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Background. The North American prairie biome is considered one of the most endangered ecoregions.

Prairie fishes have been affected by many anthropogenic disturbances, including the construction of

bridges and culverts as road crossings over streams. The objective of our study was to test fish

assemblage characteristics upstream and downstream of single- and double-barreled culverts and

compare them with assemblages at bridges within a single prairie stream watershed.

Methods. Eight sites located near public or private roads were selected on the South Loup River,

Nebraska, USA. Fish were sampled monthly from April through October 2013 using backpack

electrofishing. Sampling occurred upstream and downstream of each road crossing structure. Fish

collections from all months were combined to calculate species richness; species diversity; the relative

abundance of two species of conservation concern in North American Great Plains streams (brassy

minnow Hybognatus hankinsoni and plains topminnow Fundulus sciadicus ); the relative abundance of

two introduced predators (largemouth bass Micropterus salmoides  and northern pike Esox lucius ), and

the relative abundance of both introduced predators combined. A two-way analysis of variance (ANOVA)

test was used to determine whether these seven fish assemblage characteristics were different between

upstream and downstream reaches, among road crossing structures, and between the interaction of

these two factors followed by pairwise comparisons by either road crossing type, direction, or the

interaction of both using a Tukey’s honest significant difference (HSD) test.

Results. Only two fish assemblage characteristics appeared to be related to road crossing type or

direction: species richness and relative abundance of brassy minnows. Species richness was significantly

higher at bridges compared to single-barreled culverts. The relative abundance of brassy minnows was

significantly different between bridges and both types of culverts but was not significantly different

between the two culvert types.

Discussion. Several reasons could explain the overall results of our study. First, road crossings on

prairie streams may not have much effect on fish passage or fish habitat due to the low gradient of these

streams. Secondly, because of bank stabilization, bridges could affect prairie fish communities and their

habitats as severely as culverts within this watershed. Third, the fish communities upstream and

downstream of all crossing types may represent fishes that are mostly tolerant of disturbances in

general. Our study indicates that prairie streams and their fish communities could be at least somewhat

tolerant and resilient to disturbances associated with road crossings, even though the small-bodied

nature of many native species potentially pose higher risks of disconnection within the population.
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25 ABSTRACT

26 Background. The North American prairie biome is considered one of the most endangered 

27 ecoregions. Prairie fishes have been affected by many anthropogenic disturbances, including the 

28 construction of bridges and culverts as road crossings over streams. The objective of our study 

29 was to test fish assemblage characteristics upstream and downstream of single- and double-

30 barreled culverts and compare them with assemblages at bridges within a single prairie stream 

31 watershed.

32 Methods. Eight sites located near public or private roads were selected on the South Loup River, 

33 Nebraska, USA. Fish were sampled monthly from April through October 2013 using backpack 

34 electrofishing. Sampling occurred upstream and downstream of each road crossing structure. 

35 Fish collections from all months were combined to calculate species richness; species diversity; 

36 the relative abundance of two species of conservation concern in North American Great Plains 

37 streams (brassy minnow Hybognatus hankinsoni and plains topminnow Fundulus sciadicus); the 

38 relative abundance of two introduced predators (largemouth bass Micropterus salmoides and 

39 northern pike Esox lucius), and the relative abundance of both introduced predators combined.  A 

40 two-way analysis of variance (ANOVA) test was used to determine whether these seven fish 

41 assemblage characteristics were different between upstream and downstream reaches, among 

42 road crossing structures, and between the interaction of these two factors followed by pairwise 

43 comparisons by either road crossing type, direction, or the interaction of both using a Tukey’s 

44 honest significant difference (HSD) test. 

45 Results. Only two fish assemblage characteristics appeared to be related to road crossing type or 

46 direction: species richness and relative abundance of brassy minnows. Species richness was 

47 significantly higher at bridges compared to single-barreled culverts. The relative abundance of 
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48 brassy minnows was significantly different between bridges and both types of culverts but was 

49 not significantly different between the two culvert types. 

