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Background. Our publication of the new pathways of topological rank analysis (PoTRA) algorithm
demonstrated a novel approach for using the Google Search PageRank algorithm to analyze gene
expression networks to identify biological pathways significantly disrupted in hepatocellular carcinoma. In
order to apply the PoTRA algorithm to analyze other cancer gene expression data sets, of various sizes
and normal:tumor ratio composition, two important questions must be answered: 1. What is the optimal
normal:tumor sample ratio?; and 2. What is the minimum number of samples that should be used for
PoTRA analysis? To address these questions, the average standard deviation (SD) in PoTRA-ranked mRNA
mediated dysregulated pathways was studied using randomly sampled data sets with various
normal:tumor ratios and sizes drawn from the TCGA Breast Invasive Carcinoma (TCGA-BRCA) project.

Methods. To identify the optimal normal:tumor sample ratios, the SD analysis used random
combinations of 1:N unbalanced normal:tumor data sets: (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). To identify the
minimum sample size, random resampling of normal and tumor samples of various sizes are used: (3 vs
3), (5 vs5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75), (100 vs 100), and (113 vs 113).

Results. This analysis suggests that the 1:1 ratio achieves the lowest average rank variation and that
the minimum sample size of 50 normal and 50 tumor samples reaches a steady state in the average rank
variation.

Conclusion. In conclusion, future applications of the PoTRA algorithm to analyze gene expression data
sets such as TCGA should use balanced data sets as well as a minimum sample size of 50 for both normal
and tumor to ensure the most robust performance.
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Abstract

Background. Our publication of the new pathways of topological rank analysis (PoTRA)
algorithm demonstrated a novel approach for using the Google Search PageRank algorithm to
analyze gene expression networks to identify biological pathways significantly disrupted in
hepatocellular carcinoma. In order to apply the POTRA algorithm to analyze other cancer gene
expression data sets, of various sizes and normal:tumor ratio composition, two important
questions must be answered: 1. What is the optimal normal:tumor sample ratio?; and 2. What is
the minimum number of samples that should be used for POTRA analysis? To address these
questions, the average standard deviation (SD) in POTRA-ranked mRNA mediated dysregulated
pathways was studied using randomly sampled data sets with various normal:tumor ratios and
sizes drawn from the TCGA Breast Invasive Carcinoma (TCGA-BRCA) project.

Methods. To identify the optimal normal:tumor sample ratios, the SD analysis used random
combinations of 1:N unbalanced normal:tumor data sets: (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). To identify
the minimum sample size, random resampling of normal and tumor samples of various sizes are
used: (3 vs 3), (5 vs 5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75), (100 vs 100), and (113 vs
113).

Results. This analysis suggests that the 1:1 ratio achieves the lowest average rank variation and
that the minimum sample size of 50 normal and 50 tumor samples reaches a steady state in the
average rank variation.

Conclusion. In conclusion, future applications of the POTRA algorithm to analyze gene
expression data sets such as TCGA should use balanced data sets as well as a minimum sample
size of 50 for both normal and tumor to ensure the most robust performance.
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Introduction

The Cancer Genomics Cloud (CGC) platform was developed by Seven Bridges and funded by
the National Cancer Institute so that the large scale analyses of open and controlled cancer
genomics data can be executed at little or no-cost (Lau et al., 2017). Multi-omics repositories
such as The Cancer Genome Atlas (TCGA) make available large scale cancer genomics data as
unbalanced sets of normal and tumor (Weinstein et al., 2013). A class imbalance is defined as a
set of data with unequal numbers of samples in each class and thus results in a majority class and
minority class (He and Ma, 2013). In the field of data mining, this imbalance impacts the
accuracy and error rate of classifiers (He and Ma, 2013). Similarly in the field of bioinformatics,
and as seen in this work, a computational tools that are applied to unbalanced data sets will have
more variation in its results. Therefore, different sizes of the balanced data set must be used with
the computational tool to determine its threshold for robustness (i.e., the size of the balanced data
set that results in the least variation in the reported results). There are several methods in the field
of data mining that can be used address the imbalance problem, such as sampling and skew-
insensitivity (He and Ma, 2013).

