a predictor of maturity and fecundity, which may indicate that males are more likely to invest time in mating with larger females (Leporati et al. 2008; Mohanty et al. 2014). In the case of *Octopus oliveri*, it also appears that larger females are more amenable to mating, possibly because they are closer to spawning. While it is well known that female octopuses can mate and store sperm months before laying eggs (Wells 1978; Anderson et al. 2013), it may be that the quality of the sperm is reduced over time (Reinhardt 2007), making it likely that smaller females would be more likely to delay mating until they are closer to spawning.

Female choice in mating

Initially, we interpreted the first approach by females and sperm removal as evidence of female choice. However, both behaviors may be better explained by alternative hypotheses. While it was a relatively rare occurrence for females to approach males for mating (~28%), it is significant that in more than 60% of these cases, it was the first male presented to the female, regardless of size difference (Fig. 2). This preference may indicate that mature females isolated from males would be more responsive to mating with the first male that is presented to them. If so, that would suggest that male encounter rate in the wild is not so high as to avoid sperm

limitation, and that multiple mating may be a strategy to avoid reduced fertilization rate.

Therefore, the first approach by females may not be choice, but rather desperation due to sperm limitation. Clearly studies in the field to observe this octopus mating would be beneficial, but field observations of this species are rare and extremely difficult because they live exclusively in high wave action areas with dangerous rocky terrain and are nocturnal.

A previous study of *Octopus bimaculoides* mating behavior found a similar pattern to that in this study, with large females mating for longer periods with the first male to approach them (Mohanty et al. 2014). But, as with our results, it may be possible that as more mates are presented to them, females may become more selective. Also, of the nine females who exhibited primary approach behavior, six of them laid eggs at the end of the experiments. The other three died, two during a water failure, and the last died unexpectedly, without laying eggs, but it is notable that every individual that survived successfully laid eggs. As suggested by Mohanty et al. (2014), if these females were nearing brooding, they may have been trying to acquire as much sperm as possible.

Active sperm removal may be a function of female choice, particularly if it were also a signal to the male that the female was not receptive to mating. However, it may also be simply mechanistic, which is more likely the case in this study. Wodinsky (2008) reports on mating of two *Octopus* species and noted that females were seen to expel spermatophores before the spermatozoa within the spermatophore had ejaculated. He concluded it was a result of a disconnection between the calamus (the tip of the hectocotylus) and the distal oviduct. If this disconnection were the cause, the observed active removal of sperm packets would have nothing to do with female choice. Given that there was no pattern among male size or precedence in incidences where the females were observed to remove sperm packets, it would suggest that any

male could place the ligula incorrectly. In this case, if the sperm removal were mechanistic, it would indicate that no female choice is occurring; rather it is a function of clearing the passage to the oviduct to allow further spermatophores to be transferred. Given that we found a positive correlation between the occurrence of sperm removal and paternity it suggests that this behavior is indeed a result of misplaced spermatophores and not a function of choice.

Multiple paternity

Our data confirm multiple paternity in *Octopus oliveri* in every experimental mating that we conducted, but f_{mm} suggests that the rate is only moderate in the field (f_{mm} unequal skew = 37% [2%-90%], fmm equal skew = 37% [1%-93%]). Added to reports of multiple paternity in the deep sea octopus *Graneledone boreopacifica* (Voight and Feldheim 2009), the shallow water *Octopus vulgaris* (Quinteiro et al. 2011), and the long-armed octopus *Octopus minor* (Bo et al. 2016), it appears that this reproductive strategy is the norm among octopods. The fact that females tend to initiate mating most often with the first male to which they are introduced, and then become more choosy as more mates are provided suggests that sperm limitation may be a reasonable explanation. Likewise, if larger females are more fecund, that would be consistent with the tendency for larger females to encourage prolonged mating time and increased numbers of arch and pumps during mating.

Sperm competition and mating precedence

It has been reported that the ligula on the tip of the hectocotylus is used to remove sperm deposited by previous males (Cigliano 1995; Quinteiro et al. 2011). Unlike Cigliano's experiments in 1995, our experiments did not show any evidence of a sperm competition

mechanism between males. There was no significant change in the amount of time between when the male would insert his hectocotylus and when he would begin the arch and pump movements, regardless of the mate order, absolute or relative body size. In addition, and in contrast to what was found in the squid *Loligo vulgaris reynaudii* (Shaw and Sauer 2004), there was no clear distribution of sires among the individual strings or among the whole brood in *O. oliveri*.