50 Discussion. Several reasons could explain the overall results of our study. First, road crossings 

51 on prairie streams may not have much effect on fish passage or fish habitat due to the low 

52 gradient of these streams. Secondly, because of bank stabilization, bridges could affect prairie 

53 fish communities and their habitats as severely as culverts within this watershed. Third, the fish 

54 communities upstream and downstream of all crossing types may represent fishes that are mostly 

55 tolerant of disturbances in general. Our study indicates that prairie streams and their fish 

56 communities could be at least somewhat tolerant and resilient to disturbances associated with 

57 road crossings, even though the small-bodied nature of many native species potentially pose 

58 higher risks of disconnection within the population. 

59

60
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61 INTRODUCTION

62 The North American prairie is considered one of the most endangered ecoregions in 

63 North America (Samson & Knopf, 1994; Ostile et al., 1997). Biodiversity of prairie streams is 

64 often greater than streams in other ecoregions (e.g., mountain streams), and the risk of 

65 extirpation for many aquatic organisms in prairie systems is greater than in other regions 

66 (Samson & Knopf, 1994; Ostile et al., 1997). Prairie streams often experience wide variation in 

67 natural disturbances such as flooding and drying, resulting in unstable flow regimes and 

68 changing habitat characteristics (Matthews, 1988; Dodds et al., 2004). Most endemic prairie 

69 stream fishes are considered to be tolerant of such disturbances (Matthews, 1988). However, 

70 human disturbances may exacerbate the relative harshness of these natural conditions or create 

71 unnatural barriers that reduce resilience of the communities.

72 Within the past 100 years, changes to prairie landscapes associated with human 

73 settlement, including urbanization and a large-scale conversion to agriculture have occurred 

74 (Matthews 1988; Dodds et al. 2004). Such changes on the terrestrial landscape have altered 

75 hydrology, lowered groundwater tables, reduced connectivity, altered turbidity, provided a 

76 source of pollution, and promoted the introduction and survival of non-endemic species within 

77 prairie streams (Cross & Moss, 1987; Samson & Knopf, 1994). The construction of road 

78 crossings (e.g., bridges, culverts) across streams to support human settlement in the prairie 

79 ecosystem are a type of anthropogenic disturbance that may directly and indirectly affect prairie 

80 fish communities (Bouska & Paukert, 2010; Bouska et al., 2010). 

81 Direct effects of road crossings may include a restriction in the upstream and downstream 

82 movement of fishes within a stream, especially small-bodied fishes (Prenosil et al. 2015). Such 

83 movement may be prohibited by increases in water velocities and turbulence (Davies & Nelson, 
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84 1993, Eaglin & Hubert, 1993, Schnackenberg & MacDonald, 1998; Cornish 2001; Bouska et al., 

85 2010), the creation of artificial drops between the crossing structures and the main channel of the 

86 stream (Bouska et al., 2010), the concentration of debris (Votapka, 1991; Jones et al., 2000; Wall 

87 and Berry, 2004; Coffman, 2005), or a decrease in water depths through the structure (Warren & 

88 Pardew, 1998). Further, these barriers to fish passage may be either one-way (i.e., allowing fish 

89 to pass downstream but not upstream) or two-way (Bouska & Paukert, 2010). Such effects may 

90 depend on the species, life stage (e.g., adults v. juveniles), and the time of year (e.g., drier period 

91 v. wetter periods; Warren & Pardew, 1998; Bouska & Paukert, 2010). These barriers may 

92 prevent movement to feeding and spawning habitats and artificially create sources and sinks 

93 within a stream, thus increasing the risk of local extirpations and a reduction in genetic and 

94 organismal diversity (Winston et al., 1991; O’Hanley & Tomberlin, 2005; Sheer & Steel, 2006). 

95 Indirect effects of road crossings on fishes may include various factors that affect 

96 population dynamics of native fishes. Road crossings may alter sediment movement within a 

97 stream and increase sediment deposition downstream of a road crossing (Wellman et al., 2000; 

98 Clarkin et al., 2005; Bouska et al. 2010). Increases in deposition may reduce the availability of 

99 substrates for lithophilic spawners or reduce the survival of eggs laid in interstitial spaces 

100 (Fischer & Paukert, 2008; Fischer et al. 2010; Stewart et al., 2016). Additionally, sedimentation 

101 may decrease macroinvertebrate abundance and diversity within the same areas (Gray & Ward, 

102 1982; Richards & Bacon, 1994), subsequently reducing food and subsequent growth and survival 

103 of those fishes feeding in these areas. Finally, the creation of deep pools immediately 

104 downstream of some road crossings may improve conditions for survival and growth of 

105 piscivores not normally found in these streams; these newer community members may consume 

106 native small-bodied fishes (Cross et al., 1986; Matthews, 1988; Dodds et al., 2004). In total, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27308v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



107 these indirect effects may reduce recruitment of native fishes and lead to more homogeneous 

108 assemblages dominated by tolerant native and non-native species (Poff & Allan, 1995).

