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Background. The world9s last uncontacted indigenous societies in Amazonia have only intermittent and

often hostile interactions with the outside world. Knowledge of their locations is essential for urgent

protection efforts, but their extreme isolation, small populations, and semi-nomadic lifestyles make this a

challenging task.

Methods. Remote sensing technology with Landsat satellite sensors is a non-invasive methodology to

track isolated indigenous populations through time. However, the small-scale nature of the deforestation

signature left by uncontacted populations clearing villages and gardens has similarities to those made by

contacted indigenous villages. Both contacted and uncontacted indigenous populations often live in

proximity to one another making it difficult to distinguish the two in satellite imagery. Here we use

machine learning techniques applied to remote sensing data with a training dataset of 500 contacted and

25 uncontacted villages.

Results. Uncontacted villages generally have smaller cleared areas, reside at higher elevations, and are

farther from populated places and satellite-detected lights at night. A random forest algorithm with an

optimally-tuned detection cutoff has a leave-one-out cross-validated sensitivity and specificity of over

98%. A grid search around known uncontacted villages led us to identify 3 previously-unknown villages

using predictions from the random forest model. Our efforts can improve policies toward isolated

populations by providing better near real-time knowledge of their locations and movements in relation to

encroaching loggers, settlers, and other external threats to their survival.
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15 Abstract

16

17 Background. The world9s last uncontacted indigenous societies in Amazonia have only 

18 intermittent and often hostile interactions with the outside world. Knowledge of their locations is 

19 essential for urgent protection efforts, but their extreme isolation, small populations, and semi-

20 nomadic lifestyles make this a challenging task. 

21

22 Methods. Remote sensing technology with Landsat satellite sensors is a non-invasive 

23 methodology to track isolated indigenous populations through time. However, the small-scale 

24 nature of the deforestation signature left by uncontacted populations clearing villages and 

25 gardens has similarities to those made by contacted indigenous villages. Both contacted and 

26 uncontacted indigenous populations often live in proximity to one another making it difficult to 

27 distinguish the two in satellite imagery. Here we use machine learning techniques applied to 

28 remote sensing data with a training dataset of 500 contacted and 25 uncontacted villages. 

29

30 Results. Uncontacted villages generally have smaller cleared areas, reside at higher elevations, 

31 and are farther from populated places and satellite-detected lights at night. A random forest 

32 algorithm with an optimally-tuned detection cutoff has a leave-one-out cross-validated sensitivity 

33 and specificity of over 98%. A grid search around known uncontacted villages led us to identify 

34 3 previously-unknown villages using predictions from the random forest model. Our efforts can 

35 improve policies toward isolated populations by providing better near real-time knowledge of 

36 their locations and movements in relation to encroaching loggers, settlers, and other external 

37 threats to their survival.

38

39
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40 Introduction
41

42 The ongoing colonization of Amazonia has brought waves of epidemics and violence for 

43 centuries with severe consequences for indigenous populations (Bodard, 1974; Hemming, 1978; 

44 Hurtado et al. 2001; Hamilton, Walker & Kesler, 2014). Amazingly, despite all the external 

45 pressures, remote areas in the upper Amazon watershed still support a number of remnant 

46 indigenous societies generally referred to as uncontacted or isolated populations (Vaz, 2001; 

47 Castillo, 2004; Ricardo & Ricardo 2011). Despite these labels, intermittent and often hostile 

48 interactions with the outside world are commonplace (Wallace, 2011). Most governmental and 

49 non-governmental organizations promote no-contact policies for these isolated indigenous 

50 populations with the belief that they are safest if left to themselves (Walker & Hill, 2015). 

51 However, encroachment from loggers, miners, settlers, and others is incessant and uncontacted 

52 societies represent the world9s most critically endangered cultures (Walker, Kesler, & Hill, 

53 2016). There is a need for good information on their locations and movements in hopes of 

54 improving their survival prospects moving forward. 