Such differences may result from variation among species in the tissue of the ligula and calamus of octopuses that could impact the ability to displace spermatozoa of previous males (Voight 2002; Thompson and Voight 2003). For example, the ligula of *O. oliveri* is very short and lacks flexibility (Garcia 2010), so perhaps this limits their ability to remove sperm deposited by previous males. Alternatively, the time between mating sessions might have been sufficient to allow spermatozoa to penetrate deep into the spermatheca (De Lisa et al. 2013), therefore rendering sperm removal difficult or impossible. For example, spermatozoa have been found in the oviducal gland of *O. tetricus* one day (24h) after mating, although whether it was the sperm of the experimental male or a previous male from the field was unclear (Joll 1976).

Studies examining precedence in cephalopods have focused predominantly on loliginid squids and cuttlefish (Buresch et al. 2009; Voight and Feldheim 2009; Quinteiro et al. 2011; Sato et al. 2016). Last male precedence was found in two squid species: *Loligo bleekeri* and *Loligo vulgaris reynaudii* (Shaw and Sauer 2004; Iwata and Munehara 2005), and one cuttlefish species: *Euprymna tasmanica* (Squires et al. 2015). In contrast, no clear precedence was found in the cuttlefish *Sepia apama* (Naud et al. 2004). In both squid and cuttlefish, males can deposit sperm packets (spermatangia) either inside the mantle, or around the buccal mass surrounding the mouth, which leads to both external and internal fertilization. Possibly because squid and

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

cuttlefish mate in large aggregations, the last male to encounter the female can ensure paternity by guarding the female while eggs are laid. In contrast, octopuses have only internal fertilization, and contrary to last male precedence commonly reported in squids and cuttlefish. we find early male precedence among our experimental mating trials in *Octopus oliveri*. However, this is not first male precedence because none of the females collected were likely to be virgins, and the relative contribution of matings prior to the start of the experiment cannot be accurately determined. Nonetheless, there is skew among every brood tested, indicating that some males are fertilizing more offspring than others, and among our experimental mating trials, the last males clearly sired significantly fewer offspring than the first males (Fig. 2). One possible explanation for why our first males did so well in terms of fertilization success is that females captured for this experiment may have been storing sperm for long enough that it had decreased in quality. When presented with a new male at the outset of the experimental matings, these males may have been able to displace or overwhelm the low-quality sperm of previous males. If this were the case, it is also possible that the first male could have overwhelmed the spermathecae, making sperm depositions by subsequent males less successful. In addition to mating order, size was the only other predictive variable for parentage in this study. Although size did not influence the ability of a male to mate in the behavioral experiments, the use of the microsatellite markers indicates larger males sire significantly more offspring. This could be due to some factor such as an unknown mechanism of differential use of deposited sperm by the female, but we suspect that large males have larger spermatophores and are sperm loading, or overwhelming the spermathecae with their sperm (Simmons and Fitzpatrick 2012). There was no significant correlation between the number of arch and pumps

and the number of offspring sired, but larger males may contribute larger spermatophores

containing higher numbers of individual spermatozoa, thereby increasing their chances of fertilization over smaller males. Among octopodids studied to date, spermatophore size tends to be highly correlated with mantle length (Mann 1984). Each spermatophore contains a sperm reservoir, which contains the individual spermatozoa. Voight (2001) found that sperm reservoir length is very tightly correlated with spermatophore length, suggesting that males are incapable of manipulating the size (and therefore the number of spermatozoa) of the spermatophore to maximize the amount of sperm delivered to the female. Although spermatophore size was not measured in this study, we see only a correlation between male body mass, not numbers of arch and pumps, in successful paternity of broods, leading us to hypothesize that larger males may transfer more spermatozoa than smaller males. Further research is needed to determine if sperm loading might be a sperm competition strategy in octopods.