109 The effects of stream road crossings on stream habitat and fish assemblages may depend 

110 the crossing type. Bridges that go over rather than through streams may increase sedimentation, 

111 especially in the period immediately following construction (Wellman et al., 2000); however, 

112 some studies have shown that fish communities recover within one year of the disturbance 

113 (Peterson & Nyquist, 1972; Barton, 1977). Culverts come in many configurations (e.g., single- or 

114 double-barrel, drop, corrugated, etc.). Several studies have demonstrated that culverts cause 

115 greater damage to fish communities (Little & Mayer, 1993; Orth & White, 1993), and the effects 

116 may be long-lasting (Wellman et al., 2000). These studies have generally been associated with 

117 eastern or western regions where streams have higher gradients and different fish assemblages. 

118 To date, only a few studies have examined the effects of road crossings on prairie fish 

119 assemblages (Wall & Berry, 2004; Rosenthal, 2007; Bouska & Paukert 2010), and these studies 

120 have each examined box culverts and corrugated culverts. To our knowledge, this is the first 

121 study to compare the effects of single- and double-barreled culverts on prairie fish assemblages 

122 compared to each other and to bridges. In this study, we selected seven fish assemblage 

123 characteristics that we hypothesized would differ upstream and downstream of single- and 

124 double-barreled culverts and compared them to fish assemblages around bridges within a single 

125 prairie stream watershed.

126 MATERIALS AND METHODS

127 This study was conducted in the South Loup River watershed located in central Nebraska 

128 (Figure 1). This watershed was selected due to the perennial nature of the systems and the 

129 quantity, diversity, and accessibility of road crossings over streams within the system. Eight sites 
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130 located near public or private roads were selected for this study. Single-barreled culverts were 

131 installed at four of the sites, and double-barreled culverts and bridges were installed at two sites 

132 each (Figure 1). Strahler (1957) stream orders of the selected sites varied from 1 – 3.

133 Fish were sampled monthly from April through October 2013 using a Smith-Root LR-24 

134 backpack electrofishing unit with pulsed DC. Sampling occurred both upstream and downstream 

135 of each road crossing structure. The length of each upstream and downstream sample reach was 

136 40 times the wetted width of the stream measured 50 m upstream of the road crossing structure 

137 to reduce the influence of the structure on stream morphology (Arend & Bain, 1999). The 

138 minimum reach length was 150 m and the maximum reach length was 300 m. Fish sampling 

139 began at the downstream end of each reach and moved upward to minimize disturbance. 

140 Fish collection information from all sample months were combined to calculate various 

141 fish assemblage characteristics in order to summarize the entire assemblage at each sample 

142 reach. These characteristics included: species richness; species diversity; the relative abundance 

143 of two species of conservation concern in North American Great Plains streams [brassy minnow 

144 Hybognatus hankinsoni (Sheurer et al., 2003; Falke et al., 2010) and plains topminnow Fundulus 

145 sciadicus (Pasbrig et al., 2012)]; the relative abundance of two introduced predators [largemouth 

146 bass Micropterus salmoides and northern pike Esox lucius (Hrabik et al., 2015)], and the relative 

147 abundance of both introduced predators combined.  The Shannon-Weiner diversity index was 

148 used to calculate species diversity following the formula described by Smith & Wilson (1996). 

