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Background. Our publication of the new pathways of topological rank analysis (PoTRA) algorithm

demonstrated a novel approach for using the Google Search PageRank algorithm to analyze gene

expression networks to identify biological pathways significantly disrupted in hepatocellular carcinoma. In

order to apply the PoTRA algorithm to analyze other cancer gene expression data sets, of various sizes

and normal:tumor ratio composition, two important questions must be answered: 1. What is the optimal

normal:tumor sample ratio?; and 2. What is the minimum number of samples that should be used for

PoTRA analysis? To address these questions, the average standard deviation (SD) in PoTRA-ranked mRNA

mediated dysregulated pathways was studied using randomly sampled data sets with various

normal:tumor ratios and sizes drawn from the TCGA Breast Invasive Carcinoma (TCGA-BRCA) project.

Methods. To identify the optimal normal:tumor sample ratios, the SD analysis used random

combinations of 1:N unbalanced normal:tumor data sets: (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). To identify the

minimum sample size, random resampling of normal and tumor samples of various sizes are used: (3 vs

3), (5 vs 5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75), (100 vs 100), and (113 vs 113).

Results. This analysis suggests that the 1:1 ratio achieves the lowest average rank variation and that

the minimum sample size of 50 normal and 50 tumor samples reaches a steady state in the average rank

variation.

Conclusion. In conclusion, future applications of the PoTRA algorithm to analyze gene expression data

sets such as TCGA should use balanced data sets as well as a minimum sample size of 50 for both normal

and tumor to ensure the most robust performance.
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15 Abstract
16 Background. Our publication of the new pathways of topological rank analysis (PoTRA) 

17 algorithm demonstrated a novel approach for using the Google Search PageRank algorithm to 

18 analyze gene expression networks to identify biological pathways significantly disrupted in 

19 hepatocellular carcinoma.  In order to apply the PoTRA algorithm to analyze other cancer gene 

20 expression data sets, of various sizes and normal:tumor ratio composition, two important 

21 questions must be answered: 1. What is the optimal normal:tumor sample ratio?; and 2. What is 

22 the minimum number of samples that should be used for PoTRA analysis? To address these 

23 questions, the average standard deviation (SD) in PoTRA-ranked mRNA mediated dysregulated 

24 pathways was studied using randomly sampled data sets with various normal:tumor ratios and 

25 sizes drawn from the TCGA Breast Invasive Carcinoma (TCGA-BRCA) project.

26 Methods. To identify the optimal normal:tumor sample ratios, the SD analysis used random 

27 combinations of 1:N unbalanced normal:tumor data sets: (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). To identify 

28 the minimum sample size, random resampling of normal and tumor samples of various sizes are 

29 used: (3 vs 3), (5 vs 5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75), (100 vs 100), and (113 vs 

30 113). 

31 Results. This analysis suggests that the 1:1 ratio achieves the lowest average rank variation and 

32 that the minimum sample size of 50 normal and 50 tumor samples reaches a steady state in the 

33 average rank variation.

34 Conclusion. In conclusion, future applications of the PoTRA algorithm to analyze gene 

35 expression data sets such as TCGA should use balanced data sets as well as a minimum sample 

36 size of 50 for both normal and tumor to ensure the most robust performance.

37

38

39
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40 Introduction
41 The Cancer Genomics Cloud (CGC) platform was developed by Seven Bridges and funded by 

42 the National Cancer Institute so that the large scale analyses of open and controlled cancer 

43 genomics data can be executed at little or no-cost (Lau et al., 2017). Multi-omics repositories 

44 such as The Cancer Genome Atlas (TCGA) make available large scale cancer genomics data as 

45 unbalanced sets of normal and tumor (Weinstein et al., 2013). A class imbalance is defined as a 

46 set of data with unequal numbers of samples in each class and thus results in a majority class and 

47 minority class (He and Ma, 2013). In the field of data mining, this imbalance impacts the 

48 accuracy and error rate of classifiers (He and Ma, 2013). Similarly in the field of bioinformatics, 

49 and as seen in this work, a computational tools that are applied to unbalanced data sets will have 

50 more variation in its results. Therefore, different sizes of the balanced data set must be used with 

51 the computational tool to determine its threshold for robustness (i.e., the size of the balanced data 

52 set that results in the least variation in the reported results). There are several methods in the field 

53 of data mining that can be used address the imbalance problem, such as sampling and skew-

54 insensitivity (He and Ma, 2013). 