55

56 Our project is part of a longitudinal remote surveillance program to conduct scientific studies of 

57 indigenous demography and spatial ecology to facilitate informed decisions by policy makers 

58 that will increase protection efforts for isolated indigenous populations (Walker & Hamilton, 

59 2014; Walker, Hamilton & Groth, 2014). Our central goal is to gather as much information on 

60 isolated indigenous populations as possible without attempting any direct contact (Kesler & 

61 Walker, 2015). We maximize the use of available technologies to gather data remotely with no 

62 interference. Satellite imagery offers a safe, low-cost, and noninvasive method for studying 

63 population dynamics and spatial ecology of indigenous populations (Walker, Kesler, & Hill, 

64 2016). Similarly important is the need to understand spatial resource needs of indigenous 

65 societies in a region heavily impacted by deforestation, as well as the potential importance of 

66 connections among subpopulations, known to contribute to population viability (Levins, 1969; 

67 Hanski, 1999). The irreversible threats from large-scale habitat loss via deforestation and 

68 conversion of land to agriculture and pasture paint a bleak future for uncontacted populations 

69 (Fagan & Shoobridge, 2005; Salisbury & Fagan, 2013; Walker, Kesler & Hill, 2016). The hope 

70 is that better data and methods can contribute improvements to this complex issue.

71

72 Applied machine learning is a vital tool for conservation work as a means to both collect and 

73 analyze more data at faster rates (Murray et al. 2018a). The growing use of machine learning 

74 methods to analyze large sets of biological, biophysical, spectral and climatological data has 

75 enabled accurate differentiation of the world9s landscapes (Pettorelli et al. 2014). More germane 

76 to our work are forest classification projects (Hansen et al., 2013, Murray et al. 2018b). The 

77 Global Forest Change dataset was developed by classifying pixels using 15 or more high-

78 resolution global composite images as predictors, each developed from over 500,000 Landsat 

79 images (Hansen et al., 2013). 
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80

81 The random forest algorithm is known to give excellent classification results and relatively quick 

82 processing speed (Du et al., 2015, Pal, 2005, Rodriguez-Galiano et al., 2012). Random forests 

83 (Breiman 2001) are an ensemble supervised learning method that builds multiple decisions trees 

84 used here for the classification of village class (uncontacted versus contacted). Random forests 

85 operate by constructing a multitude of decision trees. Some of the advantages of random forests 

86 are that they are robust to inclusion of features that are irrelevant to classification, and they are 

87 invariant to transformations of feature variables (Belgiu and Dr�guc 2016). For these reasons, the 

88 random forest algorithm is popular for remote sensing data given its accuracy, speed, and ability 

89 to handle high data dimensionality and multicollinearity.

90

91 Materials & Methods

92

93 Data. From previous work we combined the exact locations (centroids) of 25 uncontacted and 

94 500 contacted indigenous (Figure 1, Walker, Kesler & Hill, 2016). More information about our 

95 general project along with high-resolution imagery for uncontacted villages is available at 

96 https://isolatedtribes.missouri.edu. Hansen and colleagues9 (2013) Global Forest Change (GFC) 

97 project provides small-scale deforestation at approximately 30 m resolution from Landsat 

98 sensors extending back to the year 2000. GFC version 1.5 goes up through the year 2017. We 

99 extracted the amount of detected deforestation in 2x2 km squares surrounding each village9s 

100 centroid and took the maximum area cleared in any one particular year from across the 17-year 

101 period. We refer to this measure as cleared area as it includes both the village and associated 

102 gardens but not those of neighboring villages. In addition, our dataset has other features, 

103 including regional population density in the nearest 100 square km (CIESIN, 2005), elevation at 

104 30 m digital resolution from the Space Shuttle Radar Topography Mission (Rabus et al. 2003), 

105 and distance to populated places at 10 m resolution (Balk et al. 2006). We also included a local 

106 lights-at-night measure at 3 km resolution (Pritchard, 2017) using the distance from village 

107 centroid to the nearest detected lights. Finally, distance to rivers of all the different Strahler 

108 numbers using the Global Self-consistent, Hierarchical, High-resolution Geography Database 

109 (Wessel & Smith, 1986), along with the minimum distance to combined rivers of Strahler 

110 numbers 1, 2, and 3, giving a total of 11 features used to train algorithms.

111

112 Models. Machine learning algorithms were performed with the R package caret. In preliminary 

113 testing we showed that an untuned random forest algorithm had a fairly high combination of 

114 sensitivity (true positive rate) and specificity (true negative rate) in the 0.8 to 0.9 range. As 

115 mentioned above, random forest algorithm is an ensemble classifier that produces multiple 

116 decision trees, using a randomly selected subset of training samples and variables. Other 

117 algorithms such as neural networks, extreme gradient boosting tree, and lasso logistic regression 

118 were also relatively-high performing but gave slightly lower values on one or the other metric. 
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119 The target classes in our sample are imbalanced with only 4.8% of villages in the sample being 

120 uncontacted. During model training we noticed that varying the detection cutoff (also known as 

121 the threshold) that classifies villages into one class or the other had large effects on the results 

122 (the default cutoff is 0.5 majority rule). In addition, common loss metrics such as the area under 

123 the ROC curve or the F1 score tended to give either high specificity or sensitivity with our data, 

124 but not both.