149 Relative abundance of individual fishes and groups of fishes was indexed as catch per unit effort 

150 (CPUE), calculated as the total number of individuals collected divided by the total number of 

151 electrofishing hours at each sample reach. 
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152 A two-way analysis of variance (ANOVA) test was used to determine whether fish 

153 assemblage characteristics were different between upstream and downstream reaches, between 

154 road crossing structures, and between the interaction of these two factors. Because count and 

155 CPUE data were not normally distributed, all of the fish assemblage characteristics were 

156 transformed. Species richness was transformed using the square root function, and species 

157 diversity and CPUE metrics were transformed by adding one to each value before computing the 

158 natural log. If the ANOVA tests indicated significant differences existed, then pairwise 

159 comparisons of the metric were compared by either road crossing type, direction, or the 

160 interaction of both using a Tukey’s honest significant difference (HSD) test. All statistical 

161 analyses were conducted in SAS Version 9.3.1 (2011, SAS Institute, Cary, North Carolina) using 

162 the PROC GLM function, and all comparisons were assessed for statistical significance at α = 

163 0.10. 

164  

165 RESULTS

166 Fish species diversity and the relative abundance of plains topminnow were nearly 

167 identical upstream and downstream of all crossing types but patterns among other metrics varied 

168 (Table 1). The relative abundance of brassy minnows was higher upstream of all road crossing 

169 structures compared to downstream, but all other fish assemblage characteristics were higher 

170 downstream than upstream of all road crossings (Table 1). 

171 Species richness, species diversity, and the relative abundance of brassy minnows were 

172 higher around bridges compared to single-barreled culverts and double-barreled culverts, and the 

173 relative abundance of northern pike was highest around double-barreled culverts. No northern 
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174 pike were collected around bridges. All other fish assemblage characteristics were highest 

175 around single-barreled culverts (Table 2). 

176 Only two fish assemblage characteristics appeared to be related to road crossing type or 

177 direction: species richness (F5, 10 = 2.97; p = 0.07; Figure 2) and relative abundance of brassy 

178 minnows (F5, 10 = 2.82; p = 0.08; Figure 3). Further analysis noted variability by road crossing 

179 type (species richness: F2 = 5.77; p = 0.02 and brassy minnow: F2 = 6.56; p = 0.02) but neither 

180 variable differed significantly between upstream and downstream reaches (species richness: F1 = 

181 2.82; p = 0.12 and brassy minnow: F1 = 0.18; p = 0.68 or between the interaction of road crossing 

182 type and stream direction (F2 = 0.25; p = 0.78 and brassy minnow: F2 = 0.39; p = 0.69). 

183 Species richness was significantly higher around bridges than single-barreled culverts (p 

184 < 0.10); no significant differences in species richness were found between bridges and double-

185 barreled culverts or between the two culvert types (p > 0.10; Figure 2). Catch per unit effort of 

186 brassy minnows was significantly different between bridges and both types of culverts (p < 0.10) 

187 but was not significantly different between the two culvert types (p > 0.10; Figure 3). All other 

188 fish assemblage characteristics were not significantly related to road crossing type, direction, or 

189 the interaction of the two variables.

190 DISCUSSION

191 We expected that all of the fish community metrics we examined in this study would 

192 respond significantly and reflect the relatively greater negative direct and indirect impacts of 

193 single- and double-barreled culverts on prairie fish communities and their habitat compared to 

194 bridges within this watershed. However, we found few significant differences related to road 

195 crossing type or by upstream versus downstream at a crossing type. Other studies have found 

196 similar results when studying fish community responses to road crossings in other ecosystems. 
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197 For example, Vander Pluym et al. (2008) found no significant differences in fish population size, 

198 species diversity, and fish index of biotic integrity between crossing types and position (upstream 

199 and downstream) within the Piedmont region of the Cape Fear River basin of North Carolina, 

200 USA. A long-term study of the impacts of bridge and culvert construction on fish communities 

201 throughout Tennessee, USA, also found no statistical differences in fish diversity, abundance, or 

202 richness between streams with bridges, culverts, or no crossings (Wellman et al., 2000). Several 

203 reasons may exist that could explain our study results.