Conclusion

These experiments indicate that females of *Octopus oliveri* appear to mate indiscriminately with males in any order and of any size, showing minimal behavioral evidence for pre-copulatory sexual selection. Successful mating occurred in each of the mount, reach and beak-to-beak positions, and larger females elicited greater mating effort from males in terms of duration and arch and pump behaviors. Multiple paternity was observed in every experimental cross when females were presented with 3 potential mates under laboratory conditions but was estimated to be comparatively low in the field. This low population rate of multiple paternity may indicate sperm limitation due to rare mate encounter in the field and could explain both female responses to first males in our behavioral assays and early male advantage in parentage of broods. We see no evidence of direct sperm competition in *Octopus oliveri*, but larger males

produce significantly more offspring, perhaps because they can include more spermatozoa in
spermatophores. This study contributes to the growing research on cephalopod mating systems
and indicates that octopus mating dynamics may be more variable and complex than thought
previously.
ACKNOWLEDGEMENTS
We thank Zac Forsman and Ingrid Knapp for their assistance and advice with the genetics
component of this research, and to Jeff Drazen, Les Watling & Chuck Birkeland for their support
and feedback throughout this project. This work was supported primarily by a NOAA National
Marine Sanctuaries Program award (MOA grant No. 2005-008/66882) to RJT and two Marie
Curie Actions of the European Union's Seventh Framework Programme (FP7/2007-2013) under
REA grant agreements 302957 and 600391 (FELLOWSEA: Campus do Mar International
Fellowship Program) to IF-S. Additional funding was provided to HYW through the University
of Hawai'i, Department of Biology Edmondson Grant. This is contribution #XXXX from the
Hawai'i Institute of Marine Biology, and SOEST #YYYY.

LITERATURE CITED

- 586 Andersson M, Iwasa Y (1996) Sexual selection. Trends in Ecology & Evolution 11:53–58. doi: http://dx.doi.org/10.1016/0169-5347(96)81042-1
- Anderson, RC, Mather JA, Wood JB (2013) Octopus: The Ocean's Intelligent Invertebrate.
 Timber Press, Portland
- Birkhead TR, Møller AP (1998) <u>Sperm Competition and Sexual Selection</u>. Academic Press,
 London
- 592 Birkhead TR, Pizzari T (2002) Postcopulatory sexual selection. Nature Reviews Genetics 3:262–593 273.
- Bo Q-K, Zheng X-D, Gao X-L, Li Q (2016) Multiple paternity in the common long-armed
 octopus Octopus minor (Sasaki, 1920) (Cephalopoda: Octopoda) as revealed by
 microsatellite DNA analysis. Marine Ecology 37:1073–1078. doi: 10.1111/maec.12364
- Buresch KC, Maxwell MR, Cox MR, Hanlon RT (2009) Temporal dynamics of mating and paternity in the squid Loligo pealeii. Mar Ecol Prog Ser 387:197–203.
- Cigliano JA (1995) Assessment of the mating history of female pygmy octopuses and a possible sperm competition mechanism. Animal Behaviour 49:849–851.
- Croshaw DA, Peters MB, Glenn TC (2009) Comparing the performance of analytical techniques
 for genetic PARENTAGE of half-sib progeny arrays. Genet Res (Camb) 91:313–325. doi:
 10.1017/S0016672309990231
- Cutuli G, Cannicci S, Vannini M, Fratini S (2013) Influence of mating order on courtship
 displays and stored sperm utilization in Hermann's tortoises (Testudo hermanni hermanni).
 Behavioral Ecology and Sociobiology 67:273–281.
- Daly-Engel TS, Grubbs RD, Holland KN (2006) Assessment of multiple paternity in single
 litters from three species of carcharhinid sharks in Hawai'i. Environ Biol Fish 76:419-424
- De Lisa E, Salzano AM, Moccia F, et al (2013) Sperm-attractant peptide influences the
 spermatozoa swimming behavior in internal fertilization in Octopus vulgaris. J Exp Biol
 216:2229–2237. doi: 10.1242/jeb.081885
- Fernandez-Silva I, Whitney J, Wainwright B, et al (2013) Microsatellites for Next-Generation
 Ecologists: A Post-Sequencing Bioinformatics Pipeline. PLoS ONE 8:e55990. doi:
 10.1371/journal.pone.0055990
- Forsythe JW, Hanlon RT (1988) Behavior, body patterning and reproductive biology of Octopus
 bimaculoides from California. Malacologia 29(1):41-45.
- Garcia A (2010) Comparative study of the morphology and anatomy of octopuses of the familyOctopodidae.
- Greatorex EC, Jones CS, Murphy J, et al (2000) Microsatellite markers for investigating
 population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol Ecol 9:641–642.
 doi: 10.1046/j.1365-294x.2000.00882-7.x
- Hanlon R, Ament S (1999) Behavioral aspects of sperm competition in cuttlefish, Sepia
 officinalis (Sepioidea: Cephalopoda).
- Hanlon RT, Forsythe JW (2008) Sexual cannibalism by Octopus cyanea on a Pacific coral reef.
 Marine and Freshwater Behaviour and Physiology 41:19–28.
- 626 Hanlon RT, Messenger JB (1998) Cephalopod Behaviour. Cambridge University Press
- 627 Huffard CL (2007) Ethogram of Abdopus aculeatus (d'Orbigny, 1834)(Cephalopoda:
- Octopodidae): Can behavioural characters inform octopodid taxomony and systematics? J Mollus Stud 73:185–193.

