

A peer-reviewed version of this preprint was published in PeerJ
on 15 April 2019.

View the peer-reviewed version (peerj.com/articles/cs-187), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Niedermayr R, Röhm T, Wagner S. 2019. Too trivial to test? An inverse
view on defect prediction to identify methods with low fault risk. PeerJ
Computer Science 5:e187 https://doi.org/10.7717/peerj-cs.187

https://doi.org/10.7717/peerj-cs.187
https://doi.org/10.7717/peerj-cs.187

Too trivial to test? An inverse view on defect prediction to

identify methods with low fault risk

Rainer Niedermayr Corresp., 1, 2 , Tobias Röhm 1 , Stefan Wagner 2

1 CQSE GmbH, München, Germany

2 Institute of Software Technology, University of Stuttgart, Stuttgart, Germany

Corresponding Author: Rainer Niedermayr

Email address: niedermayr@cqse.eu

Background. Test resources are usually limited and therefore it is often not possible to completely test

an application before a release. To cope with the problem of scarce resources, development teams can

apply defect prediction to identify fault-prone code regions. However, defect prediction tends to low

precision in cross-project prediction scenarios.

Aims. We take an inverse view on defect prediction and aim to identify methods that can be deferred

when testing because they contain hardly any faults due to their code being "trivial". We expect that

characteristics of such methods might be project-independent, so that our approach could improve cross-

project predictions.

Method. We compute code metrics and apply association rule mining to create rules for identifying

methods with low fault risk. We conduct an empirical study to assess our approach with six Java open-

source projects containing precise fault data at the method level.

Results. Our results show that inverse defect prediction can identify approx. 32-44% of the methods of a

project to have a low fault risk; on average, they are about six times less likely to contain a fault than

other methods. In cross-project predictions with larger, more diversified training sets, identified methods

are even eleven times less likely to contain a fault.

Conclusions. Inverse defect prediction supports the efficient allocation of test resources by identifying

methods that can be treated with less priority in testing activities and is well applicable in cross-project

prediction scenarios.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Too Trivial To Test?1

An Inverse View on Defect Prediction to2

Identify Methods with Low Fault Risk3

Rainer Niedermayr1, Tobias Röhm2, and Stefan Wagner3
4

1,2CQSE GmbH, Garching b. München, Germany5

1,3University of Stuttgart, Stuttgart, Germany6

Corresponding author:7

Rainer Niedermayr1
8

Email address: niedermayr@cqse.eu9

ABSTRACT10

Background. Test resources are usually limited and therefore it is often not possible to completely test

an application before a release. To cope with the problem of scarce resources, development teams

can apply defect prediction to identify fault-prone code regions. However, defect prediction tends to low

precision in cross-project prediction scenarios. Aims. We take an inverse view on defect prediction and

aim to identify methods that can be deferred when testing because they contain hardly any faults due to

their code being “trivial”. We expect that characteristics of such methods might be project-independent,

so that our approach could improve cross-project predictions. Method. We compute code metrics and

apply association rule mining to create rules for identifying methods with low fault risk. We conduct an

empirical study to assess our approach with six Java open-source projects containing precise fault data at

the method level. Results. Our results show that inverse defect prediction can identify approx. 32–44%

of the methods of a project to have a low fault risk; on average, they are about six times less likely to

contain a fault than other methods. In cross-project predictions with larger, more diversified training sets,

identified methods are even eleven times less likely to contain a fault. Conclusions. Inverse defect

prediction supports the efficient allocation of test resources by identifying methods that can be treated

with less priority in testing activities and is well applicable in cross-project prediction scenarios.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 INTRODUCTION26

In a perfect world, it would be possible to completely test every new version of a software application27

before it was deployed into production. In practice, however, software development teams often face a28

problem of scarce test resources. Developers are busy implementing features and bug fixes, and may lack29

time to develop enough automated unit tests to comprehensively test new code [Ostrand et al. (2005);30

Menzies and Di Stefano (2004)]. Furthermore, testing is costly and, depending on the criticality of a31

system, it may not be cost-effective to expend equal test effort to all components [Zhang et al. (2007)].32

Hence, development teams need to prioritize and limit their testing scope by restricting the code regions33

to be tested [Menzies et al. (2003); Bertolino (2007)]. To cope with the problem of scarce test resources,34

development teams aim to test code regions that have the best cost-benefit ratio regarding fault detection.35

To support development teams in this activity, defect prediction has been developed and studied extensively36

in the last decades [Hall et al. (2012); D’Ambros et al. (2012); Catal (2011)]. Defect prediction identifies37

code regions that are likely to contain a fault and should therefore be tested [Menzies et al. (2007);38

Weyuker and Ostrand (2008)].39

This paper suggests, implements, and evaluates another view on defect prediction: inverse defect40

prediction (IDP). The idea behind IDP is to identify code artifacts (e.g., methods) that are so trivial that41

they contain hardly any faults and thus can be deferred or ignored in testing. Like traditional defect42

prediction, IDP also uses a set of metrics that characterize artifacts, applies transformations to pre-process43

metrics, and uses a machine-learning classifier to build a prediction model. The difference rather lies in44

the predicted classes. While defect prediction classifies an artifact either as buggy or non-buggy, IDP45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

identifies methods that exhibit a low fault risk (LFR) with high certainty and does not make an assumption46

about the remaining methods, for which the fault risk is at least medium or cannot be reliably determined.47

As a consequence, the objective of the prediction also differs. Defect prediction aims to achieve a high48

recall, such that as many faults as possible can be detected, and a high precision, such that only few false49

positives occur. In contrast, IDP aims to achieve high precision to ensure that low-fault-risk methods50

contain indeed hardly any faults, but it does not necessarily seek to predict all non-faulty methods. Still,51

IDP needs to achieve a certain recall such that a reasonable reduction potential arises when treating LFR52

methods with a lower priority in QA activities.53

Research goal: We want to study whether IDP can reliably identify code regions that exhibit only a54

low fault risk, whether ignoring such code regions—as done silently in defect prediction—is a good idea,55

and whether IDP can be used in cross-project predictions.56

To implement IDP, we calculated code metrics for each method of a code base and trained a classifier57

for methods with low fault risk using association rule mining. To evaluate IDP, we performed an empirical58

study with the Defects4J dataset [Just et al. (2014)] consisting of real faults from six open-source projects.59

We applied static code analysis and classifier learning on these code bases and evaluated the results. We60

hypothesize that IDP can be used to pragmatically address the problem of scarce test resources. More61

specifically, we hypothesize that a generalized IDP model can be used to identify code regions that can be62

deferred when writing automated tests if none yet exist, as is the situation for many legacy code bases.63

Contributions: 1) The idea of an inverse view on defect prediction: While defect prediction has64

been studied extensively in the last decades, it has always been employed to identify code regions with65

high fault risk. To the best of our knowledge, the present paper is the first to study the identification of66

code regions with low fault risk explicitly. 2) An empirical study about the performance of IDP on real67

open-source code bases. 3) An extension to the Defects4J dataset [Just et al. (2014)]: To improve data68

quality and enable further research—reproduction in particular—we provide code metrics for all methods69

in the code bases and an indication whether they were changed in a bug-fix patch, a list of methods that70

changed in bug fixes only to preserve API compatibility, and association rules to identify low-fault-risk71

methods.72

The remainder of this paper is organized as follows. Section 2 provides background information about73

association rule mining. Section 3 discusses related work. Section 4 describes the IDP approach, i.e., the74

computation of the metrics for each method, the data pre-processing, and the association rule mining to75

identify methods with low fault risk. Afterwards, Section 5 summarizes the design and results of the IDP76

study with the Defects4J dataset. Then, Section 6 discusses the study’s results, implications, and threats77

to validity. Finally, Section 7 summarizes the main findings and sketches future work.78

2 ASSOCIATION RULE MINING79

Association rule mining is a technique for identifying relations between variables in a large dataset80

and was introduced by Agrawal et al. in 1993 [Agrawal et al. (1993)]. A dataset contains transactions81

consisting of a set of items that are binary attributes. An association rule represents a logical implication82

of the form { antecedent } → { consequent } and expresses that the consequent is likely to apply if the83

antecedent applies. Antecedent and consequent both consist of a set of items and are disjoint. The support84

of a rule expresses the proportion of the transactions that contain both antecedent and consequent out of85

all transactions. It is related to the significance of the itemset [Simon et al. (2011)]. The confidence of a86

rule expresses the proportion of the transactions that contain both antecedent and consequent out of all87

transactions that contain the antecedent. It can be considered as the precision [Simon et al. (2011)]. A88

rule is redundant if a more general rule with the same or a higher confidence value exists [Bayardo et al.89

