
1 

 

A call for virtual experiments: accelerating the scientific process 

Jonathan Cooper, Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK 
Jon Olav Vik, Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway 
Dagmar Waltemath, Department of Systems Biology and Bioinformatics, University of Rostock, D-18051 Rostock, Germany 
All authors contributed equally to this work. 

Introduction 
"Experiment [noun]: An action or operation undertaken in order to 
discover something unknown, to test a hypothesis, or establish or 
illustrate some known truth" (Oxford English Dictionary online [1]) 

Experimentation is fundamental to the scientific method, whether for 
exploration, description or explanation [2,3]. In the exploration of a 
novel system, children and researchers alike will mess about with 
things just to see what happens. More formalized experimental 
protocols ensure reproducible results and form a basis for comparing 
systems in terms of their response to a specific stimulus. Finally, 
experiments can be carefully designed to distinguish between 
competing causal hypotheses based on their different testable 
predictions about the outcome of the experimental manipulation. One 
would therefore expect experiments to be central in computational 
biology too. 

Indeed, a mathematical model embodies a thought experiment, a causal 
hypothesis, and its falsifiable predictions. It is easy to ask what if we 
were to change a parameter, an initial state, or the model structure [4]. 
Papers in computational biology focus on describing and analyzing the 
effects of such changes, and on confronting models with experimental 
data [5]. This confrontation often generates new hypotheses, and many 
if not most new models arise by modification of existing ones [6,7]. 
However, most virtual experiments are not built to be reproducible [8], 
and thus die with the paper they are published in. This inhibits the 
critical scrutiny of models, as models are seldom subjected to the same 
simulation experiments as their predecessors, or revisited later in the 
light of new data. Perhaps worse, the status quo fails to take full 
advantage of experiments as a common language between modellers 
and experimentalists. This limits the relevance of mathematical models 
for experimental biologists, who often prefer to rely primarily on 
mental models to develop hypotheses and design tests for them. 
Despite the growing availability of data and model repositories [9–12], 
there has been only a slow uptake of emerging tools and standards for 
documenting and sharing the protocols for simulation experiments and 
their results [8,13,14]. 

We define a virtual experiment as the in silico analogue to a wet lab or 
field experiment, performed on a computational model rather than the 
real system or a physical model (see Box 1 for definitions). Here we 
argue that promoting the reuse of virtual experiments would vastly 
improve the usefulness and relevance of computational models, 
including in biomedical endeavours such as the Virtual Physiological 
Human [15,16] and the Human Brain Project [17]. We review the 
benefits of reusable virtual experiments: in specifying, assaying, and 
comparing the behavioural repertoires of models; as prerequisites for 
reproducible research; to guide model reuse and composition; and for 
quality assurance in the application of computational biology models. 
Next, we discuss potential approaches for implementing virtual 
experiments, arguing that models and experimental protocols should be 
represented separately, but annotated so as to facilitate the linking of 
models to experiments and data (Figure 1). We follow with some 
consideration of open questions and challenges that remain before the 
use of virtual experiments can become widespread. Lastly, we outline a 
vision for how the rigorous, streamlined confrontation between 
experimental datasets and candidate models would enable a 
"continuous integration" of biological knowledge, akin to the strategy 
used in software development [18]. 

 

Figure 1. Integrating virtual experiments in the scientific workflow. At present 
(left), model repositories hold machine-readable model descriptions, typically 
containing a single hard-coded protocol. To perform any other virtual 
experiment on a given model requires substantial manual intervention. A more 
flexible architecture for virtual experiments (right) would define protocols 
independently of the model, but require models to be appropriately annotated 
with unambiguous identifiers for variables and parameters, so that protocols can 
be formulated in terms of such identifiers. This makes it possible to perform 
virtual experiments on all models having the annotations used by the protocol, 
or to find all experiments that are applicable to a given model. Similarly, 
annotation enables the automatic confrontation of simulations with relevant 
experimental data. 

Box 1: Terminology 
A model is a purposeful simplification of reality, designed to imitate 
certain phenomena or characteristics of a system while downplaying 
non-essential aspects. Its value lies in the ability to generalise insights 
from the model to a broader class of related systems. Thus, a lab mouse 
can be a model representing mammals in general; an in vitro heart cell 
can represent the cells in an intact heart; and a set of differential 
equations can approximate the dynamic behaviour of a biological 
system. 