- 630 Huffard CL, Caldwell RL, Boneka F (2010) Male-male and male-female aggression may
- influence mating associations in wild octopuses (Abdopus aculeatus). Journal of comparative psychology (Washington, DC: 1983) 124:38.
- Iwata Y, Munehara H (2005) Dependance of paternity rates on alternative reproductive behaviors in the squid Loligo bleekeri. Mar Ecol Prog Ser 298:219–228.
- Joll LM (1976) Mating, egg-laying and hatching of Octopus tetricus (Mollusca: Cephalopoda) in the laboratory. Mar Biol 36:327–333.
- Jones A (2005) GERUD 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents.
- Jones A, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis.
- Kearse M, Moir R, Wilson A, et al (2012) Geneious Basic: an integrated and extendable desktop
 software platform for the organization and analysis of sequence data. Bioinformatics
 28:1647–1649. doi: 10.1093/bioinformatics/bts199
- Leporati SC, Pecl GT, Semmens JM (2008) Reproductive status of Octopus pallidus, and its relationship to age and size. Mar Biol 155:375–385. doi: 10.1007/s00227-008-1033-9
- Mangold K (1987) Reproduction. In: Boyle PR (ed) <u>Cephalopod Life Cycles</u>, Vol. II:
 Comparative Reviews. Academic Press, London, pp 157–200
- Mann T (1984) Spermatophores: development, structure, biochemical attributes and role in the transfer of spermatozoa. Springer-Verlag Berlin, Germany
- Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655.
- Mohanty S, Ojanguren AF, Fuiman LA (2014) Aggressive male mating behavior depends on female maturity in Octopus bimaculoides. Mar Biol 1–10.
- Morse P, Zenger KR, McCormick MI, et al (2015) Nocturnal mating behaviour and dynamic
 male investment of copulation time in the southern blue-ringed octopus, Hapalochlaena
 maculosa(Cephalopoda: Octopodidae). Behaviour 152:1883–1910. doi: 10.1163/1568539X-00003321
- Naud M-J, Hanlon RT, Hall KC, et al (2004) Behavioural and genetic assessment of reproductive success in a spawning aggregation of the Australian giant cuttlefish, Sepia apama. Animal Behaviour 67:1043–1050.
- Naud M-J, Sauer WHH, McKeown NJ, Shaw PW (2016) Multiple Mating, Paternity and
 Complex Fertilisation Patterns in the Chokka Squid Loligo reynaudii. PLoS ONE
 11:e0146995. doi: 10.1371/journal.pone.0146995.t001
- Neff BD (2002) A Bayesian Model for Assessing the Frequency of Multiple Mating in Nature.