(1999)].90

Association Rule Mining has been successfully applied in defect prediction studies [Song et al. (2006);91

Czibula et al. (2014); Ma et al. (2010); Zafar et al. (2012)]. A major advantage of association rule mining92

is the natural comprehensibility of the rules [Simon et al. (2011)]. Other commonly used machine-learning93

algorithms for defect prediction, such as support vector machines (SVM) or Naive Bayes classifiers,94

generate black-box models, which lack interpretability. Even decision trees can be difficult to interpret due95

to the subtree-replication problem [Simon et al. (2011)]. Another advantage of association rule mining is96

that the gained rules implicitly extract high-order interactions among the predictors.97

2/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

3 RELATED WORK98

Defect prediction is an important research area that has been extensively studied [Hall et al. (2012); Catal99

and Diri (2009)]. Defect prediction models use code metrics [Menzies et al. (2007); Nagappan et al.100

(2006); D’Ambros et al. (2012); Zimmermann et al. (2007)], change metrics [Nagappan and Ball (2005);101

Hassan (2009); Kim et al. (2007)], or a variety of further metrics (such as code ownership [Bird et al.102

(2011); Rahman and Devanbu (2011)], developer interactions [Meneely et al. (2008); Lee et al. (2011)],103

dependencies to binaries [Zimmermann and Nagappan (2008)], mutants [Bowes et al. (2016)], code104

smells [Palomba et al. (2016)]) to predict code areas that are especially defect-prone. Such models allow105

software engineers to focus quality-assurance efforts on these areas and thereby support a more efficient106

resource allocation [Menzies et al. (2007); Weyuker and Ostrand (2008)].107

Defect prediction is usually performed at the component, package or file level [Nagappan and Ball108

(2005); Nagappan et al. (2006); Bacchelli et al. (2010); Scanniello et al. (2013)]. Recently, more fine-109

grained prediction models have been proposed to narrow down the scope for quality-assurance activities.110

Kim et al. presented a model to classify software changes [Kim et al. (2008)]. Hata et al. applied111

defect prediction at the method level and showed that fine-grained prediction outperforms coarse-grained112

prediction at the file or package level if efforts to find the faults are considered [Hata et al. (2012)]. Giger113

et al. also investigated prediction models at the method level [Giger et al. (2012)] and concluded that114

a Random Forest model operating on change metrics can achieve good performance. More recently,115

Pascarella et al. replicated this study and confirmed the results [Pascarella et al. (2018)]. However, they116

reported that a more realistic inter-release evaluation of the models shows a dramatic drop in performance117

with results close to that of a random classifier and concluded that method-level bug prediction is still118

an open challenge [Pascarella et al. (2018)]. It is considered difficult to achieve sufficiently good data119

quality at the method level [Hata et al. (2012); Shippey et al. (2016)]; publicly available datasets have120

been provided in [Shippey et al. (2016)], [Just et al. (2014)], and [Giger et al. (2012)].121

Cross-project defect prediction predicts defects in projects for which no historical data exists by122

using models trained on data of other projects [Zimmermann et al. (2009); Xia et al. (2016)]. He123

et al. investigated the usability of cross-project defect prediction [He et al. (2012)]. They reported124

that cross-project defect prediction works only in few cases and requires careful selection of training125

data. Zimmermann et al. also provided empirical evidence that cross-project prediction is a serious126

problem [Zimmermann et al. (2009)]. They stated that projects in the same domain cannot be used to127

build accurate prediction models without quantifying, understanding, and evaluating process, data and128

domain. Similar findings were obtained by Turhan et al., who investigated the use of cross-company data129

for building prediction models [Turhan et al. (2009)]. They found that models using cross-company data130

can only be “useful in extreme cases such as mission-critical projects, where the cost of false alarms can131

be afforded” and suggested using within-company data if available. While some recent studies reported132

advances in cross-project defect prediction [Xia et al. (2016); Zhang et al. (2016); Xu et al. (2018)], it is133

still considered as a challenging task.134

Our work differs from the above-mentioned work in the target setting: we do not predict artifacts that135

are fault-prone, but instead identify artifacts (methods) that are very unlikely to contain any faults. While136

defect prediction aims to detect as many faults as possible (without too many false positives), and thus137

strives for a high recall [Mende and Koschke (2009)], our IDP approach strives to identify those methods138

that are not fault-prone to a high certainty. Therefore, we optimized our approach towards the precision in139

detecting low-fault-risk methods and considered the recall as less important. To the best of our knowledge,140

this is the first work to study low-fault-risk methods. Moreover, as far as we know, cross-project prediction141

has not yet been applied at the method level. To perform the classification, we applied association rule142

mining. Association rule mining has previously been applied with success in defect prediction [Song et al.143

(2006); Morisaki et al. (2007); Czibula et al. (2014); Ma et al. (2010); Karthik and Manikandan (2010);144

Zafar et al. (2012)].145

4 IDP APPROACH146

This section describes the inverse defect prediction approach, which identifies low-fault-risk (LFR)147

methods. The approach comprises the computation of source-code metrics for each method, the data148

pre-processing before the mining, and the association rule mining. Figure 1 illustrates the steps.149

3/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

All

Methods

Compute Metrics

Remove Faulty

Methods

Faulty

Methods
Non-Faulty

Methods
Compute Metrics

Merge Multiple

Occurrences

Method

Fixes

IDP Classifier

Select top n rules

Mine Association Rules

Address Data Imbalance

Figure 1. Overview of the approach. Metrics for faulty methods are computed at the faulty state;

metrics for non-faulty methods are computed at the state of the last bug-fix commit.

4.1 Metric Computation150

Like defect prediction models, IDP uses metrics to train a classifier for identifying low-fault-risk methods.151

For each method, we compute the source-code metrics listed in Table 1 that we considered relevant to152

judge whether a method is trivial. They comprise established length and complexity metrics used in defect153

prediction, metrics regarding occurrences of programming-language constructs, and categories describing154

the purpose of a method.155

SLOC is the number of source lines of code, i.e., LOC without empty lines and comments. Cyclomatic156

Complexity (CC) corresponds to the metric proposed by McCabe [McCabe (1976)]. Despite this metric157

being controversial [Shepperd (1988); Hummel (2014)]—due to the fact that it is not actionable, difficult to158

interpret, and high values do not necessarily translate to low readability—it is commonly used as variable in159

defect prediction [Menzies et al. (2004); Zimmermann et al. (2007); Menzies et al. (2002)]. Furthermore, a160

low number of paths through a method could be relevant for identifying low-fault-risk methods. Maximum161

nesting depth corresponds to the “maximum number of encapsulated scopes inside the body of the162

method” [ndepend (2017)]. Deeply nested code is more difficult to understand, therefore, it could be more163

fault-prone. Maximum method chaining expresses the maximum number of chain elements of a method164

invocation. We consider a method call to be chained if it is directly invoked on the result from the previous165

method invocation. The value for a method is zero if it does not contain any method invocations, one166

if no method invocation is chained, or otherwise the maximum number of chain elements (e.g., two for167

getId().toString(), three for getId().toString().subString(1)). Unique variable168

identifiers counts the distinct names of variables that are used within the method. The following metrics,169

metrics M6 to M31, count the occurrences of the respective Java language construct [Gosling et al.170

(2013)].171

Next, we derive further metrics from the existing ones. They are redundant, but correlated metrics172

do not have any negative effects on association rule mining (except on the computation time) and may173

improve the results for the following reason: if an item generated from a metric is not frequent, rules with174

this item will be discarded because they cannot achieve the minimum support; however, an item for a175

more general metric may be more frequent and survive. The derived metrics are:176

• All Conditions, which sums up If Conditions, Switch-Case Blocks, and Ternary Operations (M16 +177

M27 + M29)178

• All Arithmetic Operations, which sums up Incrementations, Decrementations, and Arithmetic Infix179

Operations (M7 + M8)180

Furthermore, we compute to which of the following categories a method belongs (a method can181

belong to zero, one, or more categories):182

4/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Table 1. Computed metrics for each method.