For mathematical and living biological models alike, an experiment is 
the process of inducing changes or stimuli to elicit some response from 
the system that can be observed and carries information about the inner 
workings and/or emergent properties of the system. 

An experimental protocol is a detailed specification for carrying out an 
experiment. Whether involving a wet-lab, field or simulated 
experiment, this will include interventions, recordings, and post-
processing. A protocol for a wet-lab experiment will specify 
environmental conditions, whereas a simulation protocol will translate 
these into corresponding initial/boundary conditions and parameter 
values. A simulation protocol may also include details of the numerical 
algorithm and parameters to use. 

A phenotype is any observable trait of interest in an organism or a 
model thereof. The purpose of computational physiology is to mimic 
measurable phenotypes based on mechanistic descriptions of 
dynamical systems. 

Ontologies are domain-specific lists of concepts and the relations 
between them. Multiple ontologies can be combined to encode 
biological knowledge, so that labels can be given a precise technical 
meaning. For example, consider the phenotype "mass of a heart cell". 
This is the quality "mass", pertaining to a heart cell, which is a cell and 
is located in the heart, which is an organ. A key feature of formal 
ontologies is that they are computer-processable, and automated tools 
can make logical deductions from the relationships stated. 

Semantic interoperability (where "semantic" means "relating to 
meaning") denotes the ability to consistently navigate and query a set 
of data, model and protocol resources using terms taken from one or 
more ontologies [43]. With ontological annotation, new knowledge 
automatically connects to that which already exists, so that users can 
discover relevant knowledge without knowing its location in advance, 
and without having to formulate specific queries to link and select data. 
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As a running example we will refer to heart cell modelling, a mature 
research field [19] that relies heavily on experimental manipulation 
such as electrical pacing and cellular patch clamping (Box 2). 

Box 2: Example from cardiac electrophysiology 
As an example of the central role virtual experiments could play, we 
consider cardiac electrophysiology modelling. Here the use of 
mathematical models dates back over 50 years [46], making this field a 
relatively mature area of computational systems biology. Several 
generations of computational models of individual cardiac cells of 
varying types and complexity have now been developed, and more 
than 100 are available within the CellML Model Repository [38]. Such 
models take the form of (often large) systems of coupled nonlinear 
ordinary differential equations modelling processes such as the influx 
and efflux of ions across the cell membrane in response to, and 
generating, changes in the transmembrane voltage. 

Except for the pacemaker cells and some others, isolated mature heart 
muscle cells are quiescent. To elicit behaviour typical of a cell in its 
normal environment we need to mimic the electrical impulses it 
normally receives from neighbouring cells. This involves injecting a 
brief stimulus current, which depolarizes the cell and allows influx of 
sodium ions and further sustained depolarization, known as the action 

potential (see Figure 2A). This sets off a chain of events that releases 
calcium into the cytosol, where it binds to regulators of motor proteins 
allowing the cell to contract. Where a wet-lab experimentalist will 
administer a stimulus current via an electrode, the computational 
biologist might build in a stimulus current term in the differential 
equation for transmembrane voltage. 

 

Figure 2. Examples of cardiac virtual experiments. A) Simulated stimulation of 
a heart cell, eliciting an action potential (approximate reproduction of Figure 12 
in [59] using a CellML encoding of the model equations). B) Transmembrane 
potential in a human ventricular mesh after a defibrillation shock (based on [60], 
using the cell model in [41], simulated in Chaste 3.1 [61]). 

 

Most of the heart cell models in the CellML repository implement a 
single experiment, namely regular pacing. The virtual counterpart of a 
wet-lab experiment then amounts to changing parameter values for the 
stimulus duration, amplitude, and frequency of repetition; or possibly 
modifying the initial state of the simulated cell. Regular pacing is 
informative in many ways, and can reveal shortcomings such as the 
long-term instability that results from failing to conserve charge (a 
common omission in early models). However, many other experiments 
are possible, each focusing on some particular aspect of heart cell 
dynamics. These may involve changing a parameter value, the initial 
state, or a structural aspect of the system. For example, the conditional 
knocking-out of ion channel genes can be simulated by setting the 
corresponding ion-channel conductance parameters to zero. 