 Journal of Heredity 93:406–414. doi: 10.1093/jhered/93.6.406
- Quinteiro J, Rey-Mendez M, Baibai T, et al (2011) Multiple paternity in the common octopus Octopus vulgaris (Cuvier, 1797), as revealed by microsatellite DNA analysis. Molluscan Research 31:15–20.
- Reinhardt K (2007) Evolutionary consequences of sperm cell aging. Q Rev Biol 82:375–393.
- Rodaniche AF (1984) Iteroparity in the lesser Pacific striped octopus Octopus chierchiae (Jatta,
 1889). Bulletin of marine science 35:99–104.
- Sato N, Yoshida M-A, Kasugai T (2016) Impact of cryptic female choice on insemination success: Larger sized and longer copulating male squid ejaculate more, but females influence insemination success by removing spermatangia. Evolution. doi: 10.1111/evo.13108
- 675 Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and

- evaluating microsatellite markers. Ecol Lett 9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x
- Semmens JM, Pecl GT, Villanueva R, et al (2004) Understanding octopus growth: patterns, variability and physiology. Marine and freshwater research 55:367–377.
- Shaw PW, Sauer WH (2004) Multiple paternity and complex fertilisation dynamics in the squid Loligo vulgaris reynaudii. Mar Ecol Prog Ser 270:173–179.
- Simmons LW, Fitzpatrick JL (2012) Sperm wars and the evolution of male fertility.

 Reproduction 144:519–534. doi: 10.1530/REP-12-0285
- Slate J, Marshall T, Pemberton J (2000) A retrospective assessment of the accuracy of the paternity inference program CERVUS. Mol Ecol 9:801–808.
- Squires ZE, Wong BBM, Norman MD, Stuart-Fox D (2015) Last male sperm precedence in a
 polygamous squid. Biological Journal of the Linnean Society 116:277–287. doi:
 10.1111/bij.12590
- Tennessen JA, Zamudio KR (2003) Early male reproductive advantage, multiple paternity and sperm storage in an amphibian aggregate breeder. Mol Ecol 12:1567–1576.
- Thompson JT, Voight JR (2003) Erectile tissue in an invertebrate animal: the Octopus copulatory organ. Journal of Zoology 261:101–108.
- Toonen RJ (2004) Genetic evidence of multiple paternity of broods in the intertidal crab Petrolisthes cinctipes. Mar Ecol Prog Ser 270:259-263.
- Truett GE, Heeger P, Mynatt RL, et al (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29:52–54.
- Van Heukelem W (1976) Growth, bioenergetics and life-span of Octopus cyanea and Octopus maya. Dissertation, University of Hawai'i.
- Voight JR (2002) Morphometric analysis of male reproductive features of octopodids (Mollusca:
 Cephalopoda). Biol Bull 202:148–155. doi: 10.2307/1543651
- Voight JR, Feldheim KA (2009) Microsatellite inheritance and multiple paternity in the deep-sea
 octopus Graneledone boreopacifica (Mollusca: Cephalopoda). Invertebrate Biology 128:26–
 30.
- Wada T, Takegaki T, Mori T, Natsukari Y (2010) Sperm removal, ejaculation and their
 behavioural interaction in male cuttlefish in response to female mating history. Animal
 Behaviour 79:613–619. doi: 10.1016/j.anbehav.2009.12.004
- 707 Wells MJ (1978) Octopus. Halsted Press
- Wells MJ, Wells J (1972) Sexual displays and mating of Octopus vulgaris Cuvier and O. cyanea
 Gray and attempts to alter performance by manipulating the glandular condition of the
 animals. Animal Behaviour 20:293–308.
- 711 Wigby S, Chapman T (2004) Sperm competition. Curr Biol 14:R100–2.
- Wodinsky J (2008) Reversal and transfer of spermatophores by Octopus vulgaris and O.
 hummelincki. Mar Biol 155:91–103.
- Ylitalo HA, Watling L, Toonen RJ (2014) First description of hatchlings and eggs of *Octopus oliveri* (Berry, 1914) (Cephalopoda: Octopodidae). Molluscan Research 1–5. doi:
- 716 10.1080/13235818.2013.860871 717

Table 1(on next page)

Summary of microsatellite markers used for this study

Novel species-specific microsatellite markers developed for *Octopus oliveri* and used in this study, the primer and tagged sequences, annealing temperature, size and levels of polymorphism.

Peer Preprints

Table 1. Novel species-specific microsatellite markers developed for *Octopus oliveri* and used in this study, the primer and tagged sequences, annealing temperature, size and levels of polymorphism.