Metric Name Type

M1 Source Lines of Code (SLOC) length

M2 Cyclomatic Complexity (CC) complexity

M3 Max. Nesting Depth max. value

M4 Max. Method Chaining max. value

M5 Unique Variable Identifiers unique count

M6 Anonymous Class Declarations count

M7 Arithmetic In- or Decrementations count

M8 Arithmetic Infix Operations count

M9 Array Accesses count

M10 Array Creations count

M11 Assignments count

M12 Boolean Operators count

M13 Cast Expressions count

M14 Catch Clauses count

M15 Comparison Operators count

M16 If Conditions count

M17 Inner Method Declarations count

M18 Instance-of Checks count

M19 Instantiations count

M20 Loops count

M21 Method Invocations count

M22 Null Checks count

M23 Null Literals count

M24 Return Statements count

M25 String Literals count

M26 Super-Method Invocations count

M27 Switch-Case Blocks count

M28 Synchronized Blocks count

M29 Ternary Operations count

M30 Throw Statements count

M31 Try Blocks count

M32 All Conditions count

M33 All Arithmetic Operations count

M34 Is Constructor boolean

M35 Is Setter boolean

M36 Is Getter boolean

M37 Is Empty Method boolean

M38 Is Delegation Method boolean

M39 Is ToString Method boolean

5/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

• Constructors: Special methods that create and initialize an instance of a class. They might be less183

fault-prone because they often only set class variables or delegate to another constructor.184

• Getters: Methods that return a class variable. They usually consist of a single statement and can be185

generated by the IDE.186

• Setters: Methods that set the value of a class variable. They usually consist of a single statement and187

can be generated by the IDE.188

• Empty Methods: Non-abstract methods without any statements. They often exist to meet an imple-189

mented interface, or because the default logic is to do nothing and is supposed to be overridden in190

certain sub-classes.191

• Delegation Methods: Methods that delegate the call to another method with the same name and further192

parameters. They often do not contain any logic besides the delegation.193

• ToString Methods: Implementations of Java’s toString method. They are often used only for194

debugging purposes and can be generated by the IDE.195

Note that we only use source-code metrics and do not consider process metrics. This is because we196

want to identify methods that exhibit a low fault risk due to their code.197

Association rule mining computes frequent itemsets from categorical attributes; therefore, our next198

step is to discretize the numerical metrics. (In defect prediction, discretization is also applied to the199

metrics: Shivaji et al. [Shivaji et al. (2013)] and McCallum et al. [McCallum and Nigam (1998)] reported200

that binary values can yield better results than using counts when the number of features is low.) We201

discretize as follows:202

• For each of the metrics M1 to M5, we inspect their distribution and create three classes. The first class203

is for metric values until the first tertile, the second class for values until the second tertile, and the third204

class for the remaining values.205

• For all count metrics (including the derived ones), we create a binary “has-no”-metric, which is true if206

the value is zero, e.g., CountLoops = 0 ⇒ NoLoops = true.207

• For the method categories (setter, getter, . . .), no transformation is necessary as they are already binary.208

4.2 Data Pre-Processing209

At this point, we assume that we have a list of faulty methods with their metrics at the faulty state (the210

list may contain a method multiple times if it was fixed multiple times) and a list of all methods. Faulty211

methods can be obtained by identifying methods that were changed in bug-fix commits [Zimmermann212

et al. (2007); Giger et al. (2012); Shippey et al. (2016)]; we describe in Section 5.3 how we extracted213

faulty methods from the Defects4J dataset.214

Prior to applying the mining algorithm, we have 1) to address faulty methods with multiple occurrences,215

2) to create a unified list of faulty and non-faulty methods, and 3) to tackle dataset imbalance.216

1) A method may be fixed multiple times; in this case, a method appears multiple times in the list217

of the faulty methods. However, each method should have the same weight and should therefore be218

considered only once. Consequently, we consolidate multiple occurrences of the same method: we replace219

all occurrences by a new instance and apply majority voting to aggregate the binary metric values. It is220

common practice in defect prediction to have a single instance of every method with a flag that indicates221

whether a method was faulty at least once [Menzies et al. (2010); Giger et al. (2012); Shippey et al. (2016);222

Mende and Koschke (2009)].223

2) To create a unified dataset, we take the list of all methods, remove those methods that exist in the224

set of the faulty methods, and add the set of the faulty methods with the metrics computed at the faulty225

state. After doing that, we end up with a list containing each method exactly once and a flag indicating226

whether a method was faulty or not.227

3) Defect datasets are often highly imbalanced [Khoshgoftaar et al. (2010)], with faulty methods being228

underrepresented. Therefore, we apply SMOTE1, a well-known algorithm for over- and under-sampling,229

to address imbalance in the dataset used for training [Longadge et al. (2013); Chawla et al. (2002)]. It230

artificially generates new entries of the minority class using the nearest neighbors of these cases and231

reduces entries from the majority class [Torgo (2010)]. If we do not apply SMOTE to highly imbalanced232

1Synthetic Minority Over-sampling Technique

6/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

datasets, many non-expressive rules will be generated when most methods are not faulty. For example,233

if 95% of the methods are not faulty and 90% of them contain a method invocation, rules with high234

support will be generated that use this association to identify non-faulty methods. Balancing avoids those235

nonsense rules.236

4.3 IDP Classifier237

To identify low-fault-risk methods, we compute association rules of the type {Metric1, Metric2, Metric3,238

. . . }→ {NotFaulty}. Examples for the metrics are SlocLowestThird, NoNullChecks, IsSetter. A method239

that satisfies all metric predicates of a rule is not faulty to the certainty expressed by the confidence of the240

rule. The support of the rule expresses how many methods with these characteristics exist, and thus, it241

shows how generalizable the rule is.242

After computing the rules on a training set, we remove redundant ones (see Section 2) and order the243

remaining rules first descending by their confidence and then by their support. To build the low-fault-risk244

classifier, we combine the top n association rules with the highest confidence values using the logical-or245

operator. Hence, we consider a method to have a low fault risk if at least one of the top n rules matches.246

To determine n, we compute the maximum number of rules until the faulty methods in the low-fault-risk247

methods exceed a certain threshold in the training set.248

Of course, IDP can also be used with other machine-learning algorithms. We decided to use association249

rule mining because of the natural comprehensibility of the rules (see Section 2) and because we achieved250

a better performance compared to models we trained using Random Forest.251

5 EMPIRICAL STUDY252

This section reports on the empirical study that we conducted to evaluate the inverse defect prediction253

approach.254

5.1 Research Questions255

We investigate the following questions to research how well methods that contain hardly any faults can be256

identified and to study whether IDP is applicable in cross-project scenarios.257

RQ 1: How many faults do methods classified as “low fault risk” contain? To evaluate the258

precision of the classifier, we investigate how many methods that are classified as “low-fault-risk” (due259

to the triviality of their code) are faulty. If we want to use the low-fault-risk classifier for determining260

methods that require less focus during quality assurance (QA) activities, such as testing and code reviews,261

we need to be sure that these methods contain hardly any faults.262

RQ 2: How large is the fraction of the code base consisting of methods classified as “low fault263

risk”? We study how common low-fault-risk methods are in code bases to find out how much code is of264

lower importance for quality-assurance activities. We want to determine which savings potential can arise265

if these methods are excluded from QA.266

RQ 3: Is a trained classifier for methods with low fault risk generalizable to other projects?267

Cross-project defect prediction is used to predict faults in (new) projects, for which no historical fault268

data exists, by using models trained on other projects. It is considered a challenging task in defect269

prediction [He et al. (2012); Zimmermann et al. (2009); Turhan et al. (2009)]. As we expect that the270

characteristics of low-fault-risk methods might be project-independent, IDP could be applicable in a271

cross-project scenario. Therefore, we investigate how generalizable our IDP classifier is for cross-project272

use.273

5.2 Study Objects274

For our analysis, we used data from Defects4J, which was created by Just et al. [Just et al. (2014)].275

Defects4J is a database and analysis framework that provides real faults for six real-world open-source276

projects written in Java. For each fault, the original commit before the bug fix (faulty version), the original277

commit after the bug fix (fixed version), and a minimal patch of the bug fix are provided. The patch is278

minimal such that it contains only code changes that 1) fix the fault and 2) are necessary to keep the279

code compilable (e.g., when a bug fix involves method-signature changes). It does not contain changes280

that do not influence the semantics (e.g., changes in comments, local renamings), and changes that were281

7/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Table 2. Study objects.

Name SLOC #Methods #Faulty Meth.