55

56 These sampling methods are standard techniques for improving classification accuracy and 

57 include the random under- and oversampling of the majority and the minority classes by a factor 

58 chosen by the user (Chawla et al, 2008). In the case of bioinformatics, such sampling techniques 

59 could potentially bias the resulting metrics of any computational tool. Thus, a better approach 

60 would be to randomly resample each class in their entirety while making sure that both classes 

61 are equally represented in multiple balanced data sets. Similarly, the skew-insensitivity 

62 techniques that use machine learning algorithms would not be an ideal or cost-effective solution 

63 for balancing large scale and labeled genomic data sets because these algorithms build predictive 

64 models (He and Ma, 2013).  

65

66 We recently published the Pathways of Topological Rank Analysis (PoTRA) algorithm (Li, Liu 

67 and Dinu, 2018), which demonstrated a novel approach for using the Google Search PageRank 

68 algorithm (Page et al., 1999) to analyze gene expression networks to identify biological 

69 pathways significantly disrupted in hepatocellular carcinoma.  In order to apply the PoTRA 

70 algorithm to analyze other cancer gene expression data sets, of various sizes and normal:tumor 

71 ratio composition, two important questions must be answered: 1. What is the optimal 

72 normal:tumor sample ratio?; and 2. What is the minimum number of samples that should be used 

73 for PoTRA analysis? 

74

75 In the present work, to address these questions, the average standard deviation (SD) in PoTRA-

76 ranked mRNA mediated dysregulated pathways was studied using randomly sampled data sets 

77 with various normal:tumor ratios and sizes drawn from the TCGA Breast Invasive Carcinoma 

78 (TCGA-BRCA) project. Sample permutation and random resampling without replacement were 

79 used for the creation of test sets. These test sets were used to determine the robustness threshold 
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80 of the PoTRA algorithm (Li, Liu and Dinu, 2018). Determining the robustness threshold for this 

81 tool is important because it helps reduce the variation in the aggregated pathways ranks and thus 

82 improves PoTRA’s accuracy.

83

84 Materials & Methods
85 The CGC platform (Lau et al., 2017) and Docker (Merkel, 2014) were utilized in the creation of 

86 containers for multiple data management and analysis computational tools, leveraging the 

87 PoTRA algorithm (Li, Liu and Dinu, 2018). Rabix composer was used to port these tools to the 

88 CGC. The HTSeq-FPKM normalized protein-coding mRNA data from the Breast Invasive 

89 Cancer TCGA project (TCGA-BRCA) was extracted from the CGC’s TCGA GRCh38 

90 repository. The data set consisted of 113 normal and 1102 tumor samples. These data were 

91 analyzed in the CGC with the application of R scripts (R Core Team, 2013) for the principal 

92 components analysis (PCA), random resampling, PoTRA, permutation and standard deviation 

93 analyses (Figure 1). 

94

95 PCA analysis was performed on the CGC platform with a docker container that included the R 

96 libraries ggplot2, ggpubr, ggfortify (Wickham, 2016; ggpubr; Tang, 2018). The aim of the PCA 

97 analysis was to explore the distributions of the normal and tumor TCGA-BRCA data sets. The 

98 gene expression patterns of normal and tumor samples are often expected to be distinct, in some 

99 cases when the normal sample is located in affected non-tumor tissue, the expression patterns 

100 can overlap those of the tumor sample. In both cases, PoTRA was used to further determine if 

101 the normal and tumor tissue samples had detectable differences (P-value < 0.05) in the PageRank 

102 detected hub genes of 301 KEGG pathways.  

103

104 Additionally, this data set was divided into the following combinations of normal and tumor to 

105 further study the robustness of the PoTRA pathway analysis algorithm: 1. Sample size analysis: 

106 (3 vs 3), (5 vs 5), (10 vs 10), (25 vs 25), (50 vs 50), (75 vs 75) and (100 vs 100), 2. Ratio 

107 analysis: (113 vs 113), (113 vs 226), (113 vs 339), (113 vs 565), (113 vs 791), (113 vs 1017) 

108 with 200 datasets for each. Random resampling was used to randomly choose samples from the 

109 normal and tumor data for each of the 1:1 and the 1:N subsets. All ratios (1:1, 1:2, 1:3, 1:5, 1:7, 

110 1:9) of the data were permuted by a factor of 20 using a docker container that included the R 

111 libraries dplyr, modelr and purrr (dplyr; modelr; purr) on the CGC. Then the PoTRA algorithm 

112 was applied to detect significantly dysregulated pathways and to rank these pathways. The 

113 standard deviation algorithm was applied to the rank data to determine the minimum sample size 

114 and ratio of normal and tumor data that are associated with the most robust performance of the 

115 PoTRA algorithm (i.e., lowest average rank variation).

116

117 Results
118

119 TCGA Samples
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120 Among the 17 TCGA cancer types (Table 1) that had HTSeq FPKM normalized data sets and 

121 more than 3 normal samples, the breast invasive cancer project (TCGA-BRCA) had the most 

122 tumor samples (n=1,102).  