Many experiments cannot be represented by simple parameter changes, 
but instead require modification of the mathematical model structure. 
A case in point is voltage clamping [47], an ingenious technique for 
dissecting the behaviour of voltage-dependent ion channels. By using 
an amplifier, current is injected to forcibly apply, and hold, any 
specified voltage across the cell membrane. In model terms, this 
amounts to replacing a differential equation for voltage with a constant 
parameter. The resulting ionic current gives information about the 
opening and state-switching of ion channels. A wide variety of voltage 
clamp protocols have been designed to emphasize particular aspects of 
different ion channel kinetics. 

In current practice, changes to models are mostly represented by 
duplicating the entire model and then modifying its source code. In 
cardiac electrophysiology this is seen most commonly in the provision 
of endocardial, epicardial and midmyocardial variants of many 
ventricular cell models (e.g. 
http://models.cellml.org/workspace/tentusscher_panfilov_2006 for 
[41]). This fragmentation of model families is equally widespread in 
the BioModels Database [12], where several models of cortical spiking 
neurons, all based on Izhikevich 2004 [48], differ primarily in 
parameter values (for instance BioModels IDs BIOMD0000000129 to 
BIOMD0000000136). 

Increasingly, researchers are also using single cell models within 
integrated, multi-scale models of whole heart (or at least whole 
ventricle) function (see Figure 2B). Software platforms exist that allow 
automated incorporation of multiple cell models (e.g. myocardial cells 
from differing regions of the heart, Purkinje fibre cells) direct from the 
CellML repository into the multi-scale computational model (see [37] 
for a comparison). 

It is therefore a hindrance to the field that most curated models come 
with some specific experimental protocol hardcoded into the equations. 
To reuse or combine such models, you must "unpick" the experimental 
protocol so that only the model structure remains. This is frequently a 
complex and error-prone procedure, as discussed in [49]. 

The virtues of virtual experiments 

Descriptions of the behavioural repertoire of models 
One does not model a system so much as a set of phenomena. Insofar 
as a model is a purposeful simplification, what should be included or 
left out depends on what behaviours it is supposed to imitate. 
Furthermore, any useful model must be capable of not exhibiting the 
phenomenon if certain parameter values, initial states, or model 
structure were different. This is what makes the model causal: it is a 
statement about sufficient causes to exhibit the phenomenon in 
question. Such what-if questions are all examples of virtual 
experiments. 

Indeed, many phenomena are created by experiments, under conditions 
so artificial as not to occur in nature, as asserted by Ian Hacking in his 
classic Representing and intervening [2]. Likewise, many phenotypes 
are defined by a system's response to some stimulus or perturbation. 
Francis Bacon, four hundred years ago, likened this to "twisting the 
lion's tail" [20]; a more modern example is the action potential of 
isolated, excitable cells, which is evoked by an electric stimulus (Box 
2). In either case, experiments bring into play mechanisms whose 
importance may not be apparent under passive observation. 

The behavioural phenotype of a dynamical system is a high-
dimensional and complex thing [21]. Even a "simple" measure such as 
the duration of an action potential is a summary of the time-course of 
transmembrane voltage, which is but one of the myriad variables in a 
heart cell system. A rich characterization of the phenotype aids in 
mechanistic interpretation, in constraining parameter estimation, and in 
exposing models to empirical challenge. For example, the combination 
of calcium transient and action potential data has been shown to 
identify more parameter values than action potentials alone [22,23]. 

Virtual experiments serve as assays of a model's behavioural repertoire, 
both in declaring what a model should do and verifying what it actually 
does. For example, the Bondarenko heart cell model [24] is feature-rich 
and was designed to accommodate various pacing protocols and a suite 
of voltage-clamp protocols for different ion currents. On the other hand, 
the Bernus model [25] was simplified for computational efficiency and 
stability, while using virtual experiments to ensure that the model still 
exhibited the various intended behaviours. 