				Size				
			Range			Freq of		
Locus	Motif	Primer Sequence (5'-3')	$T_{\rm a}$	(bp)	N _A	Но	HE	Nulls
				154-				-
Octoli_003	$(TAGA)_{12}$	F: T1-GCACGTTGTACGCGATTC	62	200	11	0.888	0.856	0.018
		R: ATATGCATGAAGACGCAACTC						
				152-				
Octoli_007	$(TATG)_{12}$	F: T2- CGCAGACGAGGAATCAATAG	62	184	9	0.718	0.816	0.063
		R: GGAGAACAGACACAGAACACAG						
				180-				
Octoli_017	$(TATG)_8$	F: T2- AGCAACACGATGGCCTCTAC	60	202	5	0.569	0.521	0.048
		R: AGTCCAACAAGCTTCGATCC						
				239-				
Octoli_022	$(TGA)_{21}$	F: T1- AGCCATGTGGTTGAGAACG	60	287	14	0.943	0.902	0.022
		R: GCGTGCCTCTCTTCATCAG						
				160-				
Octoli_023	$(GAT)_{20}$	F: T3- GCCATGAATTCCAAGTAACTAACC	60	199	15	0.856	0.846	0.007
		R: CATCGTCATACGCCATCATC						

T1: PET-5'-GGCTAGGAAAGGTTAGTGGC-3'; **T2**: 6-Fam-5'-TCATACATGTCTCTCAGCGTAAAC-3'; **T3**: VIC-5'-GACTATGGGC GTGAGTGCAT-3'; **T4**: NED-5'-ACCAACCTAGGAAACACAG-3', *T*a: Annealing temperature (°C), NA: Number of alleles, Ho: Observed heterozygosity, H_E: Expected heterozygosity

Table 2(on next page)

Factors resulting in greater proportion of offspring sired by male O. oliveri.

Variable importance in the proportion of offspring sired among males of *Octopus oliveri* who sired multiple paternity broods. Containing models refers to the sum of the weights of all models that include a variable (see Supplementary Material for complete AIC model selection table).

Table 2. Variable importance in the proportion of offspring sired among males of *Octopus oliveri* who sired multiple paternity broods; the sum of the weights of all models that include a variable (see Supplementary Material for complete AIC model selection table).

	Male Order	Size of Male (g)	Number of Arch and Pumps	Mating Time (sec)	Removal of Sperm Packet
Importance:	0.88	0.82	0.21	0.13	0.12
N containing models	16	15	16	15	16

Figure 1(on next page)

Images of mating behaviors captured from video.

Video stills of four mating pairs of Octopus oliveri in the beak-to-beak mating position.

Females are indicated as the letter A and males as the letter B in each frame.

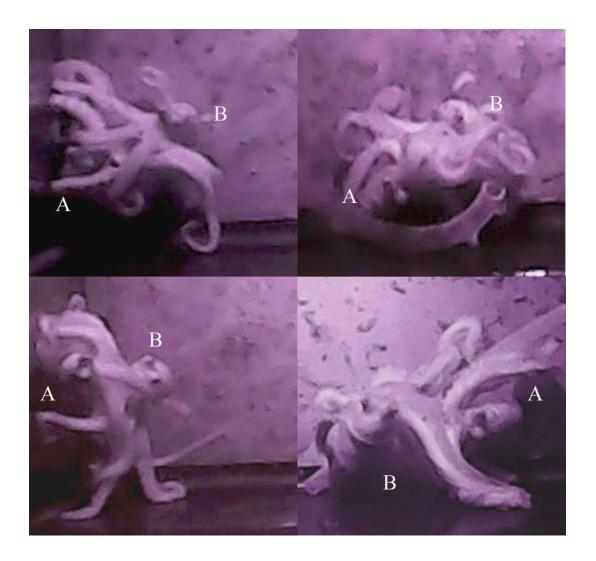


Figure 1

Figure 2(on next page)

Role of mate order in determining number of offspring sired.

Percentage of eggs sired vs. male order in mating trials with *Octopus oliveri*, before rerunning genotypes of unassigned eggs. Here, group 0 refers to all wild males lumped into a single category as "other" mating prior to the experiment which is the highest proportional fertilization success among tested egg masses. p < 0.01 for all between 0, 2 and 3, Residual Std. Error= 0.19, df=23, R^2 =0.51. *=significant.