These sampling methods are standard techniques for improving classification accuracy and
include the random under- and oversampling of the majority and the minority classes by a factor
chosen by the user (Chawla et al, 2008). In the case of bioinformatics, such sampling techniques
could potentially bias the resulting metrics of any computational tool. Thus, a better approach
would be to randomly resample each class in their entirety while making sure that both classes
are equally represented in multiple balanced data sets. Similarly, the skew-insensitivity
techniques that use machine learning algorithms would not be an ideal or cost-effective solution
for balancing large scale and labeled genomic data sets because these algorithms build predictive
models (He and Ma, 2013).

We recently published the Pathways of Topological Rank Analysis (PoOTRA) algorithm (Li, Liu
and Dinu, 2018), which demonstrated a novel approach for using the Google Search PageRank
algorithm (Page et al., 1999) to analyze gene expression networks to identify biological
pathways significantly disrupted in hepatocellular carcinoma. In order to apply the POTRA
algorithm to analyze other cancer gene expression data sets, of various sizes and normal:tumor
ratio composition, two important questions must be answered: 1. What is the optimal
normal:tumor sample ratio?; and 2. What is the minimum number of samples that should be used
for POTRA analysis?

In the present work, to address these questions, the average standard deviation (SD) in POTRA-
ranked mRNA mediated dysregulated pathways was studied using randomly sampled data sets
with various normal:tumor ratios and sizes drawn from the TCGA Breast Invasive Carcinoma
(TCGA-BRCA) project. Sample permutation and random resampling without replacement were
used for the creation of test sets. These test sets were used to determine the robustness threshold
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80 of the PoTRA algorithm (Li, Liu and Dinu, 2018). Determining the robustness threshold for this
81 tool is important because it helps reduce the variation in the aggregated pathways ranks and thus

82 improves POTRA’s accuracy.
83

g4 Materials & Methods

85 The CGC platform (Lau et al., 2017) and Docker (Merkel, 2014) were utilized in the creation of
86 containers for multiple data management and analysis computational tools, leveraging the
87 PoTRA algorithm (Li, Liu and Dinu, 2018). Rabix composer was used to port these tools to the
88 CGC. The HTSeq-FPKM normalized protein-coding mRNA data from the Breast Invasive
89 Cancer TCGA project (TCGA-BRCA) was extracted from the CGC’s TCGA GRCh38
90 repository. The data set consisted of 113 normal and 1102 tumor samples. These data were
91 analyzed in the CGC with the application of R scripts (R Core Team, 2013) for the principal
92 components analysis (PCA), random resampling, POTRA, permutation and standard deviation
93 analyses (Figure 1).
94
95 PCA analysis was performed on the CGC platform with a docker container that included the R
96 libraries ggplot2, ggpubr, ggfortify (Wickham, 2016; ggpubr; Tang, 2018). The aim of the PCA
97 analysis was to explore the distributions of the normal and tumor TCGA-BRCA data sets. The
98 gene expression patterns of normal and tumor samples are often expected to be distinct, in some
99 cases when the normal sample is located in affected non-tumor tissue, the expression patterns
100 can overlap those of the tumor sample. In both cases, POTRA was used to further determine if
101  the normal and tumor tissue samples had detectable differences (P-value < 0.05) in the PageRank
102  detected hub genes of 301 KEGG pathways.
103
104  Additionally, this data set was divided into the following combinations of normal and tumor to
105 further study the robustness of the POTRA pathway analysis algorithm: 1. Sample size analysis:
106 (3 vs3),(5vs5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75) and (100 vs 100), 2. Ratio
107 analysis: (113 vs 113), (113 vs 226), (113 vs 339), (113 vs 565), (113 vs 791), (113 vs 1017)
108 with 200 datasets for each. Random resampling was used to randomly choose samples from the
109 normal and tumor data for each of the 1:1 and the 1:N subsets. All ratios (1:1, 1:2, 1:3, 1:5, 1:7,
110  1:9) of the data were permuted by a factor of 20 using a docker container that included the R
111 libraries dplyr, modelr and purrr (dplyr; modelr; purr) on the CGC. Then the POTRA algorithm
112 was applied to detect significantly dysregulated pathways and to rank these pathways. The
113  standard deviation algorithm was applied to the rank data to determine the minimum sample size
114  and ratio of normal and tumor data that are associated with the most robust performance of the
115 PoTRA algorithm (i.e., lowest average rank variation).
116