Behavioural assays using virtual experiments form a relevant basis for 
comparison within a class of systems. Each species, cell type, or 
candidate model can be positioned relative to others along phenotypic 
axes, with the comparison focused on the phenomena of interest. For 
example, ten Tusscher and co-workers [26] compared heart models 
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based on action potential morphology, conduction velocity, spiral wave 
dynamics and other features. By making it easy to apply published 
experiments to published models, the scientific community can place 
each new study in the context of all previous ones, greatly enhancing 
their combined value. To realize these benefits, virtual experiments 
need to be easily reusable with different candidate models. 

Reproducible research 
Scientific knowledge must be independently verifiable, even in 
computational sciences [27], and a growing number of scientists are 
gathering under the banner of reproducible research [8,13,28,29]. The 
spectrum of reproducibility [28] ranges from strict "replication" as in 
re-running a simulation in exact detail, for instance using a virtual 
machine [30], through "reproduction" in the sense of independent re-
implementation of the essential aspects of a carefully described 
experiment [31,32], to "constructive replication" [33] based only on a 
clear statement of the hypothesis, leaving the next researcher free to 
choose their own experiment and analysis methods. Depending on the 
implementation approach, virtual experiments can contribute at 
different points along this spectrum. 

At the replication end, a virtual experiment can be represented as a 
script or program, and rerun exactly. Publications could point at 
particular combinations of models and associated protocols to show 
how a particular figure was produced or how an analysis was carried 
out, providing "verifiable computational results" [34]. The Simulation 
Experiment Description Markup Language (SED-ML) [8] is a format 
to store simulation setups for replication of a particular outcome. 

More usefully than a script, a protocol description can be given at a 
higher level of abstraction, providing the details requested by reporting 
guidelines such as the Minimum Information About a Simulation 

Experiment (MIASE) [13]. Different tools that understand the protocol 
description can reproduce the experiments using their own 
implementations of algorithms etc., and using their own set of models. 

Finally, virtual experiments even support going beyond just 
reproducing an experiment to extending it. Aspects of the experiment 
description can easily be tweaked, or parameters adjusted, in order to 
approach the same essential hypothesis from slightly different angles, 
or investigate the wider behavioural regime. 

Behavioural specifications for quality assurance, 

model reuse and model composition 
To enter the clinical mainstream, computational biology must achieve 
industry-level quality management, including verification (how 
accurately software implements an underlying model), validation (how 
accurately the model represents reality) and uncertainty quantification, 
collectively abbreviated VVUQ [35,36]. These questions can only 
properly be considered in terms of particular phenotypes, or quantities 

of interest in VVUQ jargon. For example, a heart model may 
accurately predict activation time [37] but provide poor approximations 
to other phenotypes. A virtual experiment defines quantities of interest 
and thus plays a key role in this endeavour. 

Cooper et al. [14] argued that effective reuse of published models is 
impossible without knowing the behaviours a model can produce. They 
suggested as a solution "functional curation" of models, i.e. automated 
confrontation between data and models based on (real and virtual) 
experiments. This would complement the existing curation of model 
repositories [12,38] that ensures that a model contains valid 
mathematics, that units are consistent on both sides of an equation, and 
so on. With models, data, and virtual experiments available as distinct 
entities from shared repositories in standard formats, newly published 
models or datasets can be picked up by the system and analysed 
automatically under all suitable virtual experiments. The results would 
be checked against the expected behaviours, and thus the region of 
operation for a model would be determined, and limitations for the use 
of that model identified. Nevertheless, there are many subtleties in 
performing a rigorous comparison of simulation outputs with 
experimental data, including the implications of different experimental 
techniques and the range of quantities that can determine suitability 
(e.g. temperature, species, gender, pH, osmolarity) [39]. 

Comparing models against behaviour specifications could also be 
tightly integrated into model development. This would allow model 
developers to ensure that in specialising a model for a particular 
experiment, "standard" behaviour is not unexpectedly lost. For 
parameter estimation the difference between a virtual experiment's 
output and experimental data can be used as the objective function. 
With more virtual experiments applicable to a given model, many 
parameters may potentially be fitted simultaneously. 