JFreeChart (Chart) 81.6k 6.8k 39

Google Closure Compiler 166.7k 13.0k 148

Apache Commons Lang 16.6k 2.0k 73

Apache Commons Math 9.5k 1.2k 132

Mockito 28.3k 2.5k 64

Joda Time 89.0k 10.1k 45

013b1e 6cc308 f81f3f

FAULTY

#1

c1e8ed

FIXED

#1

8ce240

CLEANED

REVERSE

PATCH

fa30f1

Figure 2. Derivation of faulty methods. The original bug-fix commit c1e8ed to fix the faulty version

f81f3f may contain unrelated changes. Defect4J provides a reverse patch, which contains only the

actual fix. We applied it to the fixed version c1e8ed to get to fa30f1. We then identified methods that

were touched by the patch and computed their metrics at state fa30f1.

included in the bug-fix commit but are not related to the actual fault (e.g., refactorings). Due to the manual282

analysis, this dataset at the method level is much more precise than other datasets at the same level, such283

as [Shippey et al. (2016)] and [Giger et al. (2012)], which were generated from version control systems284

and issue trackers without further manual filtering. The authors of [Just et al. (2014)] confirmed that they285

considered every bug fix within a given time span.286

Table 2 presents the study objects and their characteristics. We computed the metrics SLOC and287

#Methods for the code revision at the last bug-fix commit of each project; the numbers do not comprise288

sample and test code. #Faulty methods corresponds to the number of faulty methods derived from the289

dataset.290

5.3 Fault Data Extraction291

Defects4J provides for each project a set of reverse patches2, which represent bug fixes. To obtain the292

list of methods that were at least once faulty, we conducted the following steps for each patch. First, we293

checked out the source code from the project repository at the original bug-fix commit and stored it as294

fixed version. Second, we applied the reverse patch to the fixed version to get to the code before the bug295

fix and stored the resulting faulty version.296

Next, we analyzed the two versions created for every patch. For each file that was changed between297

the faulty and the fixed version, we parsed the source code to identify the methods. We then mapped the298

code changes to the methods to determine which methods were touched in the bug fix. After that, we had299

the list of faulty methods. Figure 2 summarizes these steps.300

We inspected all 395 bug-fix patches and found that 10 method changes in the patches do not represent301

bug fixes. While the patches are minimal, such that they contain only bug-related changes (see Section 5.2),302

these ten method changes are semantic-preserving, only necessary because of changed signatures of other303

methods in the patch, and therefore included in Defects4J to keep the code compilable. Figure 3 presents304

2A reverse patch reverts previous changes.

8/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Figure 3. Example of method change without behavior modification to preserve API compatibility. The

method escapeJavaScript(String) invokes escapeJavaStyleString(String,

boolean, boolean). A further parameter was added to the invoked method; therefore, it was

necessary to adjust the invocation in escapeJavaScript(String). For invocations with the

parameter value true, the behavior does not change [Lang, patch 46, simplified].

SLOC Cyclom. Complexity Max. Nesting Depth Max. Method Chaining Uniq. Variable Identifiers

Figure 4. Metrics M1 to M5 are not normally distributed.

an example. Although these methods are part of the bug fix, they were not changed semantically and305

do not represent faulty methods. Therefore, we decided to remove them from the faulty methods in our306

analysis. The names of these ten methods are provided in the dataset to this paper [Niedermayr et al.307

(2018)].308

5.4 Procedure309

After extracting the faulty methods from the dataset, we computed the metrics listed in Section 4. We310

computed them for all faulty methods at their faulty version and for all methods of the application code3
311

at the state of the fixed version of the last patch. We used Eclipse JDT AST4 to create an AST visitor for312

computing the metrics. For all further processing, we used the statistical computing software R5.313

To discretize the metrics M1 to M5, we first computed their value distribution. Figure 4 shows that314

their values are not normally distributed (most values are very small). To create three classes for each315

of these metrics,6 we sorted the metric values, and computed the values at the end of the first and at the316

end of the second third. We then put all methods until the last occurrence of the value at the end of the317

first third into class 1, all methods until the last occurrence of the value at the end of the second third into318

class 2, and all other methods into class 3. Table 3 presents the value ranges of the resulting classes. The319

classes are the same for all six projects.320

We then aggregated multiple faulty occurrences of the same method (this occurs if a method is321

changed in more than one bug-fix patch) and created a unified dataset of faulty and non-faulty methods322

(see Section 4.2).323

Next, we split the dataset into a training and a test set. For RQ 1 and RQ 2, we used 10-fold cross-324

validation [(Witten et al., 2016, Chapter 5)]. Using the caret package [from Jed Wing et al. (2017)], we325

randomly sampled the dataset of each project into ten stratified partitions of equal sizes. Each partition326

is used once for testing the classifier, which is trained on the remaining nine partitions. To compute the327

3code without sample and test code
4http://www.eclipse.org/jdt/
5https://cran.r-project.org/
6We did not use the ntile function to create classes, because it always generates classes of the same size, such that instances

with the same value may end up in different classes (e.g., if 50% of the methods have the complexity value 1, the first 33.3% will

end up in class 1, and the remaining 16.7% with the same value will end up in class 2).

9/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Table 3. Generated classes and their value ranges.

Metric Class 1 Class 2 Class 3

SLOC [0;3] [4;8] [9;∞)
Cyclomatic Complexity [1;1] [2;2] [3;∞)
Max. Nesting Depth [0;0] [1;1] [2;∞)
Max. Method Chaining [0;1] [2;2] [3;∞)
Uniq. Variable Identifiers [0;1] [2;3] [4;∞)

0%

20%

40%

60%

80%

0 100

Number of Rules

Figure 5. Influence of the number of selected rules (Lang). The number of rules influences the

proportion of low-fault-risk (LFR) methods and the share of faulty methods in LFR out of all faulty

methods.

association rules for RQ 3—in which we study how generalizable the classifier is—for each project, we328

used the methods of the other five projects as training set for the classifier.329

Before computing association rules, we applied the SMOTE algorithm from the DMwR package [Torgo330

(2010)] with a 100% over-sampling and a 200% under-sampling rate to each training set. After that, each331

training set was equally balanced (50% faulty methods, 50% non-faulty methods).7332

We then used the implementation of the Apriori algorithm [Agrawal et al. (1994)] in the arules333

package [Hahsler et al. (2017, 2005)] to compute association rules with NotFaulty as target item (rule334

consequent). We set the threshold for the minimum support to 10% and the threshold for the minimum335

confidence to 90% (support and confidence are explained in Section 2). We experimented with different336

thresholds and these values produced good results (results for other configurations are in the dataset337

provided with this paper [Niedermayr et al. (2018)]). The minimum support avoids overly infrequent338

(i.e., non-generalizable) rules from being created, and the minimum confidence prevents the creation of339

imprecise rules. Note that no rule (with NotFaulty as rule consequent) can reach a higher support than340

50% after the SMOTE pre-processing. After computing the rules, we removed redundant ones using the341

corresponding function from the apriori package. We then sorted the remaining rules descending by their342

confidence.343

Using these rules, we created two classifiers to identify low-fault-risk (LFR) methods. They differ in344

the number of comprised rules. The strict classifier uses the top n rules until the share of faulty methods345

in all methods (of the training set) exceeds 2.5% in the LFR methods (of the training set). The more346

lenient classifier uses the top n rules until the share exceeds 5% in the LFR methods. (Example: We347

applied the top one rule to the training set, then applied the next rule, . . . , until the matched methods in348

the training set contained 2.5% out of all faults.) Figure 5 presents how an increase in the number of349

selected rules affects the proportion of LFR methods and the share of faulty methods that they contain.350

For RQ 1 and RQ 2, the classifiers were computed for each fold of each project. For RQ 3, the classifiers351

were computed once for each project.352

To answer RQ 1, we used 10-fold cross-validation to evaluate the classifiers separately for each353

project. We computed the number and proportion of methods that were classified as “low-fault-risk” but354

contained a fault (≈ false positives). For the sake of completeness, we also computed precision and recall;355

although, we believe that the recall is of lesser importance for our purpose. This is because we do not356

7We computed the results for the empirical study once with and once without addressing the data imbalance in the training set.

The prediction performance was better when applying SMOTE, therefore, we decided to use it.

10/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Table 4. RQ 1, RQ 2: Evaluation of within-project IDP to identify low-fault-risk (LFR) methods.