117 Results
118
119 TCGA Samples

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27306v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018




120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Among the 17 TCGA cancer types (Table 1) that had HTSeq FPKM normalized data sets and
more than 3 normal samples, the breast invasive cancer project (TCGA-BRCA) had the most
tumor samples (n=1,102).

The top ranked dysregulated pathways (Table 2) that resulted from the POTRA analysis of the
BRCA-TCGA datasets had the following in common, they had the lowest average Fisher’s Exact
(FE) test p-values, average variability and average rank.

Standard Deviation Analyses

Impact of Sample Size on Pathway Rank Variability

Among the sample sizes that were analyzed using a 1:1 normal:tumor ratio, the lowest average
standard deviation for the ranks of the dysregulated pathways detected in the HTSeq normalized
mRNA data were for sample sizes 50, 75, 100 and 113 (Figure 3). The average standard
deviations for these four sample sizes are 35, 35, 36 and 33. The smaller sample sizes have the
highest variability in pathway ranks. Therefore, a minimum of sample size 50 is recommended
for both phenotypes.

Impact of Normal:Tumor Ratio on Pathway Rank Variability

For the 1:N ratio analysis in the non-permuted data (Figure 3), the ratio 1:9 achieves the lowest
average standard deviation. Furthermore, to determine if this conclusion remains true after
permuting the data, the data sets for the 1:N ratios were permuted by a factor of 20, and had their
average standard deviation compared to the non-permuted data (Figure 4). The non-permuted
ratios 1:7 and 1:9 no longer had the lowest average standard deviation. Rather, the permuted
ratio of 1:1 had the lowest average standard deviation.

These results demonstrate that the lowest average standard deviation can be achieved by the ratio
1:1. This means that the ranks of the dysregulated pathways from the POTRA algorithm will be
more consistently reported when a ratio of 1:1 is used to create the balanced data sets that are
then analyzed with POTRA.

The top 10 dysregulated pathways for the TCGA-BRCA project was further explored (Figure 5)
to determine how much the average ranks of these pathways were affected by the increasing ratio
size. Interestingly, these pathways can be grouped by the changes in average rank as the ratio
increases. In the first group the cAMP and PI3K-Akt signaling pathways, the human
papillomavirus infection and the proteoglycans in cancer pathway have similar changes in their
average ranks, with the cAMP signaling pathway being the most affected by the increasing ratio
size. In the second group, the Ras and cGMP-PKG signaling pathways have similar changes in
their average ranks. In the third group, the Rap1 signaling and Regulation of actin cytoskeleton
pathways have very similar changes in their average ranks. In the fourth group, Pathways in
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cancer and MAPK signaling pathways have similar changes in average rank, with the MAPK
signaling pathway being the least affected by the increasing ratio size.

Discussion

Multiple pathway analysis algorithms have been created to analyze and rank pathways associated
with disease (Subramanian et al., 2005; Mi et al., 2013; Li, Liu and Dinu, 2018, Panther). Each
algorithm takes different approaches to determining the robustness and accuracy of their pathway
ranks. They also take into consideration different types of information to help differentiate or
confirm the biological importance of the resulting ranked pathways such as stratifying the
pathways by survival outcomes to using multiple public resources such as GSEA and EnrichNet
to validate the algorithm’s ranked pathways (Verbeke et al., 2015; Liu, Wei and Ruan, 2017).