Model composition is crucial for integrative research programmes [40] 
such as the Virtual Physiological Human and the Human Brain Project. 
By clearly specifying model requirements in terms of expected 
behaviours under standardised experiments, we envision that model 
composition could be made much more straightforward, focused and 
reliable. Functional curation would help both in screening for candidate 
submodels, checking whether submodels remain valid if 
computationally simplified [41], and for assessing the performance of 
the compound model. The relevant consequences of any modifications 
or computational shortcuts would be immediately apparent, enabling a 
test-driven development cycle similar to that used in software 
engineering. 

How to realize virtual experiments 
Two key design principles can help realize the benefits described 
above. Firstly, a clear separation of the experimental protocol from the 
model makes it easier to perform new experiments with a model, or run 
an existing experiment with new models. Secondly, data, model and 
protocol resources need to be labelled in a common language that 
facilitates automated processing. Although both the benefits and the 
principles are generic across disciplines, the way forward is clearer for 
research fields that have already established some level of 
standardization, modularity and abstraction. As an illustration from 
heart modelling, we outline how the existing groundwork (databases, 
model repositories, markup languages and open standards to describe 
biological knowledge) can be adapted to foster the reuse and sharing of 
virtual experiments, and to streamline the confrontation of models with 
data. 

As discussed in Box 2, the main problem with today's models is that 
most hardcode a single experiment, with the model and protocol 
interwoven in one piece of "model code" (Figure 1, left). Applying 
new experiments to such a model requires a lot of reverse-engineering, 
tweaking and technical knowledge that is beside the conceptual 
essence of the model. What would be better is to build one model, then 
represent its different behavioural aspects in terms of different virtual 
experiments performed on that model.  

Separate experiment and model descriptions 
At the simplest level, the separation of experiment and model involves 
restructuring the software that implements experiments on models. 
This may involve "unpicking" an existing, "hardwired" experimental 
protocol from the model code, so that only the model structure remains. 
The key requirement is to identify clear interfaces between the 
experimental and model components. Doing so also clarifies what the 
experiments performed actually are, making them easier to modify for 
different purposes. 

Such a separation is a goal of the Simulation Experiment Description 
Markup Language (SED-ML) [8]. An experiment encoded in SED-ML 
may change parameters and initial states, collect specific outputs for 
post-processing, and specify technical options e.g. for numerical 
solvers. However, it still refers to hardcoded parameter names and 
model identifiers, which precludes its use with other, similar models, 
or even with an updated version of the same model. Thus, while SED-
ML ensures replicability, it does not yet offer constructive replication 
in the sense of performing the virtual experiment on any model that 
encodes a particular feature of interest. 

There are trade-offs between implementation options for virtual 
experiments with regard to ease of construction, scope for automation, 
and generality. General-purpose programming languages have the 
advantage of being human-friendly, expressive and flexible. In contrast, 
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markup languages such as SED-ML are verbose and complex, but 
designed for machine processing of the encoded biological meaning. 
They are thus easier to work with in an automated fashion. 

Depending on the level of detail, abstraction and generality of the 
model, the virtual counterpart of a wet-lab procedure may involve 
changing a parameter, an initial state, or a structural aspect of the 
system. The different scenarios of parameters and initial state can be 
viewed as members of a family of systems that the model describes in 
a unified manner. Thus, it is straightforward to represent and perhaps 
automate those experiments that correspond just to changing a 
parameter or initial state. A stimulus period parameter is easy to 
change; the internal details of a hardcoded cell model are not. 

To perform experiments that are not built directly into a model, it is 
often necessary to modify the model structure. While this can be done 
manually for quick prototyping, applying the same modification to 
another model will be easier and more reliable if it can be done 
programmatically. For instance, a differential equation for 
transmembrane voltage might be replaced with a constant to represent 
voltage clamping. Such modifications are easier with domain-specific 
languages and a clean separation of model and experiment. Then, only 
the key features of the model and experiment are encoded, divorced 
from "bookkeeping" details required by a programming language or 
software framework. 