204 First, road crossings on prairie streams may not have much of an effect on fish passage or 

205 fish habitat.  Prairie fishes may still be able to traverse these potential barriers.  Culverts often 

206 can prevent fish from moving upstream, either because of discharges that are too fast or because 

207 of downstream erosion leading to drops that are too high (Warren & Pardew, 1998; Rosenthal, 

208 2007; Bouska et al., 2010). Prenosil et al. (2016) found that some small-bodied prairie fishes 

209 have mean swimming velocities that exceed 40 cm/s, maximum swimming velocities between 50 

210 and 90 cm/s, and jumping heights of 1 – 6 cm. Further, Bouska & Paukert (2010) found that at 

211 least a portion of small-bodied fishes in the Flint Hills of northeastern Kansas, USA, could move 

212 upstream at velocities greater than 80 cm/s. In this study of the South Loup River, mean 

213 velocities within all three road-crossing types varied between 31 (bridges) and 124 (single-

214 barreled culverts) cm/s, and discharge varied between 0.3 (single-barreled culverts) and 1.53 

215 (bridges) m3/s (Grauf 2014). Further, pool depths downstream of crossings varied between 1 

216 (bridges) and 131 cm (single-barreled culverts), and outlet drops varied between 0 (bridges) and 

217 3 cm (single-barreled culverts) (Grauf 2014). Thus, fishes within the South Loup River may still 

218 be able to move up- and downstream of these crossings as flows and waterfalls do not appear to 

219 pose significant impacts around these crossings.
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220 In addition, these road crossings may have less impact on fish habitat in prairie streams 

221 compared to other ecosystems.  Prairie streams are frequently of lower gradient, and stream flow 

222 and velocities are often lower in prairie ecosystems than observed for streams in other 

223 ecosystems (Dodds et al., 2004). The impact of culverts in streams with lower flows may be 

224 comparatively reduced, resulting in limited scouring and subsequent waterfall and pool 

225 formation (Rosenthal, 2007; Bouska & Paukert, 2010). Rosenthal (2007) found that most 

226 culverts within two tributaries of the Yellowstone River, Montana, USA, had similar gradients 

227 and low water velocities compared to more natural areas of these streams with no road crossings. 

228 Further, these culverts had low outlet drops and maintained water for most of the year 

229 (Rosenthal, 2007). Flows in the South Loup River appear to be generally stable both within and 

230 between years (personal observation) and flooding and drying are relatively uncommon.  Thus, 

231 geomorphological changes in the stream channel due to road crossings may be relatively 

232 minimal. 

233 Conversely, bridges could affect prairie fish communities and their habitats as severely as 

234 culverts within this watershed. Previous research in other ecosystems has found that bridges 

235 influence both stream fish communities and stream habitat. Bridge construction has been linked 

236 to decreases in the number and weight of fish (Whitney & Bailey, 1959; King & Ball, 1964; 

237 Peterson & Nyquist, 1972) and fish diversity (Barton 1977). Vander Pluym et al. (2008) found 

238 significantly lower species richness in streams with bridges than streams with arch culverts. 

239 Increased sediment deposition downstream of bridge crossings and local scouring around bridge 

240 pillars installed within the streambed have been documented (Wellman et al., 2000). In spite of 

241 changes in the habitat, some fish communities may recover from bridge construction within one 

242 year (Peterson & Nyquist, 1972; Barton 1977). 
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243 In our study, it appears that fish richness and relative abundance of native fishes tended to 

244 be higher and predator relative abundance generally lower around bridges compared to either 

245 culvert type. Further, bridge crossings had the lowest water velocity, stream discharge, and pool 

246 depth (see more details above). However, we did not compare fish metrics around bridges to 

247 those of more natural areas of the watershed with no road crossings. Future research could focus 

248 more directly on examining the influences that bridges may have on stream fish communities and 

249 habitat.

250 Third, the fish communities upstream and downstream of all crossing types may 

251 represent fishes that are mostly tolerant of disturbances in general. Many prairie fishes are 

252 categorized as generalists (Matthews, 1987; Bramblett & Fausch, 1991; Goldstein & Simon, 

253 1999; Bramblett et al., 2005; Wuellner et al., 2013), and the frequency and duration of natural 

254 disturbances such as drought and anthropogenic disturbances such as intensive agriculture have 

255 favored the prevalence of tolerant taxa in prairie streams (Matthews, 1988; Bramblett et al., 

256 2005). Fish communities, in general, could recover from road crossings over time (Peterson & 

257 Nyquist, 1972; Barton, 1977; Wellman et al., 2000; Vander Pluym et al., 2008), but the 

258 recovered community may represent an alternative stable state (Scheffer et al., 2001; Carpenter, 