In an associated work, the ranked dysregulated pathways from a TCGA pan-cancer analysis
using the POTRA algorithm were validated by cross-referencing the highest ranked pathways
against the KEGG database (Linan M, Wang J, Dinu V). In the present work, the variation in the
ranked pathway results is not overlooked but instead studied so that the root cause of the
variation can be found and minimized. Indeed the variation in the ranked pathways is due to the
unbalanced nature of the HTSeq FPKM normalized mRNA data from the TCGA-BRCA project.
The unbalance is due to higher number of tumor vs. normal samples and is common in cancer
research, including the TCGA project, as illustrated in Table 1.

In this work, we investigated the effect of normal:tumor ratio composition and sample size on the
variability of pathway ranks in the PoOTRA analysis tool. We concluded that the 1:1 ratio
achieved the lowest average pathway rank variation by comparing using a range of non-
permuted and permuted normal:tumor data sets, (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). By using different
sample sizes of 1:1 balanced data sets (3, 5, 10, 25, 50, 75, 100 and 113), we concluded that the
minimum size for the sample data set should be 50 normal and 50 tumor samples. This will
ensure the most robust detection of mRNA-mediated dysregulated pathways with the POTRA
program. To further explore the robustness of the POTRA tool, additional analyses could be
performed by clustering the tumor mRNA data by gene expression values to identify potentially
distinct disease subsets or by taking into account additional clinical phenotype data, such as
survival information. Overall, the present work informs users how to minimize the amount of
variation in the pathway rankings of their POTRA results and how to potentially test and improve
the robustness of other biological pathway analysis tools.

The present work also demonstrates how pathway ranks are changed by data set size.
Interestingly, the MAPK pathway had the least variation in the different ratios of normal:tumor,
perhaps because this pathway is very active in breast invasive carcinoma. In contrast, the cAMP
signaling pathway had the greatest variability, perhaps because this pathway is associated with
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200 tumor progression and therefore targeted by chemotherapies that are prescribed to the BRCA
201 patients. In fact, the pathways with greatest variability (cAMP signaling, Human Papillomavirus
202 infection, PI3K-Akt signaling pathway, Proteoglycans in cancer) also had no detectable

203 differences (FE Test P-value > 0.05) in hub genes between normal and control mRNA networks
204 inratios 1:7 and 1:9. This may indicate that POTRA can be used to measure the efficacy of a
205 chemotherapy that target genes in particular pathways.

206

207 Conclusions

208 Using a 1:1 ratio of normal and tumor sample as well as minimum of 50 samples per phenotype
209 reduces the variability in mRNA mediated dysregulated pathways detected by the POTRA

210 algorithm. The use of this ratio and minimum sample size will ensure the most robust

211 performance of the POTRA algorithm.

212
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Figure 1

The CGC workflow for the testing of POTRA's robustness threshold.

This workflow is used for the detection of dysregulated pathways and the standard deviation
analyses. 1) and 3) Both phenotypes are merged and random resampling is used to extract
samples from both phenotypes. 5) The unbalanced data sets with ratios 1:7 and 1:9 are
permuted by a factor of 20. 2),4),6) The PoTRA algorithm detects the dysregulated pathways
and ranks them. 7) The standard deviation of the dysregulated pathway ranks are averaged

and plotted.
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Figure 1 The CGC workflow for the testing of POTRA's robustness threshold.

This workflow is used for the detection of dysregulated pathways and the standard deviation analyses. 1) and 3) Both phenotypes are
merged and random resampling is used to extract samples from both phenotypes. 5) The unbalanced data sets with ratios 1:7 and 1:9 are
permuted by a factor of 20. 2).4).6) The PoTRA algorithm detects the dysregulated pathways and ranks them. 7) The standard deviation of
the dysregulated pathway ranks are averaged and plotted.
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Figure 2

PCA Analysis of the Breast Invasive Cancer (BRCA) Project Data.

Normal and tumor BRCA HTSeq-FPKM normalized protein coding mRNA gene expression

data.
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Figure 2 PCA Analysis of the Breast Invasive Cancer (BRCA) Project Data.
Normal and tumor BRCA HTSeq-FPKM normalized protein coding mRNA gene expression dafa.
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Figure 3

Average Standard Deviation of Non-Permuted Ranks.