123

124 The top ranked dysregulated pathways (Table 2) that resulted from the PoTRA analysis of the 

125 BRCA-TCGA datasets had the following in common, they had the lowest average Fisher’s Exact 

126 (FE) test p-values, average variability and average rank.

127

128 Standard Deviation Analyses

129

130 Impact of Sample Size on Pathway Rank Variability

131 Among the sample sizes that were analyzed using a 1:1 normal:tumor ratio, the lowest average 

132 standard deviation for the ranks of the dysregulated pathways detected in the HTSeq normalized 

133 mRNA data were for sample sizes 50, 75, 100 and 113 (Figure 3). The average standard 

134 deviations for these four sample sizes are 35, 35, 36 and 33. The smaller sample sizes have the 

135 highest variability in pathway ranks. Therefore, a minimum of sample size 50 is recommended 

136 for both phenotypes.

137

138 Impact of Normal:Tumor Ratio on Pathway Rank Variability

139 For the 1:N ratio analysis in the non-permuted data (Figure 3), the ratio 1:9 achieves the lowest 

140 average standard deviation. Furthermore, to determine if this conclusion remains true after 

141 permuting the data, the data sets for the 1:N ratios were permuted by a factor of 20, and had their 

142 average standard deviation compared to the non-permuted data (Figure 4). The non-permuted 

143 ratios 1:7 and 1:9 no longer had the lowest average standard deviation. Rather, the permuted 

144 ratio of 1:1 had the lowest average standard deviation.

145

146 These results demonstrate that the lowest average standard deviation can be achieved by the ratio 

147 1:1. This means that the ranks of the dysregulated pathways from the PoTRA algorithm will be 

148 more consistently reported when a ratio of 1:1 is used to create the balanced data sets that are 

149 then analyzed with PoTRA.

150

151 The top 10 dysregulated pathways for the TCGA-BRCA project was further explored (Figure 5) 

152 to determine how much the average ranks of these pathways were affected by the increasing ratio 

153 size. Interestingly, these pathways can be grouped by the changes in average rank as the ratio 

154 increases. In the first group the cAMP and PI3K-Akt signaling pathways, the human 

155 papillomavirus infection and the proteoglycans in cancer pathway have similar changes in their 

156 average ranks, with the cAMP signaling pathway being the most affected by the increasing ratio 

157 size. In the second group, the Ras and cGMP-PKG signaling pathways have similar changes in 

158 their average ranks. In the third group, the Rap1 signaling and Regulation of actin cytoskeleton 

159 pathways have very similar changes in their average ranks. In the fourth group, Pathways in 
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160 cancer and MAPK signaling pathways have similar changes in average rank, with the MAPK 

161 signaling pathway being the least affected by the increasing ratio size.

162

163

164 Discussion
165 Multiple pathway analysis algorithms have been created to analyze and rank pathways associated 

166 with disease (Subramanian et al., 2005; Mi et al., 2013; Li, Liu and Dinu, 2018, Panther). Each 

167 algorithm takes different approaches to determining the robustness and accuracy of their pathway 

168 ranks. They also take into consideration different types of information to help differentiate or 

169 confirm the biological importance of the resulting ranked pathways such as stratifying the 

170 pathways by survival outcomes to using multiple public resources such as GSEA and EnrichNet 

171 to validate the algorithm’s ranked pathways (Verbeke et al., 2015; Liu, Wei and Ruan, 2017). 

172

173 In an associated work, the ranked dysregulated pathways from a TCGA pan-cancer analysis 

174 using the PoTRA algorithm were validated by cross-referencing the highest ranked pathways 

175 against the KEGG database (Linan M, Wang J, Dinu V). In the present work, the variation in the 

176 ranked pathway results is not overlooked but instead studied so that the root cause of the 

177 variation can be found and minimized. Indeed the variation in the ranked pathways is due to the 

178 unbalanced nature of the HTSeq FPKM normalized mRNA data from the TCGA-BRCA project. 