259 2002; Vander Pluym et al., 2008). Our study was conducted decades after these road crossings 

260 were constructed. Thus, we are uncertain as to whether the fish communities in this watershed 

261 were altered immediately after and permanently after road crossing installation. Future research 

262 could use either historical records or areas of the watershed without any road crossings in order 

263 to evaluate whether fish communities at these road crossings represent what might be expected 

264 for unimpaired prairie streams or if the current communities represent an alternative stable state.
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265 As surprising as it was to find that few native, small-bodied fish metrics responded as 

266 expected to road crossings, it was equally surprising that predator metrics showed no significant 

267 differences by road crossing type. Previous research has suggested that disturbances such as road 

268 crossings may alter stream habitat in such a way as to support survival and natural recruitment of 

269 predators in prairie streams, either those that have been introduced or ones that have colonized 

270 new locations from higher order streams and rivers (Cross et al., 1986; Matthews, 1988; Dodds 

271 et al., 2004). 

272 In our study, we found both northern pike and largemouth bass to be generally more 

273 abundant downstream of each crossing type.  Further, largemouth bass were more abundant 

274 around single-barreled culverts and northern pike were more abundant around double-barreled 

275 culverts. The lack of significance in these metrics may be related to their variability in 

276 abundance. At some locations, very few to no largemouth bass or northern pike were collected; 

277 at others, several individuals were collected. Thus, the abundance of either predator may not be 

278 related in a statistically significant way to road crossing type or direction.  However, the 

279 biological significance of the presence of each predator has yet to be evaluated in this prairie 

280 stream.  The abundance of both predators has increased across Nebraska within the past 30 years 

281 (Hrabik et al., 2015). Introductions of and increases in northern pike abundance over time have 

282 been linked to reduced abundances of native fishes in the Niobrara River, Nebraska (Spurgeon et 

283 al., 2014), USA, but no data on the impacts of largemouth bass on Nebraska prairie streams 

284 exists to our knowledge.  Future research should examine relationships between the distribution 

285 of both predators and small-bodied native fishes to determine whether these predators are 

286 exacerbating the influences of road crossings on prairie fish communities.

287 CONCLUSIONS
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288 Road crossings represent anthropogenic barriers that potentially impede upstream and 

289 downstream migration of fishes, leading to the possibility of lower genetic diversity, local 

290 extirpations, and reduced species diversity (Winston et al., 1991; O’Hanley & Tomberlin, 2005; 

291 Sheer & Steel, 2006). Many published studies have examined the effects that various types of 

292 road crossing have on individual fish species (e.g., Toepfer et al., 1999; Wall & Berry, 2004) and 

293 fish communities (e.g., Wellman et al., 2000; Vander Pluym et al., 2008; Bouska and Paukert, 

294 2010) and the physical changes that these structures induce on stream habitat (e.g., Barton, 1977; 

295 Wellman et al., 2000; Bouska et al., 2010). To date, the research indicates that at least some 

296 species and some ecosystems may be more sensitive to disturbances from road crossings than 

297 others. Our study may indicate that prairie streams and their fish communities could be 

298 somewhat tolerant and resilient to these types of disturbances, even though the small-bodied 

299 nature of many native species have been thought to put these fish at higher risk of disconnection 

300 within a population (Ficke et al., 2011; Grauf 2104; Prenosil et al., 2016; Lorenzen 2016; 

301 Schumann 2017). If road crossings within prairie streams can maintain similar habitat conditions 

302 (e.g., water depths, velocities, discharge, drop heights, and pool depths) to those of undisturbed 

303 stream segments at some points in the year, connectivity within a population could be 

304 maintained. 

305 Other areas of research involving road crossings have identified how these structures may 

306 be constructed or modified so that most, if not all, fish can pass upstream and downstream freely 

307 (e.g., Bouska & Paukert, 2010; Ficke et al., 2011; Lorenzen 2016; Schumann 2017). We 

308 recommend that information on the swimming performance and jumping abilities of fish and the 

309 influence of road crossing engineering on fish passage and stream habitat be coupled with in-the-

310 field research that examines how individual fishes and fish communities and their habitats are 
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311 affected by road crossings of all types. Such a combination of information will provide more 

312 comprehensive look on how road crossings may be constructed or modified for the specific fish 

313 community and ecosystem in question.
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Figure 1(on next page)

Map of the South LoupRiver, Nebraska, USA with sampling locations and the type of

stream crossingsat each location.