Line plot of the average standard deviation by the sample size of each phenotype (normal
and tumor). The average standard deviation decreases as the sample size increases for both
phenotypes. The sample size 50, is the minimum sample size needed per phenotype for the

PoTRA algorithm to yield pathway ranks with the least variation.

Average Standard Deviation of Non-Permuted Ranks

n
o
'

Average Standard Deviation

£
o

0 30 60 90
Sample Size

Figure 3 Average Standard Deviation of Non-Permuted Ranks.
Line plot of the average standard deviation by the sample size of each phenotype (normal and tumor). The average standard deviation decreases as the sample size increases for
both phenotypes. The sample size 50, is the minimum sample size needed per phenotype for the PoTRA algorithm to yield pathway ranks with the least variation.
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Figure 4

Average Standard Deviation of Permuted Ranks.

Line plot of the average standard deviation of permuted pathway ranks for the ratios 1:N
(N=1,2,3,5,7,9) for each phenotype (normal:tumor). The permuted samples achieve the
lowest average standard deviation for the Ratio 1:1. In conclusion, data sets that have a ratio

of 1:1 are associated with the lowest average standard deviation of ranks.
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Figure 4 Average Standard Deviation of Permuted Ranks.

Line plot of the average standard deviation of permuted pathway ranks for the ratios 1:N (N=1.2.3.5.7.9) for each phenotype (normal:tumor). The
permuted samples achieve the lowest average standard deviation for the Ratio 1:1. In conclusion. data sets that have a ratio of 1:1 are associated
with the lowest average standard deviation of ranks.
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Figure 5

Comparison of Permuted Average Ranks for the Top 10 Dysrequlated Pathways.

The line plot compares the permuted and averaged ranks of the top 10 dysregulated
pathways for the TCGA-BRCA project. The averaged ranks increase in value as the number of
samples in the tumor data increases in the unbalanced data set, specifically where ratios 1:N
(N=1,2,3,5,7,9) represents 113 normal samples and 113*N tumor samples in an unbalanced
data set. The cAMP signaling pathway was most affected by the increasing ratio size, while

MAPK signaling pathway was the least affected.
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Figure 5 Comparison of Permuted Average Ranks for the Top 10 Dysregulated Pathways.

The line plot compares the permuted and averaged ranks of the top 10 dysregulated pathways for the TCGA-BRCA project. The averaged ranks
increase in value as the number of samples in the tumor data increases in the unbalanced data set. specifically where ratios 1:N (N=1.2,3.5.7.9)
represents 113 normal samples and 113*N tumor samples in an unbalanced data set. The cAMP signaling pathway was most affected by the
increasing ratio size. while MAPK signaling pathway was the least affected.
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Table 1(on next page)

The sample sizes for each phenotype by primary site.
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Table 1 The sample sizes for each phenotype by primary site.

Primary Site of Cancer Normal Samples  Tumor Samples
Adrenal Gland 3 157
Bile Duct 9 36
Bladder 19 414
Brain b 667
Breast 113 1102
Cervix 3 304
Colorectal 31 644
Esophagzus 11 161
Head and Neck 44 300
Kidney 128 891
Liver 50 in
Lung 108 10335
Pancreas 4 177
Prostate 52 408
Stomach 32 315
Thyroid 58 502
Uterus 33 607

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27306v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



Table 2(on next page)

Top 10 significantly dysregulated pathways.
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Table 2 Top 10 significantly dysregulated pathways.

Average Average
Pathways Fisher's Exact Variability Rank

P-Value
Pathways in cancer 09TE-147 0 1.00
MAPEK signaling pathway 4 32E-102 1] 2.00
PISK-Akt signaling pathway 1.17E-56 0 3.00
Eas signaling pathway 234EA4S 0.90 530
Human papillomavins infection  2.70E-43 1.60 520
Fapl signaling pathway 1.37E-38 237 7.00
cAMP signaling pathway 5.17E-34 543 950
cGMP-PEG signaling pathway 1.16E-28 462 11.30
Proteoglycans in cancer 219E-29 620 13.00
Eegulation of actin cytoskeleton  1.36E-27 7152 14.10
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