125  

126 To address the imbalanced data issue and improve model performance, we used a random forest 

127 algorithm that iteratively tuned the cutoff value such as to simultaneously maximize both 

128 specificity (true negative rate) and sensitivity (true positive rate). In other words, we instituted 

129 cost-sensitive learning into the random forest (Elkan, 2001; Zadrozny et al. 2003; Khoshgoftaar 

130 et al. 2007). The loss metric we used for training is the distance from a perfect model of 

131 sensitivity of 1 and specificity of 1. To evaluate models we used leave-one-out cross-validation 

132 looped over a range of cutoffs from 0.01 to 0.99 in increments of 0.01. Raising the cutoff value 

133 means a higher level of evidence (i.e., more decision trees out of the total 1,000 trees that 

134 comprise the random forest) is needed to assign the positive class (uncontacted) so it decreases 

135 sensitivity and increases specificity. Here a sensitive cutoff of 0.2 yields a minimal distance 

136 metric and the desired combination of high sensitivity and specificity metrics (Figure 2).

137

138 Results

139

140 Our random forest algorithm, with an optimally-tuned cutoff of 0.2, yields a sensitivity of 1.0 

141 and a specificity of 0.98 using leave-one-out cross-validation. This means that all uncontacted 

142 villages are correctly classified and 98% of the contacted villages are correctly classified. 

143 Therefore, our model has a strong ability to automatically distinguish between contacted and 

144 uncontacted villages. In order of descending variable importance, uncontacted villages have 1) 

145 smaller cleared areas, 2) longer distances from lights, 3) higher elevation, 4) longer distances to 

146 populated places, 5) lower regional population density, 6) longer distances from rivers of all 

147 Strahler levels up to and including 3, and 7) shorter distances to rivers of levels 4 and 5. Figure 3 

148 shows density plot comparisons for the top 4 features in terms of variable importance.

149

150 Given the success of our algorithm during cross-validation, we then moved to implement it for 

151 predictive purposes. We did a grid search of all 2x2 km squares within a 100 km radius of the 5 

152 clusters of known uncontacted villages (Figure 1). This approach does produce a high number of 

153 false positives created by natural clearings (e.g., landslides, windfalls, etc.). Fortunately, most 

154 natural clearings can be eliminated by simply removing all clearings that are less than 0.5 ha. 

155 This left us with a sample of 20 clearings. Of these we were able to obtain high resolution 

156 imagery for 8 of these and 3 contained newly-identified villages. One of these in Colombia 

157 appears to be currently inhabited given that it has a single longhouse structure and shows 

158 recently made clearings in Global Land Analysis and Discovery (GLAD, Tyukavina et al. 2016). 
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159 The GLAD alert system processes Landsat imagery as it becomes available to identify tree cover 

160 change in near real-time. This is an invaluable system for monitoring both recent activity by 

161 uncontacted villages, as well as encroaching deforestation from outsiders. 

162

163 The other two newly-discovered sites are historical villages. One is from the uncontacted 

164 Yanomami in northern Brazil inhabited from around year 2000 or earlier and until 2004. The 

165 other is from Pano speakers on the border between Peru and Brazil and was probably inhabited 

166 during a similar time period. The other 5 possible locations identified by the random forest 

167 predictions with high resolution imagery available all appeared to be natural. Therefore, we 

168 estimate our testing precision with this small sample as 0.375 (3 true positives divided by 8 total 

169 cases). 

170

171 Discussion

172

173 We used deforestation data from Landsat satellites to train algorithms to identify the locations of 

174 uncontacted indigenous groups in Amazonia as part of an ongoing effort to better understand 

175 their conservation status and threats. Our results show that uncontacted villages have smaller 

176 cleared areas, reside at higher elevations, and are farther from populated places and satellite-

177 detected lights at night. Our random forest algorithm with an optimally-tuned cutoff has cross-

178 validated performance metrics of over 98%.

179

180 The case of the uncontacted Yanomami (also known as the Moxihatetea) is a good example of 

181 the importance of a near real-time monitoring system. Their previous village was abandoned in 

182 late 2014 and the Brazilian indigenous agency (FUNAI) and the Yanomami indigenous 

183 association (Hutukara) were particularly worried that some disaster had befallen them since 

184 much of the nearby area has seen invasions by gold miners. For a year and a half their 

185 whereabouts were unknown. We began looking for them using Landsat data, but it was the 

186 remote sensing fire alerts (FIRMS, Davies et al. 2009) that first alerted us to their exact location. 