Project Faults in LFR LFR methods LFR methods LFR SLOC LFR methods fault-density reduction

contain . . . %

% Prec. Rec. # % # % of all faults (methods) (SLOC)

Within-project IDP, 10-fold: min. support = 10%, min. confidence = 90%, rules until fault share in training set = 2.5%

Chart 4 0.1% 99.9% 44.1% 2,995 43.9% 11,228 15.8% 10.3% 4.3 1.5

Closure 6 0.2% 99.8% 29.2% 3,759 28.9% 15,497 10.5% 4.1% 7.1 2.6

Lang 3 0.5% 99.5% 29.6% 576 28.6% 2,242 13.8% 4.1% 7.0 3.4

Math 2 1.1% 98.9% 18.4% 190 16.5% 570 4.8% 1.5% 10.9 3.1

Mockito 5 0.6% 99.4% 35.1% 875 34.4% 6,128 25.1% 7.8% 4.4 3.2

Time 8 0.1% 99.9% 80.4% 8,063 80.2% 62,063 78.1% 17.8% 4.5 4.4

Median 0.3% 99.7% 32.3% 31.7% 14.8% 6.0% 5.7 3.2

Within-project IDP, 10-fold: min. support = 10%, min. confidence = 90%, rules until fault share in training set = 5%

Chart 4 0.1% 99.9% 44.8% 3,040 44.6% 11,563 16.3% 10.3% 4.3 1.6

Closure 15 0.3% 99.7% 41.8% 5,385 41.5% 25,981 17.6% 10.1% 4.1 1.7

Lang 6 0.7% 99.3% 45.0% 879 43.7% 3,630 22.3% 8.2% 5.3 2.7

Math 7 2.7% 97.3% 24.3% 255 22.1% 878 7.3% 5.3% 4.2 1.4

Mockito 6 0.5% 99.5% 47.8% 1,189 46.8% 8,260 33.8% 9.4% 5.0 3.6

Time 9 0.1% 99.9% 82.8% 8,298 82.5% 63,333 79.7% 20.0% 4.1 4.0

Median 0.4% 99.6% 44.9% 44.1% 20.0% 9.8% 4.3 2.2

want to predict all methods that do not contain any faults in the dataset; we only want to identify those357

methods that we can say, with high certainty, contain hardly any faults.358

As the dataset is imbalanced with faulty methods in the minority, the proportion of faults in low-fault-359

risk methods might not be sufficient to assess the classifiers (SMOTE was applied only to the training360

set). Therefore, we further computed the fault-density reduction, which describes how much less likely361

the LFR methods contain a fault. For example, if 40% of all methods are classified as “low fault risk”362

and contain 10% of all faults, the factor is 4. It can also be read as: 40% of all methods contain only363

one fourth of the expected faults. We mathematically define the fault-density reduction factor based on364

methods as365

proportion of LFR methods out of all methods
proportion of faulty LFR methods out of all faulty methods

366

and based on SLOC as367

proportion of SLOC in LFR methods out of all SLOC
proportion of faulty LFR methods out of all faulty methods

.368

For both classifiers (strict variant with 2.5%, lenient variant with 5%), we present the metrics for each369

project and the resulting median.370

To answer RQ 2, we assessed how common methods classified as “low fault risk” are. For each project,371

we computed the absolute number of low-fault-risk methods, their proportion out of all methods, and372

their extent by considering their SLOC. LFR SLOC corresponds to the sum of SLOC of all low-fault-risk373

methods. The proportion of LFR SLOC is computed out of all SLOC of the project.374

To answer RQ 3, we computed the association rules for each project with the methods of the other375

five projects as training data. Like in RQ 1 and RQ 2, we determined the number of used top n rules376

with the same thresholds (2.5% and 5%). To allow a comparison with the within-project classifiers, we377

computed the same metrics like in RQ 1 and RQ 2.378

5.5 Results379

This section presents the results to the research questions. The data to reproduce the results is available380

at [Niedermayr et al. (2018)].381

RQ 1: How many faults do methods classified as “low fault risk” contain? Table 4 presents the382

results. The methods classified to have low fault risk (LFR) by the stricter classifier, which allows a383

maximum fault share of 2.5% in the LFR methods in the (balanced) training data, contain between 2 and384

8 faulty methods per project. The more lenient classifier, which allows a maximum fault share of 5%,385

11/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Table 5. Top three association rules for Lang (within-project, fold 1).

Rule Support Confidence

1 { UniqueVariableIdentifiersLessThan2, NoMethodInvocations } ⇒ { NotFaulty } 10.98% 100.00%

2 { SlocLessThan4, NoMethodInvocations, NoArithmeticOperations } ⇒ { NotFaulty } 10.98% 100.00%

3 { SlocLessThan4, NoMethodInvocations, NoCastExpressions } ⇒ { NotFaulty } 10.60% 100.00%

classified between 4 and 15 faulty methods as LFR. The median proportion of faulty methods in LFR386

methods is 0.3% resp. 0.4%.387

The fault-density reduction factor for the stricter classifier ranges between 4.3 and 10.9 (median: 5.7)388

when considering methods and between 1.5 and 4.4 (median: 3.2) when considering SLOC. In the project389

Lang, 28.6% of all methods with 13.8% of the SLOC are classified as LFR and contain 4.1% of all faults,390

thus, the factor is 7.0 (SLOC-based: 3.4). The factor never falls below 1 for both classifiers.391

IDP can identify methods with low fault risk. On average, only 0.3% of the methods classified

as “low fault risk” by the strict classifier are faulty. The identified LFR methods are, on

average, 5.7 times less likely to contain a fault than an arbitrary method in the dataset.

392

Table 5 exemplarily presents the top three rules for Lang. Methods that work with fewer than two393

variables and do not invoke any methods as well as short methods without arithmetic operations, cast394

expressions, and method invocations are highly unlikely to contain a fault.395

RQ 2: How large is the fraction of the code base consisting of methods classified as “low fault396

risk”? Table 4 presents the results. The stricter classifier classified between 16.5% and 80.2% of the397

methods as LFR (median: 31.7%, mean: 38.8%), the more lenient classifier matched between 22.1%398

and 82.5% of the methods (median: 44.1%, mean: 46.9%). The median of the comprised SLOC in LFR399

methods is 14.8% (mean: 24.7%) respectively 20.0% (mean: 29.5%).400

Using within-project IDP, on average, 32–44% of the methods, comprising about 15–20% of

the SLOC, can be assigned a lower importance during testing.
401

In the best case, when ignoring 16.5% of the methods (4.8% of the SLOC), it is still possible

to catch 98.5% of the faults (Math).
402

RQ 3: Is a trained classifier for methods with low fault risk generalizable to other projects?403

Table 6 presents the results for the cross-project prediction with training data from the respective other404

projects. Compared to the results of the within-project prediction, except for Math, the number of faults405

in LFR methods decreased or stayed the same in all projects for both classifier variants. While the median406

proportion of faults in LFR methods slightly decreased, the proportion of LFR methods also decreased in407

all projects except Math. The median proportion of LFR methods is 23.3% (SLOC: 8.1%) for the stricter408

classifier and 26.3% (SLOC: 12.6%) for the more lenient classifier.409

The fault-density reduction improved compared to the within-project prediction for both the method410

and SLOC level in both classifier variants: For the stricter classifier, the median of the method-based factor411

is 10.9 (+5.2); the median of the SLOC-based factor is 3.9 (+0.7). Figures 6 illustrates the fault-density412

reduction for both within-project (RQ 1, RQ 2) and cross-project (RQ 3) prediction.413

Using cross-project IDP, on average, 23–26% of the methods, comprising about 8–13% of the

SLOC, can be classified as “low fault risk”. The methods classified by the stricter classifier

contain, on average, less than one eleventh of the expected faults.

414

12/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

0

5

10

15

chart closure lang math mockito time

F
a
u
lt
−

d
e
n
s
it
y
 r

e
d
u
c
ti
o
n

(m
e
th

o
d
s
)

Figure 6. Comparison of the IDP within-project (2.5%, 5.0%) with the IDP cross-project (2.5%,

5.0%) classifiers (method-based). The fault-density reduction expresses how much less likely a LFR

method contains a fault (definition in 5.4). Higher values are better. (Example: If 40% of the methods are

LFR and contain 5% of all faults, the factor is 8.) The dashed line is at one; no value falls below.

Table 6. RQ 3: Evaluation of cross-project IDP.