Fish were sampled upstream and downstream of each location for this study.
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Figure 2(on next page)

Comparison of speciesrichness by stream crossing type and direction (upstream versus

downstream).

Error bars represent one standard error. Species richness significantly differed (p < 0.10) by

crossing type. Letters above each crossing type indicate significance of pairwise

comparisons. Crossing types that share the same letter were not significantly different from

one another. Species richness did not differ significantly between direction across all stream

crossing types or by the interaction of stream crossing type and direction.
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Figure 2: Comparison of species richness by stream crossing type and direction (upstream 

versus downstream).  Error bars represent one standard error.  Species richness significantly 

differed (p < 0.10) by crossing type.  Letters above each crossing type indicate significance of 

pairwise comparisons.  Crossing types that share the same letter were not significantly different 

from one another.  Species richness did not differ significantly between direction across all 

stream crossing types or by the interaction of stream crossing type and direction.   
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Figure 3(on next page)

Comparison of catchper unit effort (CPUE) of brassy minnow by stream crossing type

and direction(upstream versus downstream).

Error bars represent one standard error. Brassy minnow CPUE significantly differed (p < 0.10)

by crossing type. Letters above each crossing type indicate significance of pairwise

comparisons. Crossing types that share the same letter were not significantly different from

one another. Brassy minnow CPUE did not differ significantly between direction across all

stream crossing types or by the interaction of stream crossing type and direction.
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Table 1(on next page)

Comparisons ofvarious fish assemblage characteristics upstream and downstream of all

threestream crossing types (bridges, pipe culverts, and double-barreled culverts)

Numbers in parentheses represent one standard error.
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1 Table 1:  

2 Comparisons of various fish assemblage characteristics upstream and downstream of all 

3 three stream crossing types (bridges, pipe culverts, and double-barreled culverts).  Numbers 

4 in parentheses represent one standard error.

Characteristics Upstream Downstream

Species richness 10 (0.68) 12 (0.73)

Species diversity 0.91 (0.13) 0.95 (0.13)

Brassy minnow catch per unit effort 

(number of fish * hour-1)

4.15 (2.53) 3.68 (2.82)

Plains topminnow catch per unit effort 

(number of fish * hour-1)

2.19 (1.01) 2.12 (0.49)

Largemouth bass catch per unit 

effort(number of fish * hour-1)

0.53 (0.22) 1.65 (0.85)

Northern pike catch per unit effort 

(number of fish * hour-1)

0.25 (0.26) 0.83 (0.42)

All predator catch per unit effort 

(number of fish * hour-1)

0.79 (0.39) 2.48 (1.11)

5

6
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Table 2(on next page)

Comparisons ofvarious fish assemblage characteristics between all three stream

crossing types(bridges, pipe culverts, and double-barreled culverts).

Numbers in parentheses represent one standard error.
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1 Table 2:

2 Comparisons of various fish assemblage characteristics between all three stream crossing 

3 types (bridges, pipe culverts, and double-barreled culverts).  Numbers in parentheses 

4 represent one standard error.

Characteristics Bridge

Single-barreled 

culverts

Double-barreled 

culverts

Species richness 13 (0.95) 10 (0.55) 10 (0.75)

Species diversity 1.00 (0.08) 0.82 (0.16) 0.89 (0.16)

Brassy minnow catch per unit 

effort (number of fish * h-1)

11.82 (4.48) 1.81 (1.12) 0.23 (0.23)

Plains topminnow catch per unit 

effort (number of fish * h-1)

1.43 (0.44) 2.67 (0.94) 1.83 (1.07)

Largemouth bass catch per unit 

effort (number of fish * h-1)

0.17 (0.17) 1.77 (0.83) 0.66 (0.40)

Northern pike catch per unit 

effort (number of fish * h-1)

0.00 (0.00) 0.42 (0.24) 1.33 (0.81)

All predator catch per unit effort 

(number of fish * h-1)

0.17 (0.17) 2.19 (1.03) 1.99 (1.21)

5

6
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