187 We tasked a DigitalGlobe satellite image on May 12, 2016 and were relieved to find out that they 

188 were alive and well and clearing large gardens. The number of sections in their shabono village 

189 structure had increased from 16 to 17. We relayed this information on to FUNAI and Hutukara 

190 who then organized a flyover to officially confirm the location. 

191

192 Remote sensing provides many advantages over flyovers, and we actually do not recommend 

193 them. As we have shown, the information provided solely by remote sensing is sufficient to 

194 identify uncontacted villages. Remote sensing is safe, low-cost, and noninvasive, while flyovers 

195 are not. Population estimates are also crucial information for assessing trends in the demographic 

196 health of isolated populations by measuring areas of fields, villages, and houses in satellite 

197 imagery. Heads-up digitization of satellite imagery provides better population estimates than do 

198 flyovers where most people are not visible because many hide or run away in fear. Remote 
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199 sensing offers the benefits of time-stamped evidence of occupation of areas inhabited by isolated 

200 populations, along with movements through time (Walker, Kesler & Hill, 2016).

201

202 Conclusions

203

204 A dozen easily obtainable remote sensing measures allowed our random forest algorithm to 

205 successfully classify uncontacted versus contacted villages. Extending the algorithm to make 

206 predictions in a grid search greatly accelerates our ability to find and identify the locations of 

207 uncontacted villages. Moving forward we anticipate this method as the primary means by which 

208 to track and locate both these same uncontacted villages as well as potentially new locations of 

209 villages.

210

211 One shortcoming of our classification model when applied to searching through unlabeled 

212 satellite imagery is that it was not designed to classify natural landslides, windfalls, or riverbank 

213 clearings. All of these natural processes also create deforestation signatures that further 

214 complicate our searches. Future work could well include these, but in the meantime we filter our 

215 predictions based on cleared area because natural clearings tend to be less than 0.5 ha while most 

216 uncontacted villages have larger areas than that.

217

218 Our research is vital and timely as isolated groups are among the last remaining small-scale 

219 subsistence populations living in a traditional lifestyle. The enormous and mounting pressure 

220 from external threats create the possibility that isolated populations will disappear in the near 

221 future. Better monitoring and tracking with remote sensing are tools that might provide more 

222 informed conservation decisions concerning increased protection and land rights for the world9s 

223 most critically-endangered human cultures.

224
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Figure 1(on next page)

Figure 1. Map of study locations.

Figure 1. Map of study locations. We included 500 contacted indigenous villages in Brazil and

25 uncontacted indigenous villages in Brazil, Colombia, Ecuador, and Peru.
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Figure 2(on next page)

Figure 2. Model metrics obtained from training the random forest model across a range

of cutoffs from 0.01 to 0.99 in increments of 0.01.

Figure 2. To train the random forest model we used leave-out-out cross-validation across a

range of cutoffs from 0.01 to 0.99 in increments of 0.01. Raising the cutoff value means a

higher level of evidence is needed to assign the positive class (uncontacted), which

decreases sensitivity (true positive rate) and increases specificity (true negative rate). Here

the optimal cutoff (0.2) gives a perfect cross-validated sensitivity of 1.0 and a specificity of

0.98. The distance is the distance from a perfect model which is minimized during training.
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Figure 3(on next page)

Figure 3. Smoothed kernel density plots comparing uncontacted to contacted

indigenous villages on the top 4 distinguishing features in terms of variable importance

in the random forest model.

Figure 3. Smoothed kernel density plots comparing uncontacted to contacted indigenous

villages on the top 4 distinguishing features in terms of variable importance in the random

forest model. (A) Uncontacted villages have smaller cleared areas, (B) farther distances to

satellite-detected lights at night, (C) higher elevation, and (D) farther distances to populated

places, on average. Plots A and C are best visualized on log scales.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27307v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



 contacted  uncontacted 

0.0

0.1

0.2

0.3

0.4

1 10 100
cleared area (ha)

d
e
n
s
it
y

A

0.000

0.005

0.010

0.015

0 50 100 150 200
distance to lights (km)

d
e
n
s
it
y

B

0.0

0.5

1.0

1.5

10 100 1000
elevation (m)

d
e

n
s
it
y

C

0.000

0.002

0.004

0.006

0 100 200 300
distance to town (km)

d
e

n
s
it
y

D

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27307v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018