Provide semantically rich interfaces between models 

and experiments (and researchers) 
An experimental protocol needs a way to recognize the model 
components, parameters and variables it manipulates. The pacing of a 
heart cell should be applicable to any model that includes an input 
current and a transmembrane potential, regardless of whether the latter 
is called V or Vm.  To achieve this, connections between protocol and 
model descriptions need to be done at the level of biological concepts, 
rather than depending on details of a particular encoding [42]. What is 
needed is a common language between models and protocols (and 
researchers), and fortunately this already exists [43] through the use of 
ontological annotation (see Box 1). Such an unambiguous 
identification of every variable, parameter or process in a model, data 
set or experimental procedure is already in place for many models in 
the BioModels database [12]. Models are free to use their own variable 
names if in addition they use globally agreed identifiers [44]. The 
ability to consistently navigate and query a set of data and model 
resources using terms taken from one or more ontologies is called 
semantic interoperability (Box 1). Together, ontologies, standard 
formats, and associated infrastructure enable automated reasoning: the 
translation of human-meaningful queries to machine-processing of the 
relevant parts of vast data and model resources [43]. One such 
application could be a protocol that clamps all intra- and extra-cellular 
ion concentrations, without needing to know which ion species are 
included in each model. Another is to compute the sum of all 
membrane currents involving potassium ions, as new potassium 
currents have been discovered and added to models over the years. 

For virtual experiments, the key benefit of ontological annotation is 
that it defines interfaces. What features (components, variables, 
parameters) must a model contain to be eligible for a given 
experiment? What variables, collected under what circumstances, must 
a dataset contain to be useful in validating a given behavioural aspect 
of a model? This has applications such as determining which 
experiments may usefully be applied to which models, ensuring that 
the interfaces are compatible: the model provides the biological 
concepts which the experiment is probing. Model databases that link 
models, ontologies and associated simulations already enable queries 
such as "Which simulation experiments study the change of 
concentration in 'm-phase inducer phosphatase'?" [45], and could easily 
integrate virtual experiments. Similarly, queries over experimental 
databases can help to discover data available for calibrating or 
validating a model. These allow the many-to-many linking of models 
to experimental data via virtual experiments (Figure 1, right).  

Challenges, and visions of a future  
We have argued that virtual experiments have the potential to 
accelerate the scientific process of computational modelling, and 
identified some key principles for implementing them effectively. In 
the following, we identify some of the challenges that impede the way 
to a future where virtual experiments are routinely incorporated in 
computational research. 

The power of virtual experiments extends to all fields of modelling, not 
just those from which we have drawn our examples above (see Box 3). 
However, the concepts required to represent virtual experiments vary 
widely across domains, and current solutions only capture a small 
subset. These differences in requirements depend partly on the maturity 
and homogeneity of modelling work. Where high flexibility is needed, 
the power of a full general purpose programming language may well 
be required in order to encode at least some aspects of experiments. 
Where there is greater consistency in the kinds of experiments 
performed, there is much more scope for a community standard with 
restricted semantics but greater stability. 

Box 3: Expanding the scope of virtual experiments 
The principal strategies to realize virtual experiments, namely 
ontological annotation and standardized interfaces, are generic and 
applicable even in research fields that are less standardized than e.g. 
ordinary differential equation modelling of cell biology. Many 
experiments, particularly for biomedical applications, involve spatial 
variation and/or composed multi-scale multi-physics models. In such 
scenarios one often wishes to modify model parameters within a 
particular spatial subdomain, or probe particular component models; 
these needs increase the complexity of the model/protocol interface 
[42]. 

One specific example is agent-based modelling, which is an eclectic 
approach with applications in ecology [50], economics [51] and 
medicine [52]. Recent years have seen the gradual adoption of 
guidelines for model documentation and reproducibility of such models 
in ecology [53,54]. It would be straightforward to extend the current 
structured-text-based scheme with ontological annotation. On the other 
hand, it is harder to standardise model implementations, which are very 
ad hoc in most agent-based models [50]. However, certain frameworks 
such as NetLogo [55] are widely used for models of medium 
complexity. In general, separating experiment from model becomes a 
programming issue, in that all relevant experimental parameters must 
be user-controllable and discoverable through annotation. 

Virtual experiments could also become applicable in the wet lab. For 
instance, patch clamping of muscle, nerve or brain cells is a prime 
candidate for tight integration of wet-lab experiment and computer 
modelling. The robotized, high-throughput systems available [56–58] 
already have their own formats for specifying voltage-stepping 
protocols, and excitable cells are among the best-modelled biological 
systems in public repositories (Box 2). It is a small step to use the same 
protocol specifications for wet-lab and virtual experiments, and thus 
streamline the confrontation of simulated and experimental data. 