Project Faults in LFR LFR methods LFR methods LFR SLOC LFR methods fault-density reduction

contain . . . %

% Prec. Rec. # % # % of all faults (methods) (SLOC)

Cross-project IDP: min. support = 10%, min. confidence = 90%, rules until fault share in training set = 2.5%

Chart 3 0.1% 99.9% 32.1% 2,182 32.0% 7,434 10.5% 7.7% 4.2 1.4

Closure 2 0.1% 99.9% 25.0% 3,207 24.7% 11,584 7.9% 1.4% 18.3 5.8

Lang 1 0.2% 99.8% 23.1% 449 22.3% 1,357 8.3% 1.4% 16.3 6.1

Math 8 2.9% 97.1% 26.6% 280 24.3% 1,129 9.4% 6.1% 4.0 1.6

Mockito 1 0.2% 99.8% 21.7% 539 21.2% 1,698 6.9% 1.6% 13.6 4.4

Time 1 0.1% 99.9% 18.4% 1,845 18.3% 5,807 7.3% 2.2% 8.3 3.3

Median 0.2% 99.8% 24.0% 23.3% 8.1% 1.9% 10.9 3.9

Cross-project IDP: min. support = 10%, min. confidence = 90%, rules until fault share in training set = 5%

Chart 4 0.2% 99.8% 35.5% 2,411 35.4% 9,363 13.2% 10.3% 3.4 1.3

Closure 4 0.1% 99.9% 25.9% 3,327 25.6% 15,583 10.6% 2.7% 9.5 3.9

Lang 4 0.7% 99.3% 27.7% 542 26.9% 1,959 12.0% 5.5% 4.9 2.2

Math 18 5.1% 94.9% 32.9% 354 30.7% 1,634 13.7% 13.6% 2.2 1.0

Mockito 1 0.2% 99.8% 25.0% 620 24.4% 3,495 14.3% 1.6% 15.6 9.1

Time 1 0.0% 100.0% 20.0% 2,007 20.0% 7,552 9.5% 2.2% 9.0 4.3

Median 0.2% 99.8% 26.8% 26.3% 12.6% 4.1% 6.9 3.1

13/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

6 DISCUSSION415

The results of our empirical study show that only very few low-fault-risk methods actually contain a416

fault, and thus, they indicate that IDP can successfully identify methods that are not fault-prone. On417

average, 31.7% of the methods (14.8% of the SLOC) matched by the strict classifier contain only 6.0%418

of all faults, resulting in a considerable fault-density reduction for the matched methods. In any case,419

low-fault-risk methods are less fault-prone than other methods, (fault-density reduction is higher than one420

in all projects); based on methods, LFR methods are at least twice less likely to contain a fault. For the421

stricter classifier, the extent of the matched methods, which could be deferred in testing, is between 5%422

and 78% of the SLOC of the respective project. The more lenient classifier matches more methods and423

SLOC at the cost of a higher fault proportion, but still achieves satisfactory fault-density reduction values.424

This shows that the balance between fault risk and matched extent can be influenced by the number of425

considered rules to reflect the priorities of a software project.426

Interestingly, the cross-project IDP classifier, which is trained on data from the respective other five427

projects, exhibits a higher precision than the within-project IDP classifier. Except for the Math project, the428

LFR methods contain fewer faulty methods in the cross-project prediction scenario. This is in line with the429

method-based fault-density reduction factor of the strict classifier, which is in four of six cases better in430

the cross-project scenario (SLOC-based: three of six cases). However, the proportion of matched methods431

decreased compared to the within-project prediction in most projects. Accordingly, the cross-project432

results suggest that a larger, more diversified training set identifies LFR methods more conservatively,433

resulting in a higher precision and lower matching extent.434

Math is the only project in which IDP within-project prediction outperformed IDP cross-project435

prediction. This project contains many methods with mathematical computations expressed by arithmetic436

operations, which are often wrapped in loops or conditions; most of the faults are located in these methods.437

Therefore, the within-project classifiers used few, very precise rules for the identification of LFR methods.438

To sum up, our results show that the IDP approach can be used to identify methods that are, due439

to the “triviality” of their code, less likely to contain any faults. Hence, these methods require less440

focus during quality-assurance activities. Depending on the criticality of the system and the risk one441

is willing to take, the development of tests for these methods can be deferred or even omitted in case442

of insufficient available test resources. The results suggest that IDP is also applicable in cross-project443

prediction scenarios, indicating that characteristics of low-fault-risk methods differ less between projects444

than characteristics of faulty methods do. Therefore, IDP can be used in (new) projects with no (precise)445

historical fault data to prioritize the code to be tested.446

6.1 Limitations447

A limitation of IDP is that even low-fault-risk methods can contain faults. An inspection of faulty methods448

incorrectly classified to have a low fault risk showed that some faults were fixed by only adding further449

statements (e.g., to handle special cases). This means that a method can be faulty even if the existing450

code as such is not faulty (due to missing code). Further imaginable examples for faulty low-fault-risk451

methods are simple getters that return the wrong variable, or empty methods that are unintentionally452

empty. Therefore, while these methods are much less fault-prone, it cannot be assumed that they never453

contain any fault. Consequently, excluding low-fault-risk methods from testing and other QA activities454

carries a risk that needs to be kept in mind.455

6.2 Relation to Defect Prediction456

As discussed in detail in Section 1, IDP presents another view on defect prediction. The focus of IDP on457

low-fault-risk methods allows optimizing towards precision, while recall is less important. Therefore, a458

precision-and-recall comparison of our study results with method-level defect prediction studies from459

other papers, such as [Giger et al. (2012)] or [Hata et al. (2012)], would lead to a performance comparison460

of the used metrics or classifiers, which is not what differentiates IDP from traditional defect prediction.461

6.3 Threats to Validity462

Next, we discuss the threats to internal and external validity.463

6.3.1 Threats to Internal Validity464

The learning and evaluation was performed on information extracted from Defects4J [Just et al. (2014)].465

Therefore, the quality of our data depends on the quality of Defects4J. Common problems for defect466

14/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

datasets created by analyzing changes in commits that reference a bug ticket in an issue tracking system467

are as follows. First, commits that fix a fault but do not reference a ticket in the commit message cannot be468

detected [Bachmann et al. (2010)]. Consequently, the set of commits that reference a bug fix may not be a469

fair representation of all faults [Bird et al. (2009); D’Ambros et al. (2012); Giger et al. (2012)]. Second,470

bug tickets in the issue tracker may not always represent faults and vice versa. Herzig et al. pointed out471

that a significant amount of tickets in the issue trackers of open-source projects is misclassified [Herzig472

et al. (2013)]. Therefore, it is possible that not all bug-fix commits were spotted. Third, faults may not473

have been detected or fixed yet. In general, it is not possible to prove that a method does not contain any474

faults. Fourth, a commit may contain changes (such as refactorings) that are not related to the bug fix, but475

this problem does not affect the Defects4J dataset due to the authors’ manual inspection. These threats476

are present in nearly all defect prediction studies, especially in those operating at the method level. Defect477

prediction models were found to be resistant to such kind of noise to a certain extent [Kim et al. (2011)].478

Defects4J contains only faults that are reproducible and can be precisely mapped to methods; therefore,479

faulty methods may be under-approximated. In contrast, other datasets created without manual post-480

processing tend to over-approximate faults. To mitigate this threat, we replicated our IDP evaluation with481

two study objects used in [Giger et al. (2012)] by Giger et al. The observed results were similar to our482

study.483

6.3.2 Threats to External Validity484

The empirical study was performed with six mature open-source projects written in Java. The projects are485

libraries and their results may not be applicable to other application types, e.g., large industrial systems486

with user interfaces. The results may also not be transferable to projects of other languages, for the487

following reasons: First, Java is a strongly typed language that provides type safety. It is unclear if the488

IDP approach works for languages without type safety, because it could be that even simple methods in489

such languages exhibit a considerable amount of faults. Second, in case the approach as such is applicable490

to other languages, the collected metrics and the low-fault-risk classifier need to be validated and adjusted.491

Other languages may use language constructs in a different way or use constructs that do not exist in492

Java. For example, a classifier for the C language should take constructs such as GOTOs and the use of493

pointer arithmetic into consideration. Furthermore, the projects in the dataset (published in 2014) did494

not contain code with lambda expressions introduced in Java 8.8 Therefore, in newer projects that make495

use of lambda expressions, the presence of lambdas should be taken into consideration when classifying496

methods. Consequently, further studies are necessary to determine whether the results are generalizable.497