179 The unbalance is due to higher number of tumor vs. normal samples and is common in cancer 

180 research, including the TCGA project, as illustrated in Table 1.

181

182 In this work, we investigated the effect of normal:tumor ratio composition and sample size on the 

183 variability of pathway ranks in the PoTRA analysis tool. We concluded that the 1:1 ratio 

184 achieved the lowest average pathway rank variation by comparing using a range of non-

185 permuted and permuted normal:tumor data sets, (1:1, 1:2, 1:3, 1:5, 1:7, 1:9). By using different 

186 sample sizes of 1:1 balanced data sets (3, 5, 10, 25, 50, 75, 100 and 113), we concluded that the 

187 minimum size for the sample data set should be 50 normal and 50 tumor samples. This will 

188 ensure the most robust detection of mRNA-mediated dysregulated pathways with the PoTRA 

189 program. To further explore the robustness of the PoTRA tool, additional analyses could be 

190 performed by clustering the tumor mRNA data by gene expression values to identify potentially 

191 distinct disease subsets or by taking into account additional clinical phenotype data, such as 

192 survival information. Overall, the present work informs users how to minimize the amount of 

193 variation in the pathway rankings of their PoTRA results and how to potentially test and improve 

194 the robustness of other biological pathway analysis tools.

195

196 The present work also demonstrates how pathway ranks are changed by data set size. 

197 Interestingly, the MAPK pathway had the least variation in the different ratios of normal:tumor, 

198 perhaps because this pathway is very active in breast invasive carcinoma. In contrast, the cAMP 

199 signaling pathway had the greatest variability, perhaps because this pathway is associated with 
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200 tumor progression and therefore targeted by chemotherapies that are prescribed to the BRCA 

201 patients. In fact, the pathways with greatest variability (cAMP signaling, Human Papillomavirus 

202 infection, PI3K-Akt signaling pathway, Proteoglycans in cancer) also had no detectable 

203 differences (FE Test P-value > 0.05) in hub genes between normal and control mRNA networks 

204 in ratios 1:7 and 1:9. This may indicate that PoTRA can be used to measure the efficacy of a 

205 chemotherapy that target genes in particular pathways.

206

207 Conclusions
208 Using a 1:1 ratio of normal and tumor sample as well as minimum of 50 samples per phenotype 

209 reduces the variability in mRNA mediated dysregulated pathways detected by the PoTRA 

210 algorithm. The use of this ratio and minimum sample size will ensure the most robust 

211 performance of the PoTRA algorithm.

212

213 Acknowledgements
214 We would like to thank the Cancer Genomics Cloud technical support team.

215

216 References
217 Chawla NV., Cieslak DA., Hall LO., Joshi A. 2008. Automatically countering imbalance and its 

218 empirical relationship to cost. Data Mining and Knowledge Discovery 17(2):225-252. DOI: 

219 10.1007/s10618-008-0087-0.

220 dplyr: A Grammar of Data Manipulation 2018. Available at https://CRAN.R-

221 project.org/package=dplyr (accessed September 21, 2018).

222 ggpubr: “ggplot2” Based Publication Ready Plots 2018. Available at https://CRAN.R-

223 project.org/package=ggpubr (accessed September 21, 2018).

224 He H., Ma Y. (eds.) 2013. Imbalanced Datasets: From Sampling To Classifiers. In: Imbalanced 

225 Learning: Foundations, Algorithms, and Applications. John Wiley & Sons, Inc, 43–59.

226 Lau JW., Lehnert E., Sethi A., Malhotra R., Kaushik G., Onder Z., Groves-Kirkby N., 

227 Mihajlovic A., DiGiovanna J., Srdic M., Bajcic D., Radenkovic J., Mladenovic V., 

228 Krstanovic D., Arsenijevic V., Klisic D., Mitrovic M., Bogicevic I., Kural D., Davis-

229 Dusenbery B., Seven Bridges CGC Team 2017. The Cancer Genomics Cloud: 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27306v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



230 Collaborative, Reproducible, and Democratized-A New Paradigm in Large-Scale 

231 Computational Research. Cancer Research 77:e3–e6. DOI: 10.1158/0008-5472.CAN-17-

232 0387.

233 Li C., Liu L., Dinu V. 2018. Pathways of topological rank analysis (PoTRA): a novel method to 

234 detect pathways involved in hepatocellular carcinoma. PeerJ 6. DOI: 10.7717/peerj.4571.

235 Liu L., Wei J., Ruan J. 2017. Pathway Enrichment Analysis with Networks. Genes 8:246. DOI: 

236 doi: 10.3390/genes8100246.