Proportion of Eggs Sired Vs. Male Order 95% CI

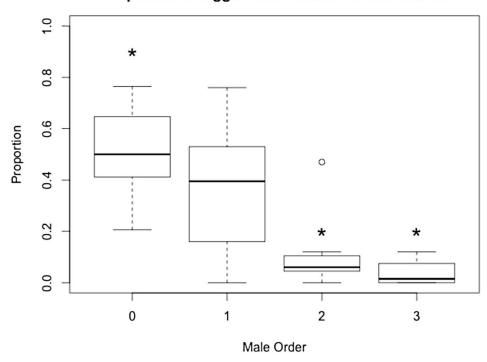


Figure 2

Figure 3(on next page)

Role of mate order in determining number of offspring sired.

Percentage of eggs sired versus male order in mating trials with *Octopus oliveri* after GERUD was rerun on "Other" males from putative matings that occurred in the field before collection. Here, group 0 refers to wild males separated by likely genotype into individuals, which partitions the pre-experiment mating among several individuals and reduces the mean success of each relative to the lumped "other" category presented in Fig. 2. p > 0.001 for both 0 and 1. Residual Std. Error= 0.15, df= 44, R^2 =0.28. *=significant.

Proportion of Eggs Sired Vs. Male Order

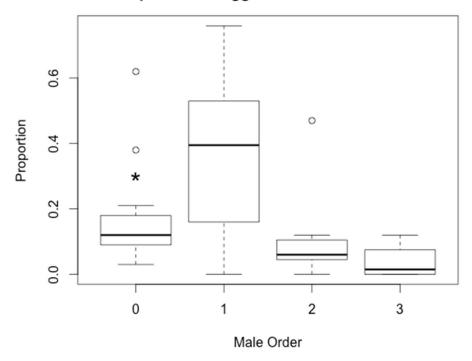


Figure 3

Figure 4(on next page)

Explanatory variables in paternity analyses.

Single linear regression/ one-factor ANOVA plots of possible explanatory variables in paternity analysis. Male mating order (likelihood ratio $x^2 = 23.3$, df = 2, p < 0.001), Male size in grams (likelihood ratio $x^2 = 11.8$, df = 1, p < 0.001), Number of arch and pumps observed in mating trial (likelihood ratio $x^2 = 3.8$, df = 1, p < 0.05), Mating time in seconds (likelihood ratio $x^2 = 5.8$, df = 1, p < 0.01), Number of times a female removed a sperm packet (likelihood ratio $x^2 = 5.1$, df = 1, p < 0.05), Male size relative to female (I: large, m: medium, or approximately equal to female size, s: small) (likelihood ratio $x^2 = 3.9$, df = 1, p = 0.13).

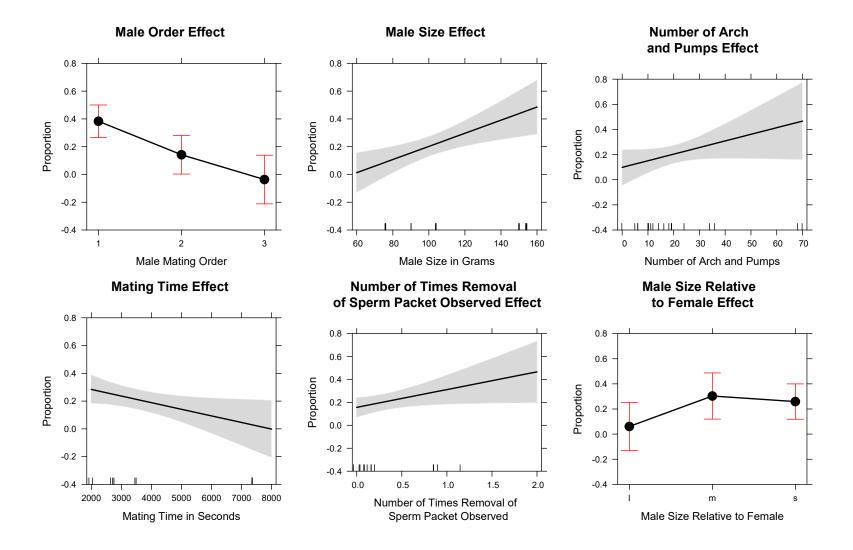


Figure 4