As done in most defect prediction studies, we treated all faults as equal and did not consider their498

importance. In reality, not all faults have the same importance, because some cause higher failure499

follow-up costs than others.500

7 CONCLUSION501

Developer teams often face the problem scarce test resources and need therefore to prioritize their testing502

efforts (e.g., when writing new automated unit tests). Defect prediction can support developers in this503

activity. In this paper, we propose an inverse view on defect prediction (IDP) to identify methods that are504

so “trivial” that they contain hardly any faults. We study how unerringly such low-fault-risk methods can505

be identified, how common they are, and whether the proposed approach is applicable for cross-project506

predictions.507

We show that IDP using association rule mining on code metrics can successfully identify low-fault-508

risk methods. The identified methods contain considerably fewer faults than the average code and can509

provide a savings potential for QA activities. Depending on the parameters, a lower priority for QA can510

be assigned on average to 31.7% resp. 44.1% of the methods, amounting to 14.8% resp. 20.0% of the511

SLOC. While cross-project defect prediction is a challenging task [He et al. (2012); Zimmermann et al.512

(2009)], our results suggest that the IDP approach can be applied in a cross-project prediction scenario at513

the method level. In other words, an IDP classifier trained on one or more (Java open-source) projects can514

successfully identify low-fault-risk methods in other Java projects for which no—or no precise—fault515

data exists.516

8http://www.oracle.com/technetwork/articles/java/architect-lambdas-part1-2080972.

html

15/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

For future work, we want to replicate this study with closed-source projects, projects of other517

application types, and projects in other programming languages. It is also of interest to investigate which518

metrics and classifiers are most effective for the IDP purpose and whether they differ from the ones used519

in traditional defect prediction. Moreover, we plan to study whether code coverage of low-fault-risk520

methods differs from code coverage of other methods. If guidelines to meet a certain code coverage level521

are set by the management, unmotivated testers may add tests for low-fault-risk methods first because it522

might be easier to write tests for those methods. Consequently, more complex methods with a higher fault523

risk may remain untested once the target coverage is achieved. Therefore, we want to investigate whether524

this is a problem in industry and whether it can be addressed with an adjusted code-coverage computation,525

which takes low-fault-risk methods into account.526

ACKNOWLEDGMENT527

This work was partially funded by the German Federal Ministry of Education and Research (BMBF),528

grant “SOFIE, 01IS18012A”. The responsibility for this article lies with the authors. We thank Nils Göde529

and Florian Deißenböck for their valuable feedback.530

REFERENCES531

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules between sets of items in532

large databases. In ACM SIGMOD Record, volume 22, pages 207–216. ACM.533

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In Proc. 20th534

International Conference on Very Large Data Bases (VLDB’94), volume 1215, pages 487–499.535

Bacchelli, A., D’Ambros, M., and Lanza, M. (2010). Are popular classes more defect prone? In Proc.536

13th International Conference on Fundamental Approaches to Software Engineering (FASE’10), pages537

59–73. Springer.538

Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and Bernstein, A. (2010). The missing links: Bugs539

and bug-fix commits. In Proc. 18th International Symposium on Foundations of Software Engineering540

(FSE’10), pages 97–106. ACM.541

Bayardo, R. J., Agrawal, R., and Gunopulos, D. (1999). Constraint-based rule mining in large, dense542

databases. In Proc. 15th International Conference on Data Engineering (ICDE’99), pages 188–197.543

IEEE.544

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. In Proc. Future of545

Software Engineering (FOSE’07), pages 85–103. IEEE Computer Society.546

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., and Devanbu, P. (2009). Fair and547

balanced? bias in bug-fix datasets. In Proc. 7th Joint Meeting of the European Software Engineering548

Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE’09), pages549

121–130. ACM.550

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P. (2011). Don’t touch my code! examining551

the effects of ownership on software quality. In Proc. 8th Joint Meeting of the European Software Engi-552

neering Conference and the Symposium on the Foundations of Software Engineering (ESEC/FSE’11),553

pages 4–14. ACM.554

Bowes, D., Hall, T., Harman, M., Jia, Y., Sarro, F., and Wu, F. (2016). Mutation-aware fault prediction.555

In Proc. 25th International Symposium on Software Testing and Analysis (ISSTA’16), pages 330–341.556

ACM.557

Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert Systems with558

Applications, 38(4):4626–4636.559

Catal, C. and Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems560

with Applications, 36(4):7346–7354.561

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority562

over-sampling technique. Journal of Artificial Intelligence Research (JAIR), 16:321–357.563

Czibula, G., Marian, Z., and Czibula, I. G. (2014). Software defect prediction using relational association564

rule mining. Information Sciences, 264:260–278.565

D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction approaches: A benchmark566

and an extensive comparison. Empirical Software Engineering, 17(4-5):531–577.567

from Jed Wing, M. K. C., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z.,568

16/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C.,569

and Hunt., T. (2017). caret: Classification and Regression Training. R package version 6.0-76.570

Giger, E., D’Ambros, M., Pinzger, M., and Gall, H. C. (2012). Method-level bug prediction. In Proc.571

6th International Symposium on Empirical Software Engineering and Measurement (ESEM’12), pages572

171–180. ACM.573

Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. (2013). The java language specification, java574

se 7 edition, february 2012. http://docs.oracle.com/javase/specs/jls/se7/html/575

index.html. [Online; accessed 08-August-2017].576

Hahsler, M., Buchta, C., Gruen, B., and Hornik, K. (2017). arules: Mining Association Rules and577

Frequent Itemsets. R package version 1.5-2.578

Hahsler, M., Gruen, B., and Hornik, K. (2005). arules – A computational environment for mining579

association rules and frequent item sets. Journal of Statistical Software, 14(15):1–25.580

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A systematic literature review on581

fault prediction performance in software engineering. IEEE Transactions on Software Engineering582

(TSE), 38(6):1276–1304.583

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Proc. 31st International584

Conference on Software Engineering (ICSE’09), pages 78–88. IEEE Computer Society.585

Hata, H., Mizuno, O., and Kikuno, T. (2012). Bug prediction based on fine-grained module histories. In586

Proc. 34th International Conference on Software Engineering (ICSE’12), pages 200–210. IEEE.587

He, Z., Shu, F., Yang, Y., Li, M., and Wang, Q. (2012). An investigation on the feasibility of cross-project588

defect prediction. Automated Software Engineering, 19(2):167–199.589

Herzig, K., Just, S., and Zeller, A. (2013). It’s not a bug, it’s a feature: How misclassification impacts bug590

prediction. In Proc. 35th International Conference on Software Engineering (ICSE’13), pages 392–401.591

IEEE.592

Hummel, B. (2014). McCabe’s Cyclomatic Complexity and Why We Don’t Use It. https://www.593

cqse.eu/en/blog/mccabe-cyclomatic-complexity/. [Online; accessed 08-August-594

2017].595

Just, R., Jalali, D., and Ernst, M. D. (2014). Defects4J: A Database of existing faults to enable controlled596

testing studies for Java programs. In Proc. 23rd International Symposium on Software Testing and597

Analysis (ISSTA’14), pages 437–440, San Jose, CA, USA. Tool demo.598

Karthik, R. and Manikandan, N. (2010). Defect association and complexity prediction by mining599

association and clustering rules. In Proc. 2nd International Conference on Computer Engineering and600

Technology (ICCET’10), volume 7, pages V7–569. IEEE.601

Khoshgoftaar, T. M., Gao, K., and Seliya, N. (2010). Attribute selection and imbalanced data: Problems in602

software defect prediction. In Proc. 22nd International Conference on Tools with Artificial Intelligence603

(ICTAI’10), volume 1, pages 137–144. IEEE.604

Kim, S., Whitehead Jr, E. J., and Zhang, Y. (2008). Classifying software changes: Clean or buggy? IEEE605

Transactions on Software Engineering (TSE), 34(2):181–196.606

Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in defect prediction. In Proc. 33rd607

International Conference on Software Engineering (ICSE’11), pages 481–490. IEEE.608

Kim, S., Zimmermann, T., Whitehead Jr, E. J., and Zeller, A. (2007). Predicting faults from cached609

history. In Proc. 29th International Conference on Software Engineering (ICSE’07), pages 489–498.610