237 Merkel D. 2014. Docker: lightweight Linux containers for consistent development and 

238 deployment. Linux Journal.

239 Mi H., Muruganujan A., Thomas PD. 2013. PANTHER in 2013: modeling the evolution of gene 

240 function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids 

241 Research 41:D377–D386. DOI: 10.1093/nar/gks1118.

242 modelr: Modelling Functions that Work with the Pipe. 2018. Available at https://CRAN.R-

243 project.org/package=modelr (accessed September 22, 2018)

244 Page L., Brin S., Motwani R., Winograd T. 1999. The PageRank citation ranking: bringing order 

245 to the web.

246 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function 2018. Available 

247 at https://genome.cshlp.org/content/13/9/2129.full (accessed September 23, 2018).

248 purrr: Functional Programming Tools 2018. Available at https://CRAN.R-

249 project.org/package=purrr (accessed September 23, 2018). 

250 R Core Team 2013. R: A language and environment for statistical computing. R Foundation for 

251 Statistical Computing 3:201.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27306v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



252 Subramanian A., Tamayo P., Mootha VK., Mukherjee S., Ebert BL., Gillette MA., Paulovich A., 

253 Pomeroy SL., Golub TR., Lander ES., Mesirov JP. 2005. Gene set enrichment analysis: A 

254 knowledge-based approach for interpreting genome-wide expression profiles. Proceedings 

255 of the National Academy of Sciences 102:15545–15550. DOI: 10.1073/pnas.0506580102.

256 Tang Y., Horikoshi M., Wenxuan L. 2016. ggfortify: Unified Interface to Visualize Statistical 

257 Result of Popular R Packages. The R Journal 8.2:478–489.

258 Verbeke L., Van den Eynden J., Fierro A., Demeester P., Fostier J. 2015. Pathway Relevance 

259 Ranking for Tumor Samples through Network-Based Data Integration. PLOS ONE 10. DOI: 

260 https://doi.org/10.1371/journal.pone.0133503.

261 Weinstein JN., Collisson EA., Mills GB., Shaw KM., Ozenberger BA., Ellrott K., Shmulevich I., 

262 Sander C., Stuart JM. 2013. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nature 

263 genetics 45:1113–1120. DOI: 10.1038/ng.2764.

264 Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

265

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27306v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018



Figure 1

The CGC workflow for the testing of PoTRA's robustness threshold.

This workflow is used for the detection of dysregulated pathways and the standard deviation

analyses. 1) and 3) Both phenotypes are merged and random resampling is used to extract

samples from both phenotypes. 5) The unbalanced data sets with ratios 1:7 and 1:9 are

permuted by a factor of 20. 2),4),6) The PoTRA algorithm detects the dysregulated pathways

and ranks them. 7) The standard deviation of the dysregulated pathway ranks are averaged

and plotted.
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Figure 2

PCA Analysis of the Breast Invasive Cancer (BRCA) Project Data.

Normal and tumor BRCA HTSeq-FPKM normalized protein coding mRNA gene expression

data.
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Figure 3

Average Standard Deviation of Non-Permuted Ranks.

Line plot of the average standard deviation by the sample size of each phenotype (normal

and tumor). The average standard deviation decreases as the sample size increases for both

phenotypes. The sample size 50, is the minimum sample size needed per phenotype for the

PoTRA algorithm to yield pathway ranks with the least variation.
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Figure 4

Average Standard Deviation of Permuted Ranks.

Line plot of the average standard deviation of permuted pathway ranks for the ratios 1:N

(N=1,2,3,5,7,9) for each phenotype (normal:tumor). The permuted samples achieve the

lowest average standard deviation for the Ratio 1:1. In conclusion, data sets that have a ratio

of 1:1 are associated with the lowest average standard deviation of ranks.
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Figure 5

Comparison of Permuted Average Ranks for the Top 10 Dysregulated Pathways.

The line plot compares the permuted and averaged ranks of the top 10 dysregulated

pathways for the TCGA-BRCA project. The averaged ranks increase in value as the number of

samples in the tumor data increases in the unbalanced data set, specifically where ratios 1:N

(N=1,2,3,5,7,9) represents 113 normal samples and 113*N tumor samples in an unbalanced

data set. The cAMP signaling pathway was most affected by the increasing ratio size, while

MAPK signaling pathway was the least affected.
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Table 1(on next page)

The sample sizes for each phenotype by primary site.
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Table 2(on next page)

Top 10 significantly dysregulated pathways.
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