 

Awareness of the potential benefits of standardized and reusable virtual 
experiments is important, but not sufficient. Experience from other 
standardization efforts has shown that ideas will only be taken up when 
there is tool support. For example, most published SBML models arise 
only from modellers working with tools that directly export SBML. 
Encouragingly, a few model repositories have started to provide 
simulation descriptions in SED-ML format as a reproducible proof of 
their curation figures. However, whether or not a SED-ML file is 
available for a model so far depends on the curator, as very few 
researchers provide their experiments in a standard format. High-
quality virtual experiments will only be provided if they can easily be 
generated and explored by software tools. 

Together, such tools could enable a continuous integration of 
knowledge. We envision a world where, as novel data are recorded and 
hypotheses are generated, they can be incorporated into existing or 
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extended models in the context of existing knowledge, rather than in an 
ad-hoc manner as is often currently the case. Once in the system, each 
piece of information added provides new context for the existing ones, 
and thus the invested efforts bring rewards that continue to grow 
cumulatively. The high-throughput screening of data versus models 
will rapidly identify gaps in understanding, limitations in the data, and 
potential contradictions in current hypotheses. In concert with systems 
for difference detection between models (e.g. [6]), one could identify 
the specific model change(s) leading to differences in behaviour. By 
integrating functional curation as a public service, both for model 
repositories and model developers, researchers may easily characterise 
or benchmark their models under a wide range of scenarios (including 
easily varying published experiments to address their own specific 
setup), while checking whether standard behaviours are retained. We 
believe this will lead to faster development of better models. 

These visions have exciting implications for new research paradigms, 
with applications across biomedical research, particularly for 
embedding modelling into clinical use (somewhat fancifully imagined 
in Box 4). However, many non-trivial challenges remain to be tackled, 
by experimentalists, by modellers, by developers of tools and standards, 
and by data and model curators. We hope our paper will stimulate our 
readers to be involved. 

Box 4: A brave new world 
Contributed by Gary Mirams. 

Vladimir sat down at his desk, and glanced at the computer clock, 
09:00 Thursday 20th February, 2035. His task for the day was to make 
a new <ion channel> model, because a novel methylation state was 
discovered on Tuesday that forms in <very specific cell type and 
disease circumstances>. 

Experiments had been performed on Wednesday, guided by protocols 
used to fit the previous model of <ion channel> for <very specific cell 
type>. The experimental team had looked up the existing model of 
<ion channel> for healthy <very specific cell type> and had access to 
the protocols that were needed to fully describe the kinetics of this 
channel, at a range of temperatures, pHs, ion concentrations, etc. They 
downloaded the protocols, ran their wet-lab experiments using the 
PatchClamper7000+, and the results had been uploaded to the WHO 
central database that evening, along with a computer-readable 
description of the corresponding protocols, conditions and all meta-
data. 

Vladimir downloaded all this information by 09:10 and was 
immediately able to simulate the predictions of the existing model 
using the machine readable protocol. He had a quick glance at the 
difference between the existing model's predictions and the new 
recordings; this novel methylation state made quite a difference! 
Together with SuperFancyFitting algorithms and full access to the raw 
data he selected a range of sensible objective functions, and re-fitted 
the previous model's parameter co-variance distributions to describe 
the new methylation state; unfortunately it couldn't describe the data 
whatever re-fitting he tried. Luckily NovelSuperFancyFitting 
algorithms had been invented in 2034 that suggested a range of 
possible new kinetic states and transitions, and he was able to select the 
minimal one for a great fit and evaluated its predictive power by 11:00. 
The community had standard guidelines for the adoption of novel 
models, and he had run the automated checks by 11:30: it passed and 
was deemed of sufficient predictive value to be widely useful. By 
lunchtime, the virtual physiological human model (in use in every 
hospital in the world) had been upgraded to version 10.4.1.3 and was 
providing more accurate predictions of <arrhythmic risk, pain relief, 
exercise guide, diet supplements!> for physicians looking after <very 
specific disease circumstances> patients. 
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