IEEE Computer Society.611

Lee, T., Nam, J., Han, D., Kim, S., and In, H. P. (2011). Micro interaction metrics for defect prediction.612

In Proc. 8th Joint Meeting of the European Software Engineering Conference and the Symposium on613

the Foundations of Software Engineering (ESEC/FSE’11), pages 311–321. ACM.614

Longadge, R., Dongre, S., and Malik, L. (2013). Class imbalance problem in data mining: Review.615

International Journal of Computer Science and Network (IJCSN), 2(1):83–87.616

Ma, B., Dejaeger, K., Vanthienen, J., and Baesens, B. (2010). Software defect prediction based on617

association rule classification. In Proc. 1st International Conference on E-Business Intelligence618

(ICEBI’10). Atlantis Press.619

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering (TSE),620

(4):308–320.621

McCallum, A. and Nigam, K. (1998). A comparison of event models for naive bayes text classification.622

In Proc. Workshop on Learning for Text Categorization (AAAI-98-W7), volume 752, pages 41–48.623

17/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Madison, WI.624

Mende, T. and Koschke, R. (2009). Revisiting the evaluation of defect prediction models. In Proc. 5th625

International Conference on Predictor Models in Software Engineering (PROMISE’09), page 7. ACM.626

Meneely, A., Williams, L., Snipes, W., and Osborne, J. (2008). Predicting failures with developer627

networks and social network analysis. In Proc. 16th International Symposium on Foundations of628

Software Engineering (FSE’08), pages 13–23. ACM.629

Menzies, T. and Di Stefano, J. S. (2004). How good is your blind spot sampling policy? In Proc. 8th630

International Symposium on High Assurance Systems Engineering, pages 129–138. IEEE.631

Menzies, T., Di Stefano, J. S., Chapman, M., and McGill, K. (2002). Metrics that matter. In Proc. 27th632

Annual NASA Goddard Software Engineering Workshop, pages 51–57. IEEE, IEEE/NASA.633

Menzies, T., DiStefano, J., Orrego, A., and Chapman, R. (2004). Assessing predictors of software defects.634

In Proc. Workshop Predictive Software Models (PROMISE’04).635

Menzies, T., Greenwald, J., and Frank, A. (2007). Data mining static code attributes to learn defect636

predictors. IEEE Transactions on Software Engineering (TSE), 33(1):2–13.637

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., and Bener, A. (2010). Defect prediction from638

static code features: Current results, limitations, new approaches. Automated Software Engineering,639

17(4):375–407.640

Menzies, T., Stefano, J., Ammar, K., McGill, K., Callis, P., Davis, J., and Chapman, R. (2003). When641

can we test less? In Proc. 9th International Symposium on Software Metrics (SMS’03), pages 98–110.642

IEEE.643

Morisaki, S., Monden, A., Matsumura, T., Tamada, H., and Matsumoto, K.-i. (2007). Defect data analysis644

based on extended association rule mining. In Proc. 4th International Workshop on Mining Software645

Repositories (MSR’07), page 3. IEEE Computer Society.646

Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to predict system defect density.647

In Proc. 27th International Conference on Software Engineering (ICSE’15), pages 284–292. IEEE.648

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict component failures. In Proc.649

28th International Conference on Software Engineering (ICSE’06), pages 452–461. ACM.650

ndepend (2017). Code Metrics Definitions. http://www.ndepend.com/docs/code-metrics\651

#ILNestingDepth. [Online; accessed 08-August-2017].652

Niedermayr, R., Röhm, T., and Wagner, S. (2018). Dataset: Too trivial to test?653

Ostrand, T. J., Weyuker, E. J., and Bell, R. M. (2005). Predicting the location and number of faults in654

large software systems. IEEE Transactions on Software Engineering (TSE), 31(4):340–355.655

Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A., and Oliveto, R. (2016). Smells like teen spirit:656

Improving bug prediction performance using the intensity of code smells. In Proc. 32nd International657

Conference on Software Maintenance and Evolution (ICSME’16), pages 244–255. IEEE.658

Pascarella, L., Palomba, F., and Bacchelli, A. (2018). Re-evaluating method-level bug prediction. In Proc.659

25th International Conference on Software Analysis, Evolution and Reengineering (SANER’18), pages660

592–601. IEEE.661

Rahman, F. and Devanbu, P. (2011). Ownership, experience and eefects: A fine-grained study of authorship.662

In Proc. 33rd International Conference on Software Engineering (ICSE’11), pages 491–500. ACM.663

Scanniello, G., Gravino, C., Marcus, A., and Menzies, T. (2013). Class level fault prediction using664

software clustering. In Proc. 28th International Conference on Automated Software Engineering665

(ASE’13), pages 640–645. IEEE Press.666

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric. Software Engineering667

Journal, 3(2):30–36.668

Shippey, T., Hall, T., Counsell, S., and Bowes, D. (2016). So you need more method level datasets for669

your software defect prediction?: Voilà! In Proc. 10th International Symposium on Empirical Software670

Engineering and Measurement (ESEM’16). ACM.671

Shivaji, S., Whitehead, E. J., Akella, R., and Kim, S. (2013). Reducing features to improve code672

change-based bug prediction. IEEE Transactions on Software Engineering (TSE), 39(4):552–569.673

Simon, G. J., Kumar, V., and Li, P. W. (2011). A simple statistical model and association rule filtering674

for classification. In Proc. 17th International Conference on Knowledge Discovery and Data Mining675

(SIGKDD’11), pages 823–831. ACM.676

Song, Q., Shepperd, M., Cartwright, M., and Mair, C. (2006). Software defect association mining and677

defect correction effort prediction. IEEE Transactions on Software Engineering (TSE), 32(2):69–82.678

18/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

Torgo, L. (2010). Data Mining with R, learning with case studies. Chapman and Hall/CRC.679

Turhan, B., Menzies, T., Bener, A. B., and Di Stefano, J. (2009). On the relative value of cross-company680

and within-company data for defect prediction. Empirical Software Engineering, 14(5):540–578.681

Weyuker, E. J. and Ostrand, T. J. (2008). What can fault prediction do for you? In Proc. 2nd International682

Conference on Tests and Proofs (TAP’08), pages 1–10. Springer.683

Witten, I. H., Frank, E., Hall, M. A., and Pal, C. J. (2016). Data Mining: Practical Machine Learning684

Tools and Techniques. Morgan Kaufmann.685

Xia, X., Lo, D., Pan, S. J., Nagappan, N., and Wang, X. (2016). Hydra: Massively compositional model for686

cross-project defect prediction. IEEE Transactions on Software Engineering (TSE), 42(10):977–998.687

Xu, Z., Liu, J., Luo, X., and Zhang, T. (2018). Cross-version defect prediction via hybrid active learning688

with kernel principal component analysis. In Proc. 25th International Conference on Software Analysis,689

Evolution and Reengineering (SANER’18), pages 209–220. IEEE.690

Zafar, H., Rana, Z., Shamail, S., and Awais, M. M. (2012). Finding focused itemsets from software defect691

data. In Proc. 15th International Multitopic Conference (INMIC’12), pages 418–423. IEEE.692

Zhang, F., Zheng, Q., Zou, Y., and Hassan, A. E. (2016). Cross-project defect prediction using a693

connectivity-based unsupervised classifier. In Proc. 38th International Conference on Software Engi-694

neering (ICSE’18), pages 309–320. ACM.695

Zhang, H., Zhang, X., and Gu, M. (2007). Predicting defective software components from code complexity696

measures. In Proc. 13th Pacific Rim International Symposium on Dependable Computing (PRDC’07),697

pages 93–96. IEEE.698

Zimmermann, T. and Nagappan, N. (2008). Predicting defects using network analysis on dependency699

graphs. In Proc. 30th International Conference on Software Engineering (ICSE’08), pages 531–540.700

IEEE.701

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009). Cross-project defect702

prediction: A large scale experiment on data vs. domain vs. process. In Proc. 7th Joint Meeting of703

the European Software Engineering Conference and the Symposium on the Foundations of Software704

Engineering (ESEC/FSE’09), pages 91–100. ACM.705

Zimmermann, T., Premraj, R., and Zeller, A. (2007). Predicting defects for eclipse. In Proc. 3rd706

International Workshop on Predictor Models in Software Engineering (PROMISE’07), page 9. IEEE707

Computer Society.708

19/19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27304v1 | CC BY 4.0 Open Access | rec: 30 Oct 2018, publ: 30 Oct 2018

